ELM92xxxx CMOS 600kHz High output current PWM step-up DC/DC converter

Similar documents
ELM86xxxxBxA CMOS Dual 400mA LDO Regulator

A6304A. AiT Semiconductor Inc. APPLICATION ORDERING INFORMATION TYPICAL APPLICATION

APPLICATIONS Mobile phones Cordless phones Cameras, video recorders Portable games Portable AV equipment Reference voltage Battery powered equipment

XC9110/XC9111 Series GENERAL DESCRIPTION APPLICATIONS FEATURES TYPICAL APPLICATION CIRCUIT. PFM Controlled Step-Up DC/DC Converter / Controller ICs

XC9119D10A Series APPLICATIONS TYPICAL APPLICATION CIRCUIT. TYPICAL PERFORMANCE CHARACTERISTICS Efficiency vs. Output Current

Super-Small Package PWM Control Step-up Switching Regulator. Designator Symbol Description Designator Symbol Description. B CE without EXT P SOT-89-5L

PWM STEP-UP DC/DC CONVERTER WITH VOLTAGE REGULATOR AND DETECTOR

XC6201 Series GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL PERFORMANCE CHARACTERISTICS TYPICAL APPLICATION CIRCUIT. Positive Voltage Regulators

APPLICATIONS. FEATURES Maximum Output Current : 200mA (300mA Limit, TYP.)

High Speed LDO Regulators Low ESR Cap.Compatible,Output ON/OFFControl

XC6210 Series APPLICATIONS. TYPICAL PERFORMANCE CHARACTERISTICS Dropout Voltage vs. Output Current TYPICAL APPLICATION CIRCUIT

PWM,PWM/PFM Switching Step-Up & Down DC/DC Converter Controller ICs

High Efficiency Low Noise PFM Step-up DC/DC Converter

CE8303 Series. 300KHz PFM Control Step-Up DC/DC Converter INTRODUCTION FEATURES APPLICATIONS BLOCK DIAGRAM ORDER INFORMATION

ULTRA-SMALL PACKAGE PWM/PFM SWITCHING CONTROL STEP-UP SWITCHING REGULATOR. Feature PACKAGE:SOT23-5,SOT89-5,SOP8

ELM620BA 1.4MHz high efficiency synchronous PWM step up DC/DC converter

R1244N001B. 1.2A, 30V Step Down DC/DC converter OUTLINE FEATURES APPLICATIONS NO.EA

ELM621LA High efficiency 30V step up DC/DC converter

FEATURES TYPICAL PERFORMANCE CHARACTERISTICS TYPICAL APPLICATION CIRCUIT APPLICATIONS

300mA Low Dropout Programmable output CMOS Voltage Regulators. Designator Symbol Description Designator Symbol Description CE Pin Logic :

A7530 DC-DC CONVERTER HIGH EFFICIENCY LOW NOISE PFM STEP-UP DC-DC CONVERTER

PIN CONFIGURATION EXT GND FB VDD CE FB 6 NC 5 CE 4 1 EXT 2 VDD 3 GND The dissipation pad for the USP-6B package should be solder-plated in recommended

Efficiency (%) Package Temperature Part Number Transport Media SOP8-40 to 85 PT1102ESOH Tape and Reel

ME A, 1.2MHz Synchronous Step-Up DC/DC Controller. Description. Feature. Selection Guide. Typical Application

XC9253R Series TYPICAL APPLICATION CIRCUIT. Synchronous Step-Down DC/DC Converter 1/13. GreenOperation Compatible

ULTRA-SMALL PACKAGE PWM/PFM SWITCHING CONTROL STEP-UP SWITCHING REGULATOR. Feature. transistor PACKAGE:SOT23-5. V1.0 Page 1.

ADT7350. General Description. Features. Applications. Typical Application Circuit. Sep / Rev. 0.

R1218 Series. Step-up DC/DC converter for White LED Backlight OUTLINE FEATURES APPLICATIONS. No. EA

A7121A. AiT Semiconductor Inc. APPLICATION ORDERING INFORMATION TYPICAL APPLICATION

R1211x Series. PWM Step-Up DC/DC Controller OUTLINE FEATURES APPLICATIONS NO.EA

R1224N SERIES. PWM/VFM step-down DC/DC Controller OUTLINE FEATURES APPLICATIONS NO.EA

FEATURES. Efficiency (%)

PWM Controlled, PWM/PFM Switchable Step-up DC/DC Controllers

FEATURES Maximum Output Current APPLICATIONS. TYPICAL PERFORMANCE CHARACTERISTICS Supply Current vs. Input Voltage TYPICAL APPLICATION CIRCUIT 1/22

STEP-UP DC/DC CONVERTER FOR OLED BACK LIGHT with SHUTDOWN FUNCTION

*1. Attention should be paid to the power dissipation of the package when the load is large.

ADT7350. General Description. Applications. Features. Typical Application Circuit. Aug / Rev. 0.

Low Quiescent Current_Low Dropout CMOS Voltage Regulator

id8603 PFM Step-Up DC-DC Converters with Internal Schottky Diode General Description Applications Features Ordering Information Marking Information

VRR Series. AnaSem. High speed, Low dropout, ±1% High output accuracy CMOS Voltage Regulator with On/Off circuit. Analog Semiconductor IC. AnaSem Inc.

ACE701D. PFM STEP-UP DC/DC Converter with High Efficiency and Low Noise

VRH Series. AnaSem. High speed, Low dropout, ±1% High output accuracy CMOS Voltage Regulator with On/Off circuit. Analog Semiconductor IC.

REV1.0 - AUG 2012 RELEASED

TX9111 High Efficiency Low Noise PFM Step-up DC/DC Converter

Limited. R5324x SERIES. Limited TRIPLE LDO OUTLINE FEATURES APPLICATIONS NO. EA

*1. Attention should be paid to the power dissipation of the package when the load is large. *2. Refer to Product Name Structure for details.

Low-Saturation voltage 300mA LDO Monolithic IC MM334x Series

200mA Regulator IC Monolithic IC MM3404 Series

LR8301 Series LESHAN RADIO COMPANY, LTD. Introduction. Features. Ordering Information. Applications Power supply for portable equipment such 1/10

PIN CONFIGURATION *The dissipation pad for the USP-6B package should be solder-plated in recommended mount pattern and metal masking so as to enhance

PWM Step-Up DC/DC Converter for Panel Backlight. Features. Fig. 1

A7115. AiT Semiconductor Inc. APPLICATION ORDERING INFORMATION TYPICAL APPLICATION

GPS,DSC,MP4,PDA,DVD Camera Notebook Data communication GND COUT. SOT23-5L ACP1217A ACP1217B Name Descriptions. 1 3 VIN Input voltage.

600mA Step-down DC/DC Converter with Synchronous Rectifier

BL9641 DESCRIPTION APPLICATIONS PIN OUT TYPICAL APPLICATION. 42V Input Standoff Voltage, 0.7A Step-Down Converter

LN2351 SERIES SUPER-SMALL PACKAGE VFM CONTROL STEP-UP SWITCHING REGULATOR DESCRIPTION FEATURES APPLICATIONS PACKAGE BLOCK DIAGRAM

300mA/150mA High Speed LDO Regulators with ON-OFF Control

White LED Driver ICs Monolithic IC MM3097

CE8301 Series. Small Package PFM Control Step-Up DC/DC Converter INTRODUCTION FEATURES APPLICATIONS

HIGH RIPPLE-REJECTION LOW DROPOUT LOW INPUT-AND-OUTPUT CAPACITANCE CMOS VOLTAGE REGULATOR

APPLICATIONS Mobile Phones Cordless phones and radio communication equipment Portable games Cameras, Video recorders Portable Audio Equipment PDAs

A7108. AiT Semiconductor Inc. APPLICATION ORDERING INFORMATION TYPICAL APPLICATION

XC6401 Series FEATURES. TYPICAL PERFORMANCE CHARACTERISTICS Interactive Load Transient Response TYPICAL APPLICATION CIRCUITS

High Speed LDO Regulators Low ESR Cap.Compatible,Output ON/OFFControl

Ceramic Capacitor compatible Stand-by function SOT-23-6W & DFN(PLP) Package

APPLICATIONS Mobile, Cordless phones Palm top computers, PDAs Portable games Cameras, Digital cameras Note book PCs

MT3420 Rev.V1.2 GENERAL DESCRIPTION FEATURES APPLICATIONS. 1.4MHz, 2A Synchronous Step-Down Converter

VRD Series. AnaSem. High speed, Low dropout, ±1% High output accuracy CMOS Voltage Regulator with Dual output. Analog Semiconductor IC.

CMOS Regulator Monolithic IC MM303X Series

A8133 HIGH EFFICIENCY, HIGH POWER WHITE LED DRIVER 1MHz FREQUENCY, INTERNAL 2A MOSFET SWITCH

XC9103/XC9104/XC9105 Series

EUP A,30V,1.2MHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

ELM824xA 3.0μA Very low power CMOS dual operational amplifier

GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL PERFORMANCE CHARACTERISTICS TYPICAL APPLICATION CIRCUIT 1/17

ACP1216. Low Dropout Positive Voltage Regulator GENERAL DESCRIPTION FEATURES APPLICATION CIRCUIT APPLICATION PIN CONFIGURATION ACP1216

XLSEMI. Datasheet. 2A 150KHz 40V Buck DC to DC Converter. Features. General Description. Applications

XC62H Series GENERAL DESCRIPTION APPLICATIONS FEATURES TYPICAL PERFORMANCE CHARACTERISTICS TYPICAL APPLICATION CIRCUIT

LOW DROPOUT CMOS VOLTAGE REGULATOR S-818 Series

L1 1 2 D1 B uF R5 18K (Option ) R4 1.1K

XLSEMI. Datasheet. 3A 150KHz 30V Buck DC to DC Converter. Features. General Description. Applications

AP1513. PWM Control 2A Step-Down Converter. Features. General Description. Applications. Pin Descriptions. Pin Assignments

HM3410D Low Noise, Fast Transient 1A Step-Down Converter

HT77xxS 100mA PFM Synchronous Step-up DC/DC Converter

1.5MHz 600mA, Synchronous Step-Down Regulator. Features

RT9261B. VFM Step-Up DC/DC Converter. General Description. Features. Ordering Information RT9261B- Package Type B : SOT-23-5 X : SOT-89.

A7523. AiT Semiconductor Inc. APPLICATION ORDERING INFORMATION

XC9201 Series GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION CIRCUIT TYPICAL PERFORMANCE CHARACTERISTICS

XC6214 Series. FEATURES Maximum Output Current APPLICATIONS. TYPICAL PERFORMANCE CHARACTERISTICS Dropout Voltage vs. Output Current XC6214P332

A7632A. AiT Semiconductor Inc. APPLICATION ORDERING INFORMATION TYPICAL APPLICATION

1.5MHz 600mA, Synchronous Step-Down Regulator. Features

ELM614BA 2A, 18V, 500kHz, synchronous step down DC/DC converter

GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL PERFORMANCE CHARACTERISTICS TYPICAL APPLICATION CIRCUIT 1/17. Battery powered equipment

深圳市科信威电子有限公司科芯微电子 ( 香港 ) 有限公司

4 A Forced PWM Step-down DC/DC Converter with Synchronous Rectifier

Battery Powered, High Efficiency Synchronous DC/DC Boost Converter. Features

UM1660. Low Power DC/DC Boost Converter UM1660S SOT23-5 UM1660DA DFN AAG PHO. General Description

LSP5504. PWM Control 2A Step-Down Converter. Applications. General Description. Features LSP5504. Typical Application Circuit

CONENTS. ITEM(Page 1~2)

40V Boost Converter for LED driver / TFT Bias / USB Power

White LED Step-Up Converter

Transcription:

General description ELM92xxxx is CMOS PWM step-up DC/DC converter which consists of reference voltage source, error amplifier, oscillation circuit, start-up circuit, output voltage setting resistor, LX transistor and switching current limiter. For external parts, coil, diode and capacitor are possible choices; with external parts, ELM92 series is able to acquire constant output voltage higher than input voltage. The standard output voltages are 2.7V,.V,.V, and 5.V; ELM92 series can also be designed as semi-custom IC within the range of 2.5V to 5.5V by.1v step. Meanwhile, 6kHz high frequency PWM control scheme makes it easy to design DC/DC converter which can generate large output current with high stability and small ripples by only using small external inductor. With newly developed intermittent operation control scheme, ELM92 series is able to work with high efficiency under wide range of load conditions. Features Output voltage range : 2.5V to 5.5V (by.1v) Low voltage operation : Vin.9V Oscillating frequency : Typ.6kHz Output current(e.g.) : 25mA(Vin=1.5V, Vout=.V) CE(Chip-enable pin) available : Max..5μA(ELM92xx2x Iss at shutdown) High efficiency : Typ.85% Switching current limiter Package : SOT-89, SOT-89-5 Application Constant voltage source for battery-operated devices Constant voltage source for PDAs, cameras, portable communications equipments and videos Local regulator Maximum absolute ratings Parameter Symbol Limit Unit Apply voltage to LX pin Vlx Vss-. to 8. V Apply voltage to VOUT pin Vout Vss-. to 8. V Apply voltage to CE pin Vce Vss-. to 8. V Power dissipation Pd 5 (SOT-89) 5 (SOT-89-5) mw Operating temperature Top -4 to +85 C Storage temperature Tstg -55 to +125 C Selection guide ELM92xxxx-x Symbol a, b Output voltage e.g. : 27: Vout=2.7V : Vout=.V : Vout=.V 5: Vout=5.V c CE selection 1: No CE type (SOT-89) 2: CE type (SOT-89-5) d Package B: SOT-89, SOT-89-5 e Taping direction S: Refer to PKG file N: Refer to PKG file ELM92 x x x x - x a b c d e 14-1

Pin configuration SOT-89(TOP VIEW) SOT-89-5(TOP VIEW) Pin No. Pin name 1 VOUT 2 VSS LX Pin No. Pin name 1 VOUT 2 VSS LX 4 NC CE 5 ("H"=active, "L"=shutdown) Standard circuit ELM92xx1x MA75 ELM92xx2x MA75 2.2 H LX VOUT Vin Vout + ELM92xx1x Cin VSS Cout 47 F 47 F + Vin + 2.2 H LX Vce CE ELM92xx2x VOUT Vout Cin VSS Cout 47 F 47 F + Block diagram VOUT Error Amp PWM / Intermittent mode Controler PWM Comparator LX transistor driver LX CE VSS CE Controler Vref Ramp Wave Generator Phase Compensation Current Limiter 14-2

Electrical characteristics (ELM92xx1x) Vout=2.7V(ELM92271x) L=2.2μH, Cout=47μF, D=MA75, Vss=V, Top=25 C Starting voltage Vst No-load.9 Output voltage1 Vout1 Iout=6mA, Vin=1.5V 2.6 2.7 2.767 Output voltage2 Vout2 Iout=.1mA, Vin=1.5V 1.5 1.1 1.2 Current consumption1 Iss1 Vout=Vout(T).95 28 45 μa 2 Current consumption2 Iss2 Vout=Vout(T)+.5V 7 11 μa 2 Oscillating frequency Fosc Vout=Vout(T).95 51 6 69 khz Duty ratio Duty Vout=Vout(T).95 8 88 95 % intermittent control Fimt 12 17 khz On-resistance of LX switch Ron Vout=Vout(T).95 27 7 mω 4 Leakage current of LX switch Ilxl Vout=Vlx=7 μa 5 * Vout: input voltage to VOUT pin * Vout(T): typical value of Vout1 * Remarks: test circuit No Vout=.V(ELM921x) L=2.2μH, Cout=47μF, D=MA75, Vss=V, Top=25 C Starting voltage Vst No-load.9 Output voltage1 Vout1 Iout=6mA, Vin=1.5V 2.925..75 Output voltage2 Vout2 Iout=.1mA, Vin=1.5V 1.5 1.1 1.2 Current consumption1 Iss1 Vout=Vout(T).95 48 μa 2 Current consumption2 Iss2 Vout=Vout(T)+.5V 75 12 μa 2 Oscillating frequency Fosc Vout=Vout(T).95 51 6 69 khz Duty ratio Duty Vout=Vout(T).95 8 88 95 % intermittent control Fimt 12 17 khz On-resistance of LX switch Ron Vout=Vout(T).95 25 4 mω 4 Leakage current of LX switch Ilxl Vout=Vlx=7 μa 5 * Vout: input voltage to VOUT pin * Vout(T): typical value of Vout1 * Remarks: test circuit No 14 -

Vout=.V(ELM921x) L=2.2μH, Cout=47μF, D=MA75, Vss=V, Top=25 C Starting voltage Vst No-load.9 Output voltage1 Vout1 Iout=6mA, Vin=1.5V.218..82 Output voltage2 Vout2 Iout=.1mA, Vin=1.5V 1.5 1.1 1.2 Current consumption1 Iss1 Vout=Vout(T).95 2 51 μa 2 Current consumption2 Iss2 Vout=Vout(T)+.5V 8 1 μa 2 Oscillating frequency Fosc Vout=Vout(T).95 51 6 69 khz Duty ratio Duty Vout=Vout(T).95 8 88 95 % intermittent control Fimt 12 17 khz On-resistance of LX switch Ron Vout=Vout(T).95 245 mω 4 Leakage current of LX switch Ilxl Vout=Vlx=7 μa 5 * Vout: input voltage to VOUT pin * Vout(T): typical value of Vout1 * Remarks: test circuit No Vout=5.V(ELM9251x) L=2.2μH, Cout=47μF, D=MA75, Vss=V, Top=25 C Starting voltage Vst No-load.9 Output voltage1 Vout1 Iout=6mA, Vin=V 4.875 5. 5.125 Output voltage2 Vout2 Iout=.1mA, Vin=V 1.5 1.1 1.2 Current consumption1 Iss1 Vout=Vout(T).95 55 88 μa 2 Current consumption2 Iss2 Vout=Vout(T)+.5V 9 145 μa 2 Oscillating frequency Fosc Vout=Vout(T).95 51 6 69 khz Duty ratio Duty Vout=Vout(T).95 8 88 95 % intermittent control Fimt 12 17 khz On-resistance of LX switch Ron Vout=Vout(T).95 22 mω 4 Leakage current of LX switch Ilxl Vout=Vlx=7 μa 5 * Vout: input voltage to VOUT pin * Vout(T): typical value of Vout1 * Remarks: test circuit No 14-4

Electrical characteristics (ELM92xx2x) Vout=2.7V(ELM92272x) Vce=Vout, L=2.2μH, Cout=47μF, D=MA75, Vss=V, Top=25 C Starting voltage Vst No-load.9 Output voltage1 Vout1 Iout=6mA, Vin=1.5V 2.6 2.7 2.767 Output voltage2 Vout2 Iout=.1mA, Vin=1.5V 1.5 1.1 1.2 Current consumption1 Iss1 Vout=Vout(T).95 28 45 μa 2 Current consumption2 Iss2 Vout=Vout(T)+.5V 7 11 μa 2 Current consumption in Shutdown Isd Vout=Vout(T).95, Vce=.5 μa 2 Oscillating frequency Fosc Vout=Vout(T).95 51 6 69 khz Duty ratio Duty Vout=Vout(T).95 8 88 95 % Intermittent control Fimt 12 17 khz On-resistance of LX switch Ron Vout=Vout(T).95 27 7 mω 4 Leakage current of LX switch Ilxl Vout=Vlx=7 μa 5 CE Input voltage "H" Vceh.8 V 6 CE Input voltage "L" Vcel.25 V 6 CE Input current "H" Iceh Vout=Vout(T).95, Vce=Vout(T).95.1 μa 6 CE Input current "L" Icel Vout=Vout(T).95, Vce= -.1 μa 6 * 1.Vout: input voltage to VOUT pin. 2.Vout(T): typical value of Vout1..Vce: input voltage to CE pin. 4.Remarks: test circuit No Vout=.V(ELM922x) Vce=Vout, L=2.2μH, Cout=47μF, D=MA75, Vss=V, Top=25 C Starting voltage Vst No-load.9 Output voltage1 Vout1 Iout=6mA, Vin=1.5V 2.925..75 Output voltage2 Vout2 Iout=.1mA, Vin=1.5V 1.5 1.1 1.2 Current consumption1 Iss1 Vout=Vout(T).95 48 μa 2 Current consumption2 Iss2 Vout=Vout(T)+.5V 75 12 μa 2 Current consumption in Shutdown Isd Vout=Vout(T).95, Vce=.5 μa 2 Oscillating frequency Fosc Vout=Vout(T).95 51 6 69 khz Duty ratio Duty Vout=Vout(T).95 8 88 95 % Intermittent control Fimt 12 17 khz On-resistance of LX switch Ron Vout=Vout(T).95 25 4 mω 4 Leakage current of LX switch Ilxl Vout=Vlx=7 μa 5 CE Input voltage "H" Vceh.8 V 6 CE Input voltage "L" Vcel.25 V 6 CE Input current "H" Iceh Vout=Vout(T).95, Vce=Vout(T).95.1 μa 6 CE Input current "L" Icel Vout=Vout(T).95, Vce= -.1 μa 6 * 1.Vout: input voltage to VOUT pin. 2.Vout(T): typical value of Vout1..Vce: input voltage to CE pin. 4.Remarks: test circuit No 14-5

Vout=.V(ELM922x) Vce=Vout, L=2.2μH, Cout=47μF, D=MA75, Vss=V, Top=25 C Starting voltage Vst No-load.9 Output voltage1 Vout1 Iout=6mA, Vin=1.5V.218..82 Output voltage2 Vout2 Iout=.1mA, Vin=1.5V 1.5 1.1 1.2 Current consumption1 Iss1 Vout=Vout(T).95 2 51 μa 2 Current consumption2 Iss2 Vout=Vout(T)+.5V 8 1 μa 2 Current consumption in Shutdown Isd Vout=Vout(T).95, Vce=.5 μa 2 Oscillating frequency Fosc Vout=Vout(T).95 51 6 69 khz Duty ratio Duty Vout=Vout(T).95 8 88 95 % Intermittent control Fimt 12 17 khz On-resistance of LX switch Ron Vout=Vout(T).95 245 mω 4 Leakage current of LX switch Ilxl Vout=Vlx=7 μa 5 CE Input voltage "H" Vceh.8 V 6 CE Input voltage "L" Vcel.25 V 6 CE Input current "H" Iceh Vout=Vout(T).95, Vce=Vout(T).95.1 μa 6 CE Input current "L" Icel Vout=Vout(T).95, Vce= -.1 μa 6 * 1.Vout: input voltage to VOUT pin. 2.Vout(T): typical value of Vout1..Vce: input voltage to CE pin. 4.Remarks: test circuit No Vout=5.V(ELM9252x) Vce=Vout, L=2.2μH, Cout=47μF, D=MA75, Vss=V, Top=25 C Starting voltage Vst No-load.9 Output voltage1 Vout1 Iout=6mA, Vin=V 4.875 5. 5.125 Output voltage2 Vout2 Iout=.1mA, Vin=V 1.5 1.1 1.2 Current consumption1 Iss1 Vout=Vout(T).95 55 88 μa 2 Current consumption2 Iss2 Vout=Vout(T)+.5V 9 145 μa 2 Current consumption in Shutdown Isd Vout=Vout(T).95, Vce=.5 μa 2 Oscillating frequency Fosc Vout=Vout(T).95 51 6 69 khz Duty ratio Duty Vout=Vout(T).95 8 88 95 % Intermittent control Fimt 12 17 khz On-resistance of LX switch Ron Vout=Vout(T).95 22 mω 4 Leakage current of LX switch Ilxl Vout=Vlx=7 μa 5 CE Input voltage "H" Vceh.8 V 6 CE Input voltage "L" Vcel.25 V 6 CE Input current "H" Iceh Vout=Vout(T).95, Vce=Vout(T).95.1 μa 6 CE Input current "L" Icel Vout=Vout(T).95, Vce= -.1 μa 6 * 1.Vout: input voltage to VOUT pin. 2.Vout(T): typical value of Vout1..Vce: input voltage to CE pin. 4.Remarks: test circuit No 14-6

Test circuits 1. Vout1, Vout2, Vst 2. Iss1, Iss2, Isd. Fosc, Duty, Fimt (LX pin) * Fosc, Duty : Vin=Vout(T).95 * Fimt : Vin=Vout1(1.5 to 1.2) 4. RON * Vlx=V, R=Ω * Ron= R Von Ω Vlx-Von 5. Ilxl 6. Vceh, Vcel, Iceh, Icel Remarks) CE pin : ELM92xx2x series 14-7

External parts To design DC/DC converters using ELM92 series, coil, diode, and capacitor are necessary. (Refer to the standard circuit configuration.) 1) Coil When choosing choke coil, please select that whose core is not magnetically saturated, DC resistance is low, and which has sufficient margin for rated current. ELM recommends to use inductance around 2.2μH. It is possible that output voltage ripple form may reach over 1mV when using high industance. If ripple can be ingored, it is possible to acquire high efficiency with high industance. The examples using 4.7μH are shown as follows. ELM92xx ELM925xx EFFICIENCY (%) EFFICIENCY - Iout 1 9 2.4V 8 1.8V 7 Vin=.9V 1.5V 6 5 4 2 1.1 1 1 1 1 EFFICIENCY (%) EFFICIENCY - Iout 1 9.6V 8.V 7 Vin=1.8V 2.4V 6 5 4 2 1.1 1 1 1 1 2) Diode When choosing diode, please select that whose forward voltage is small, switching speed is high and which has sufficient margin for rated current. ELM recommends diode which is around 1A class. ) Capacitor * CR4/CD4/CR54/CD54 : Sumida Electric Co., Ltd are recommended. * Cout When choosing capacitor, please select that which is generally used for smoothing power supply circuit, with comparatively large capacity and whose rated voltage is at least three times larger than rated output voltage of used ELM92 series. ELM recommends capacitor which is 47μF to 22μF. When Vin is high (Vin>Vout.7), it is possible that large ripple of Iout may happen because of intermittent operation; ELM recommends to use larger capacitor under such circumstance. * Cin Using Cin in the circuit can lower feedback noise to Input; this method is also effective in improving efficiency because input voltage drop during switching can be eased. To gain this effect, please connect tantalum capacitor of 47μF to 22μF to coil as close as possible. 14-8

4) Remedies for noise This DC/DC converter may cause electromagnetic noise due to switching of coil under large current. Solution is necessary especially when the IC is used in wireless devices. To reduce noise, this IC is designed in consideration of coil switching characteristics. The following methods are also effective to reduce noise. Use shield-type, or magnetic shield coil. Locate coil and diode to the LX terminal of IC as close as possible. Select ground wire as thick and short as possible. Connect ground wire of circuit to one point. Marking SOT-89 SOT-89 package : ELM92xx1B SOT-89-5 package : ELM92xx2B(with CE) a : Assembly lot No. B to Z (I, O, X excepted) b : Assembly lot No. A to Z (I, O, X excepted) SOP-89-5 c : the integer digit of the output voltage Mark Vout Mark Vout 2 2.*V 4 4.*V.*V 5 5.*V d : the decimal digit of the output voltage Mark Vout Mark Vout *.V 5 *.5V 1 *.1V 6 *.6V 2 *.2V 7 *.7V *.V 8 *.8V 4 *.4V 9 *.9V 14-9

Typical characteristics Vout=2.7V(ELM9227xx) (L=2.2μH, Cout=47μF, D=MA75, Top=25 C) Vout - Vin Vout - Iout.5 2.5 2 1.5 Iout=15mA 6mA 1mA 2.9 2.8 2.7 2.6 2.5 Vin=.9V 1.5.8V 1 1 2 Vin (V) 2.4.1 1 1 1 1 EFFICIENCY (%) 1 9 8 7 6 5 4 2 1 EFFICIENCY - Iout Vin=.9V 1.8V 1.5V.1 1 1 1 1 Vout1(V) 2.8 2.75 2.7 2.65 Vout1 - Top Vin=1.5V, Iout=6mA 2.6-2 -1 1 2 4 5 6 7 Top( C) 2 Vst - Iout Load-Transient Response 2 s /div 1.5 Vst (V) 1.5-2 C +25 C +7 C Vout, 5mV/div Iout 1mA.1 1 1 1 1 A 14-1

Vout=.V(ELM92xx) (L=2.2μH, Cout=47μF, D=MA75, Top=25 C).5 Vout - Vin. Vout - Iout 2.5 2 1.5 Iout=15mA 6mA 1mA.2.1 2.9 2.8 Vin=.9V 1.5.8V 2.4V 1 1 2 Vin (V) 2.7.1 1 1 1 1 Iout(mA) EFFICIENCY (%) 1 9 8 7 6 5 4 2 1 EFFICIENCY - Iout Vin=.9V 2.4V 1.8V 1.5V.1 1 1 1 1 Vout1(V).1.5 2.95 Vout1 - Top Vin=1.5V, Iout=6mA 2.9-2 -1 1 2 4 5 6 7 Top( C) 2 Vst - Iout Load-Transient Response 2 s /div 1.5 Vst (V) 1.5-2 C +25 C +7 C Vout, 5mV/div Iout 1mA.1 1 1 1 1 A 14-11

Vout=.V(ELM92xx) (L=2.2μH, Cout=47μF, D=MA75, Top=25 C) 4 Vout - Vin.6 Vout - Iout.5 2.5 2 Iout=15mA 6mA 1mA.5.4..2.1 Vin=.9V 1.5.8V 2.4V 1.5 1 2 Vin (V).1 1 1 1 1 EFFICIENCY (%) 1 9 8 7 6 5 4 2 1 EFFICIENCY - Iout Vin=.9V 2.4V 1.8V 1.5V.1 1 1 1 1 Vout1(V).4.5..25 Vout1 - Top Vin=1.5V, Iout=6mA.2-2 -1 1 2 4 5 6 7 Top( C) 2 Vst - Iout Load-Transient Response 2 s /div 1.5 Vst (V) 1.5-2 C +25 C +7 C Vout, 5mV/div Iout 1mA.1 1 1 1 1 A 14-12

Vout=5.V(ELM925xx) (L=2.2μH, Cout=47μF, D=MA75, Top=25 C) 5.5 5 4.5 4.5 Vout - Vin Iout=15mA 6mA 1mA 1 2 Vin (V) 5.5 5.4 5. 5.2 5.1 5 4.9 4.8 4.7 4.6 Vout - Iout Vin=.9V.V 1.8V 1.5V 4.5.1 1 1 1 1 EFFICIENCY (%) 1 9 8 7 6 5 4 2 1 EFFICIENCY - Iout Vin=.9V.V 1.8V 1.5V.1 1 1 1 1 Vout1(V) 5.2 5.1 5 4.9 Vout1 - Top Vin=.V, Iout=6mA 4.8-2 -1 1 2 4 5 6 7 Top( C) 2 Vst - Iout Load-Transient Response 2 s /div 1.5 Vst (V) 1.5-2 C +25 C +7 C Vout, 5mV/div Iout 1mA.1 1 1 1 1 A 14-1

ELM9227xx, ELM92xx, ELM92xx, ELM925xx (L=2.2μH, Cout=47μF, D=MA75, Top=25 C) 6 Iss1 - Top 5 925XX Iss1 (A) 4 92XX 92XX 9227XX 2-2 -1 1 2 4 5 6 7 Top ( C) ELM92xxxx (L=2.2μH, Cout=47μF, D=MA75, Top=25 C) Fosc - Top Duty - Top 7 95 68 Fosc (khz) 66 64 62 6 58 Duty (%) 9 85 56 54 8 52 5-2 -1 1 2 4 5 6 7 75-2 -1 1 2 4 5 6 7 Top ( C) Top ( C) Vceh - Vout Vcel - Vout.8.8.7.7 Vceh(V).6.5.4 Top= -2 C +25 C +7 C Vcel(V).6.5.4 Top= -2 C +25 C +7 C...2 2 4 5 6 Vout(V).2 2 4 5 6 Vout(V) 14-14