LM555. Single Timer. Description. Features. Applications. Internal Block Diagram. Vcc GND. Trigger. Discharge. Output F/F. Threshold.

Similar documents
L M 5 5 5/N E 5 5 5/S A 5 5 5

LM555/NE555/SA555 Single Timer

Description 8-DIP 8-SOIC. Part Number Operating Temperature Range Top Mark Package Packing Method

MC3456 DUAL TIMING CIRCUIT

ORDERING INFORMATION

KA7500B. SMPS Controller. Features. Description. Internal Block Diagram.

Is Now Part of To learn more about ON Semiconductor, please visit our website at

MOS INTEGRATED CIRCUIT Bipolar Analog Integrated Circuit

LM2903,LM393/LM393A,LM293A

KA7500C. SMPS Controller. Features. Description. Internal Block Diagram.


Is Now Part of. To learn more about ON Semiconductor, please visit our website at

UC3842/UC3843/UC3844/UC3845

RoHS Compliant Product

Features. Applications

Copyright Each Manufacturing Company.

UC3525A. SMPS Controller. Features. Description. Internal Block Diagram.

ZSCT1555 PRECISION SINGLE CELL TIMER ISSUE 2 - MAY 1998 DEVICE DESCRIPTION FEATURES APPLICATIONS SCHEMATIC DIAGRAM

LM311. Single Comparator. Features. Description. Internal Block Diagram.

Is Now Part of To learn more about ON Semiconductor, please visit our website at

TIMING CIRCUIT SEMICONDUCTOR TECHNICAL DATA ORDERING INFORMATION. Figure Second Solid State Time Delay Relay Circuit

FAN1851A Ground Fault Interrupter

Applications. NS Part Number SMD Part Number NS Package Number Package Description LM555H/883 H08A 8LD Metal Can LM555J/883 J08A 8LD Ceramic Dip

DUAL TIMING CIRCUIT SEMICONDUCTOR TECHNICAL DATA PIN CONNECTIONS ORDERING INFORMATION. Figure Second Solid State Time Delay Relay Circuit


UNISONIC TECHNOLOGIES CO., LTD

KA7541. Simple Ballast Controller. Features. Descriptions.

FAN7601. Green Current Mode PWM Controller. Description. Features. Typical Applications. Internal Block Diagram.

KA224/KA224A, KA324/KA324A, KA2902

NE556, SA556, SE556, SE556C DUAL PRECISION TIMERS

UNISONIC TECHNOLOGIES CO., LTD USA555 Advance LINEAR INTEGRATED CIRCUIT

KA741. Single Operational Amplifier. Features. Description. Internal Block Diagram.

HIGH SPEED TRANSISTOR OPTOCOUPLERS

LM324/LM324A, LM2902/LM2902A

NE555,SA555,SE555 PRECISION TIMERS

KA3303/KA3403. Quad Operational Amplifier. Features. Description. Internal Block Diagram.

NE556 SA556 - SE556 GENERAL PURPOSE DUAL BIPOLAR TIMERS

RV4145A. Low Power Ground Fault Interrupter. Features. Description. Block Diagram.

UC3842/UC3843/UC3844/UC3845

LMC555 CMOS Timer. Features. Block and Connection Diagrams. Pulse Width Modulator. October 2003

LM1458/LM1458C. Dual Operational Amplifier. Features. Description. Internal Block Diagram.

DM96S02 Dual Retriggerable Resettable Monostable Multivibrator

RC A Adjustable/Fixed Low Dropout Linear Regulator. Description. Features. Applications. Typical Applications.

KA78RL00. Adjustable Micro Power Voltage Regulator. Description. Features. Internal Block Diagram.

LM2904,LM358/LM358A,LM258/ LM258A

NE555 SA555 - SE555 General-purpose single bipolar timers Features Description


ML4818 Phase Modulation/Soft Switching Controller

PIN CONFIGURATION FEATURES APPLICATIONS BLOCK DIAGRAM. D, F, N Packages

LM2240 Programmable Timer Counter

KA7552A/KA7553A. SMPS Controller. Features. Description. Internal Block Diagram.

LM317M. 3-Terminal 0.5A Positive Adjustable Regulator. Features. Description. Internal Block Diagram.

RC4136 General Performance Quad 741 Operational Amplifier

CD4047BC Low Power Monostable/Astable Multivibrator

..LOW TURN OFF TIME NE555 SA555 - SE555 GENERAL PURPOSE SINGLE BIPOLAR TIMERS. MAXIMUM OPERATING FREQUENCY GREATER THAN 500kHz

CD4541BC Programmable Timer

KA4558. Dual Operational Amplifier. Features. Descriptions. Internal Block Diagram.

KA2803B Earth Leakage Detector

CD4538BC Dual Precision Monostable

KA7632/KA7633. Fixed Multi-output Regulator. Description. Features. Internal Block Diagram.

KA741/KA741E. Single Operational Amplifier. Features. Description. Internal Block Diagram.

ISO-9001 AS9120certi cation ClassQ Military

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Transistor Output SMALL OUTLINE OPTOISOLATORS TRANSISTOR OUTPUT SCHEMATIC. MAXIMUM RATINGS (TA = 25 C unless otherwise noted) Rating Symbol Value Unit

HIGH SPEED-10 MBit/s LOGIC GATE OPTOCOUPLERS

FAN1117A. 1A Adjustable/Fixed Low Dropout Linear Regulator. Description. Features. Applications. Typical Applications.

MC33064DM 5 UNDERVOLTAGE SENSING CIRCUIT

TL494M PULSE-WIDTH-MODULATION CONTROL CIRCUIT

Is Now Part of To learn more about ON Semiconductor, please visit our website at

KA7540. Simple Dimming Ballast Control IC. Features. Descriptions. Applications.

CA555, CA555C, LM555, LM555C, NE555

(400 Volts Peak) COUPLER SCHEMATIC STANDARD THRU HOLE

MC1455, MC1455B, NCV1455B. Timers

MOC215-M MOC216-M MOC217-M

KA431/KA431A/KA431L. Programmable Shunt Regulator. Features. Description. Internal Block Diagram.

CHAPTER 4: 555 TIMER. Dr. Wan Mahani Hafizah binti Wan Mahmud

LM556 Dual Timer. an external resistor and capacitor for each timing Adjustable Duty Cycle

DM74LS83A 4-Bit Binary Adder with Fast Carry

KA378R33. Low Dropout Voltage Regulator. Features. Description. Internal Block Diagram.

MM74HC221A Dual Non-Retriggerable Monostable Multivibrator

. HIGH MAXIMUM ASTABLE FREQUENCY 2.7MHz PIN-TO-PIN AND FUNCTIONALLY COMPATIBLE WITH BIPOLAR NE555

OPTICALLY ISOLATED ERROR AMPLIFIER FOD2711 DESCRIPTION FEATURES APPLICATIONS PIN DEFINITIONS 9/6/02

MM74HC132 Quad 2-Input NAND Schmitt Trigger

HA17555 Series. Precision Timer

SN74LS122, SN74LS123. Retriggerable Monostable Multivibrators LOW POWER SCHOTTKY

NE555, SA555, SE555 PRECISION TIMERS

ASSP For Power Supply Applications

TL594C, TL594I, TL594Y PULSE-WIDTH-MODULATION CONTROL CIRCUITS

FAN7527. Power Factor Correction Controller. Features. Description. Applications.

CD4069UBC Inverter Circuits

TS555. Low power single CMOS timer. Features. Description

University of Southern California

DatasheetArchive.com. Request For Quotation

FAN7300. LCD Back Light Inverter Drive IC. Description. Features.

KA76L05. Low Dropout Voltage Regulator. Description. Features. Internal Block Diagram.

FA5310BP(S), FA5314P(S), FA5316P(S) FA5311BP(S), FA5315P(S), FA5317P(S)

MM74HCU04 Hex Inverter

KA378R05. Low Dropout Voltage Regulator. Features. Description. Internal Block Diagram.

KM4110/KM mA, Low Cost, +2.7V & +5V, 75MHz Rail-to-Rail Amplifiers

FAN8420D3. 3-Phase BLDC Motor Driver. Features. Description. Ordering Information. Typical Applications.

Transcription:

Single Timer www.fairchildsemi.com Features High Current Drive Capability (00mA) Adjustable Duty Cycle Temperature Stability of 0.005%/ C Timing From μsec to Hours Turn off Time Less Than μsec Applications Precision Timing Pulse Generation Time Delay Generation Sequential Timing Description The LM555 is a highly stable controller capable of producing accurate timing pulses. With a monostable operation, the time delay is controlled by one external resistor and one capacitor. With an astable operation, the frequency and duty cycle are accurately controlled by two external resistors and one capacitor. -DIP -SOIC Internal Block Diagram GND R R R Trigger Comp. Discharging Tr. Discharge Output OutPut Stage F/F Comp. Threshold Reset Vref 5 Control Voltage Rev..0. 0 Fairchild Semiconductor Corporation

Absolute Maximum Ratings (TA = 5 C) Parameter Symbol Value Unit Supply Voltage VCC V Lead Temperature (Soldering 0sec) TLEAD 00 C Power Dissipation PD 00 mw Operating Temperature Range (LM555) TOPR 0 ~ +0 C Storage Temperature Range TSTG -5 ~ +50 C

Electrical Characteristics (TA = 5 C, VCC = 5 ~ 5V, unless otherwise specified) Parameter Symbol Conditions Min. Typ. Max. Unit Supply Voltage VCC -.5 - V Supply Current (Low Stable) (Note) ICC VCC = 5V, RL = - ma VCC = 5V, RL = -.5 5 ma Timing Error (Monostable) Initial Accuracy (Note) Drift with Temperature (Note) Drift with Supply Voltage (Note) ACCUR Δt/ΔT Δt/ΔVCC RA = kω to00kω C = 0.μF -.0 50 0..0 0.5 % ppm/ C %/V Timing Error (Astable) Intial Accuracy (Note) Drift with Temperature (Note) Drift with Supply Voltage (Note) ACCUR Δt/ΔT Δt/ΔVCC RA = kω to 00kΩ C = 0.μF -.5 50 0. - % ppm/ C %/V Control Voltage VC VCC = 5V 9.0 0.0.0 V VCC = 5V...0 V Threshold Voltage VTH VCC = 5V - 0.0 - V VCC = 5V -. - V Threshold Current (Note) ITH - - 0. 0.5 μa Trigger Voltage VTR VCC = 5V... V VCC = 5V.5 5 5. V Trigger Current ITR VTR = 0V 0.0.0 μa Reset Voltage VRST - 0. 0..0 V Reset Current IRST - 0. 0. ma Low Output Voltage High Output Voltage VOL VOH VCC = 5V ISINK = 0mA ISINK = 50mA VCC = 5V ISINK = 5mA VCC = 5V ISOURCE = 00mA ISOURCE = 00mA.5 VCC = 5V ISOURCE = 00mA - 0.0 0. 0.5 0.5 V V - 0.05 0.5 V.5. - V V.5. - V Rise Time of Output (Note) tr - - 00 - ns Fall Time of Output (Note) tf - - 00 - ns Discharge Leakage Current ILKG - - 0 00 na Notes:. When the output is high, the supply current is typically ma less than at VCC = 5V.. Tested at VCC = 5.0V and VCC = 5V.. This will determine the maximum value of RA + RB for 5V operation, the max. total R = 0MΩ, and for 5V operation, the max. total R =.MΩ.. These parameters, although guaranteed, are not 00% tested in production.

Application Information Table below is the basic operating table of 555 timer: Threshold Voltage (Vth)(PIN ) Don't care Don't care Low Low ON Vth > / Vth > / High Low ON / < Vth < / / < Vth < / High - - Vth < / Vth < / High High OFF When the low signal input is applied to the reset terminal, the timer output remains low regardless of the threshold voltage or the trigger voltage. Only when the high signal is applied to the reset terminal, the timer's output changes according to threshold voltage and trigger voltage. When the threshold voltage exceeds / of the supply voltage while the timer output is high, the timer's internal discharge Tr. turns on, lowering the threshold voltage to below / of the supply voltage. During this time, the timer output is maintained low. Later, if a low signal is applied to the trigger voltage so that it becomes / of the supply voltage, the timer's internal discharge Tr. turns off, increasing the threshold voltage and driving the timer output again at high.. Monostable Operation Trigger Voltage (Vtr)(PIN ) Table. Basic Operating Table Reset(PIN ) Output(PIN ) Discharging Tr. (PIN ) + 0 RA Trigger RESET TRIG OUT GND DISCH THRES CONT 5 C Capacitance(uF) 0 0 0 0-0 - R A =kω 0kΩ 00kΩ MΩ 0MΩ RL C 0-0 -5 0-0 - 0-0 - 0 0 0 0 Time Delay(s) Figure. Monoatable Circuit Figure. Resistance and Capacitance vs. Time delay(td) Figure. Waveforms of Monostable Operation

Figure illustrates a monostable circuit. In this mode, the timer generates a fixed pulse whenever the trigger voltage falls below /. When the trigger pulse voltage applied to the # pin falls below / while the timer output is low, the timer's internal flip-flop turns the discharging Tr. off and causes the timer output to become high by charging the external capacitor C and setting the flip-flop output at the same time. The voltage across the external capacitor C, VC increases exponentially with the time constant t=ra*c and reaches / at td=.ra*c. Hence, capacitor C is charged through resistor RA. The greater the time constant RAC, the longer it takes for the VC to reach /. In other words, the time constant RAC controls the output pulse width. When the applied voltage to the capacitor C reaches /, the comparator on the trigger terminal resets the flip-flop, turning the discharging Tr. on. At this time, C begins to discharge and the timer output converts to low. In this way, the timer operating in the monostable repeats the above process. Figure shows the time constant relationship based on RA and C. Figure shows the general waveforms during the monostable operation. It must be noted that, for a normal operation, the trigger pulse voltage needs to maintain a minimum of / before the timer output turns low. That is, although the output remains unaffected even if a different trigger pulse is applied while the output is high, it may be affected and the waveform does not operate properly if the trigger pulse voltage at the end of the output pulse remains at below /. Figure shows such a timer output abnormality. Figure. Waveforms of Monostable Operation (abnormal). Astable Operation + 00 RA (R A +R B ) 0 kω RESET TRIG DISCH THRES RB Capacitance(uF) 0. 0MΩ MΩ 00kΩ 0kΩ RL OUT GND CONT 5 C C 0.0 E- 00m 0 00 k 0k 00k Frequency(Hz) Figure 5. Astable Circuit Figure. Capacitance and Resistance vs. Frequency 5

Figure. Waveforms of Astable Operation An astable timer operation is achieved by adding resistor RB to Figure and configuring as shown on Figure 5. In the astable operation, the trigger terminal and the threshold terminal are connected so that a self-trigger is formed, operating as a multi vibrator. When the timer output is high, its internal discharging Tr. turns off and the VC increases by exponential function with the time constant (RA+RB)*C. When the VC, or the threshold voltage, reaches /, the comparator output on the trigger terminal becomes high, resetting the F/F and causing the timer output to become low. This in turn turns on the discharging Tr. and the C discharges through the discharging channel formed by RB and the discharging Tr. When the VC falls below /, the comparator output on the trigger terminal becomes high and the timer output becomes high again. The discharging Tr. turns off and the VC rises again. In the above process, the section where the timer output is high is the time it takes for the VC to rise from / to /, and the section where the timer output is low is the time it takes for the VC to drop from / to /. When timer output is high, the equivalent circuit for charging capacitor C is as follows: R A R B C Vc(0-)=/ dv c V C ------------ cc V0- ( ) = ------------------------------ ( ) dt R A + R B V C ( 0+ ) = V CC ( ) t ------------------------------------ V C () t V CC - --e ( R A + R B )C = ( ) Since the duration of the timer output high state(th) is the amount of time it takes for the VC(t) to reach /,

V C () t --V CC = V - ------------------------------------ CC --e ( R A + R B )C = ( ) t H = C ( R A + R B )In = 0.9( R A + R B )C ( 5) t H The equivalent circuit for discharging capacitor C, when timer output is low is, as follows: R B C V C (0-)=/ R D dv C -------------- C dt V C () t + ----------------------V R A + R C = 0 ( ) B t ------------------------------------- ( R A + R D )C = --V CC e ( ) Since the duration of the timer output low state(tl) is the amount of time it takes for the VC(t) to reach /, ------------------------------------- ( R A + R D )C --V CC = --V CC e ( ) t L = C ( R B + R D )In = 0.9( R B + R D )C ( 9) t L Since RD is normally RB>>RD although related to the size of discharging Tr., tl=0.9rbc (0) Consequently, if the timer operates in astable, the period is the same with 'T=tH+tL=0.9(RA+RB)C+0.9RBC=0.9(RA+RB)C' because the period is the sum of the charge time and discharge time. And since frequency is the reciprocal of the period, the following applies. frequency, f. = -- = --------------------------------------- ( ) T ( R A + R B )C. Frequency divider By adjusting the length of the timing cycle, the basic circuit of Figure can be made to operate as a frequency divider. Figure. illustrates a divide-by-three circuit that makes use of the fact that retriggering cannot occur during the timing cycle.

Figure. Waveforms of Frequency Divider Operation. Pulse Width Modulation The timer output waveform may be changed by modulating the control voltage applied to the timer's pin 5 and changing the reference of the timer's internal comparators. Figure 9 illustrates the pulse width modulation circuit. When the continuous trigger pulse train is applied in the monostable mode, the timer output width is modulated according to the signal applied to the control terminal. Sine wave as well as other waveforms may be applied as a signal to the control terminal. Figure 0 shows the example of pulse width modulation waveform. + R A Trigger RESET TRIG DISCH Output OUT GND THRES Input CONT 5 C Figure 9. Circuit for Pulse Width Modulation Figure 0. Waveforms of Pulse Width Modulation 5. Pulse Position Modulation If the modulating signal is applied to the control terminal while the timer is connected for the astable operation as in Figure, the timer becomes a pulse position modulator. In the pulse position modulator, the reference of the timer's internal comparators is modulated which in turn modulates the timer output according to the modulation signal applied to the control terminal. Figure illustrates a sine wave for modulation signal and the resulting output pulse position modulation : however, any wave shape could be used.

+ RESET TRIG DISCH R A R B Output OUT GND THRES Modulation CONT 5 C Figure. Circuit for Pulse Position Modulation Figure. Waveforms of pulse position modulation. Linear Ramp When the pull-up resistor RA in the monostable circuit shown in Figure is replaced with constant current source, the VC increases linearly, generating a linear ramp. Figure shows the linear ramp generating circuit and Figure illustrates the generated linear ramp waveforms. + RESET TRIG DISCH RE Q R Output OUT GND THRES CONT 5 C C R Figure. Circuit for Linear Ramp Figure. Waveforms of Linear Ramp In Figure, current source is created by PNP transistor Q and resistor R, R, and RE. I C = V CC V -------------------------- E R E ( ) Here, V E is R V E = V BE + ---------------------V R + R CC ( ) For example, if =5V, RE=0kΩ, R=5kW, R=0kΩ, and VBE=0.V, VE=0.V+0V=0.V Ic=(5-0.)/0k=0.5mA 9

When the trigger starts in a timer configured as shown in Figure, the current flowing through capacitor C becomes a constant current generated by PNP transistor and resistors. Hence, the VC is a linear ramp function as shown in Figure. The gradient S of the linear ramp function is defined as follows: V p p S = ---------------- ( ) T Here the Vp-p is the peak-to-peak voltage. If the electric charge amount accumulated in the capacitor is divided by the capacitance, the VC comes out as follows: V=Q/C (5) The above equation divided on both sides by T gives us V --- T Q T = ----------- ( ) C and may be simplified into the following equation. S=I/C () In other words, the gradient of the linear ramp function appearing across the capacitor can be obtained by using the constant current flowing through the capacitor. If the constant current flow through the capacitor is 0.5mA and the capacitance is 0.0μF, the gradient of the ramp function at both ends of the capacitor is S = 0.5m/0.0μ = 9.V/ms. 0

Mechanical Dimensions Package Dimensions in millimeters -DIP A.00.[ 0.5 9. ].0 [0.9 TYP] (.09) [Ø.] PIN #.50±.005 [.5±0.] (.0) [R0.] PIN # TOP VIEW OPTION TYP B.00.05 [..0±.00 [.±0.5].].0±.005 [.±0.].0 MAX [5.] TYP TOP VIEW OPTION C.0.05[ 0.5 0.].00[.05] C NOTES:.00 [.5].05 MIN [0.].0.5[.55.] A. CONFORMS TO JEDEC REGISTRATION MS-00, VARIATIONS BA B. CONTROLING DIMENSIONS ARE IN INCHES REFERENCE DIMENSIONS ARE IN MILLIMETERS C. DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED.00 INCHES OR 0.5MM. D. DOES NOT INCLUDE DAMBAR PROTRUSIONS. DAMBAR PROTRUSIONS SHALL NOT EXCEED.00 INCHES OR 0.5MM. E. DIMENSIONING AND TOLERANCING PER ASME Y.5M-99..00 [.].0 MAX [0.9].00 MAX [.5].00 +.005 -.000 [ 0.5+0. -0.000]

Mechanical Dimensions (Continued) Package Dimensions in millimeters -SOIC

Ordering Information Product Number Package Operating Temperature LM555CN -DIP 0 ~ +0 C LM555CM -SOIC DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com /0/ 0.0m 00 Stock#DSxxxxxxxx 0 Fairchild Semiconductor Corporation