Statistical Hypothesis Testing

Size: px
Start display at page:

Download "Statistical Hypothesis Testing"

Transcription

1 Statistical Hypothesis Testing Statistical Hypothesis Testing is a kind of inference Given a sample, say something about the population Examples: Given a sample of classifications by a decision tree, test the hypothesis that classification performance is no better than chance (testing that a population parameter has a value) Given a sample of KOSO and KOSO* trials, test the hypothesis that KOSO* generally has shorter run-times than KOSO (comparison of two populations based on samples) Given a sample of knowledge engineers each entering x pieces of knowledge in a fixed time t, how what is the value of x/t for any knowledge engineer, and what is your confidence in it (parameter estimation)

2 Statistical Hypothesis Testing More examples Given runtimes for KOSO and KOSO* under a factorial arrangement of conditions four levels of number of processors, four levels of alpha test the hypothesis that the superiority of KOSO* increases as the number of processors decreases (looking for interaction effects) Given a correlation between log(runtime) and the size of a job, test whether the population value of the correlation is ρ Calculate a confidence interval around your estimate of the population value of the correlation

3 Statistical Inference Let s start with an example... Fred tosses a coin 20 times and it comes up heads 15 times. Fred wonders whether the coin is fair. The Logic: Let R be the result 15 out of 20 heads Assume the coin is fair (Π =.5) If R is very unlikely under the assumption that the coin is fair, Pr(R Π =.5) α then Fred is inclined to reject the hypothesis that the coin is fair. Fred picks a value of α (say,.01) and calculates the conditional probability p = Pr(R Π =.5) Fred s residual uncertainty that the coin is fair is less than or equal to α p is not the probability that the coin is fair, nor is 1 - p the probability that the coin is not fair

4 Running the example Write down the null and alternative hypotheses Ho: Π =.5 H1: Π.5 Decide on a level of confidence α =.5 Calculate the sampling distribution of the number of heads in 20 tosses under the assumption that the coin is fair Calculate the probability p of the sample result from the sampling distribution If p α reject the null hypothesis

5 Running the example Write down the null and alternative hypotheses Ho: Π =.5 H1: Π.5 Decide on a level of confidence α Calculate the sampling distribution of the number of heads in 20 tosses under the assumption that the coin is fair Calculate the probability p of the sample result from the sampling distribution If p α reject the null hypothesis

6 The probability of 15 out of 20 tosses coming up heads under the assumption that the coin is fair (defun toss-coin (p) "Returns 1 with probability p, 0 with probability 1-p" (if (< (random 1.0) p) 1 0)) (defun sampling-distribution-of-heads (p n k) "p is the bias of the coin, n is the number of tosses in a sample, and k is the size of the sampling distribution the number of sample values of the number of heads" (loop repeat k collect (apply #'+ (loop repeat n collect (toss-coin p)))))

7 The probability of 15 out of 20 tosses coming up heads under the assumption that the coin is fair (defun toss-coin (p) "Returns 1 with probability p, 0 with probability 1-p" (if (< (random 1.0) p) 1 0)) (defun sampling-distribution-of-heads (p n k) "p is the bias of the coin, n is the number of tosses in a sample, and k is the size of the sampling distribution the number of sample values of the number of heads" (loop repeat k collect (apply #'+ (loop repeat n collect (toss-coin p))))) (sampling-distribution-of-heads )

8 The probability of 15 out of 20 tosses coming up heads under the assumption that the coin is fair (sampling-distribution-of-heads ) ? (setf sorted-dist (sort dist '<))? (what-percentile? 15 sorted-dist) ? (setf critical-value (quantile sorted-dist.95 ))

9 Running the example Write down the null and alternative hypotheses Ho: Π =.5 H1: Π.5 Decide on a level of confidence α Calculate the sampling distribution of the number of heads in 20 tosses under the assumption that the coin is fair Calculate the probability p of the sample result from the sampling distribution If p α reject the null hypothesis

10 Statistical Inference Fred tosses a coin 20 times and it comes up heads 15 times. Fred wonders whether the coin is fair. The Logic: Let R be the result 15 out of 20 heads Assume the coin is fair (Π =.5) If R is very unlikely under the assumption that the coin is fair, Pr(R Π =.5) α then Fred is inclined to reject the hypothesis that the coin is fair. Fred picks a value of α (say,.01) and calculates the conditional probability p = Pr(R Π =.5) =.004 Fred s residual uncertainty that the coin is fair is less than or equal to α.004 is not the probability that the coin is fair, nor is the probability that the coin is not fair

11 Statistical Hypothesis Testing Sampling Distributions Suppose you have a sample of size N and you calculate a statistic φ on that sample (e.g., the mean) If you had drawn a different sample of size N, you would have a different value of φ The distribution of φ for all possible samples of size N is called the sampling distribution of φ The distribution of some possible samples of size N, obtained by Monte Carlo sampling (or other computer-intensive methods) is called the empirical sampling distribution of φ The empirical sampling distribution estimates the sampling distribution

12 Statistical Hypothesis Testing Sampling Distributions and the Null Hypothesis When we get a sampling distribution for hypothesis testing, it should be the sampling distribution for φ under the assumption that Ho is true That way, we can calculate the probability p of the sample result the particular value of φ under Ho We reject Ho if p α α Sampling distribution of φ under Ho Pr ( φ Ho) φ

Statistical tests. Paired t-test

Statistical tests. Paired t-test Statistical tests Gather data to assess some hypothesis (e.g., does this treatment have an effect on this outcome?) Form a test statistic for which large values indicate a departure from the hypothesis.

More information

Hypothesis Tests. w/ proportions. AP Statistics - Chapter 20

Hypothesis Tests. w/ proportions. AP Statistics - Chapter 20 Hypothesis Tests w/ proportions AP Statistics - Chapter 20 let s say we flip a coin... Let s flip a coin! # OF HEADS IN A ROW PROBABILITY 2 3 4 5 6 7 8 (0.5) 2 = 0.2500 (0.5) 3 = 0.1250 (0.5) 4 = 0.0625

More information

Please Turn Over Page 1 of 7

Please Turn Over Page 1 of 7 . Page 1 of 7 ANSWER ALL QUESTIONS Question 1: (25 Marks) A random sample of 35 homeowners was taken from the village Penville and their ages were recorded. 25 31 40 50 62 70 99 75 65 50 41 31 25 26 31

More information

Chapter 20. Inference about a Population Proportion. BPS - 5th Ed. Chapter 19 1

Chapter 20. Inference about a Population Proportion. BPS - 5th Ed. Chapter 19 1 Chapter 20 Inference about a Population Proportion BPS - 5th Ed. Chapter 19 1 Proportions The proportion of a population that has some outcome ( success ) is p. The proportion of successes in a sample

More information

Chapter 19. Inference about a Population Proportion. BPS - 5th Ed. Chapter 19 1

Chapter 19. Inference about a Population Proportion. BPS - 5th Ed. Chapter 19 1 Chapter 19 Inference about a Population Proportion BPS - 5th Ed. Chapter 19 1 Proportions The proportion of a population that has some outcome ( success ) is p. The proportion of successes in a sample

More information

Proportions. Chapter 19. Inference about a Proportion Simple Conditions. Inference about a Proportion Sampling Distribution

Proportions. Chapter 19. Inference about a Proportion Simple Conditions. Inference about a Proportion Sampling Distribution Proportions Chapter 19!!The proportion of a population that has some outcome ( success ) is p.!!the proportion of successes in a sample is measured by the sample proportion: Inference about a Population

More information

Probability - Introduction Chapter 3, part 1

Probability - Introduction Chapter 3, part 1 Probability - Introduction Chapter 3, part 1 Mary Lindstrom (Adapted from notes provided by Professor Bret Larget) January 27, 2004 Statistics 371 Last modified: Jan 28, 2004 Why Learn Probability? Some

More information

MITOCW mit_jpal_ses06_en_300k_512kb-mp4

MITOCW mit_jpal_ses06_en_300k_512kb-mp4 MITOCW mit_jpal_ses06_en_300k_512kb-mp4 FEMALE SPEAKER: The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational

More information

Name: Exam 01 (Midterm Part 2 take home, open everything)

Name: Exam 01 (Midterm Part 2 take home, open everything) Name: Exam 01 (Midterm Part 2 take home, open everything) To help you budget your time, questions are marked with *s. One * indicates a straightforward question testing foundational knowledge. Two ** indicate

More information

OFF THE WALL. The Effects of Artist Eccentricity on the Evaluation of Their Work ROUGH DRAFT

OFF THE WALL. The Effects of Artist Eccentricity on the Evaluation of Their Work ROUGH DRAFT OFF THE WALL The Effects of Artist Eccentricity on the Evaluation of Their Work ROUGH DRAFT Hannah Thomas AP Statistics 2013 2014 Period 6 May 29, 2014 This study explores the relationship between perceived

More information

Introduction to Chi Square

Introduction to Chi Square Introduction to Chi Square The formula χ 2 = Σ = O = E = Degrees of freedom Chi Square Table P = 0.05 P = 0.01 P = 0.001 1 3.84 6.64 10.83 2 5.99 9.21 13.82 3 7.82 11.35 16.27 4 9.49 13.28 18.47 5 11.07

More information

One-Sample Z: C1, C2, C3, C4, C5, C6, C7, C8,... The assumed standard deviation = 110

One-Sample Z: C1, C2, C3, C4, C5, C6, C7, C8,... The assumed standard deviation = 110 SMAM 314 Computer Assignment 3 1.Suppose n = 100 lightbulbs are selected at random from a large population.. Assume that the light bulbs put on test until they fail. Assume that for the population of light

More information

Before giving a formal definition of probability, we explain some terms related to probability.

Before giving a formal definition of probability, we explain some terms related to probability. probability 22 INTRODUCTION In our day-to-day life, we come across statements such as: (i) It may rain today. (ii) Probably Rajesh will top his class. (iii) I doubt she will pass the test. (iv) It is unlikely

More information

Unit 1B-Modelling with Statistics. By: Niha, Julia, Jankhna, and Prerana

Unit 1B-Modelling with Statistics. By: Niha, Julia, Jankhna, and Prerana Unit 1B-Modelling with Statistics By: Niha, Julia, Jankhna, and Prerana [ Definitions ] A population is any large collection of objects or individuals, such as Americans, students, or trees about which

More information

Lesson Sampling Distribution of Differences of Two Proportions

Lesson Sampling Distribution of Differences of Two Proportions STATWAY STUDENT HANDOUT STUDENT NAME DATE INTRODUCTION The GPS software company, TeleNav, recently commissioned a study on proportions of people who text while they drive. The study suggests that there

More information

Chapter 1. Probability

Chapter 1. Probability Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

More information

Chapter 1. Probability

Chapter 1. Probability Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

More information

If a fair coin is tossed 10 times, what will we see? 24.61% 20.51% 20.51% 11.72% 11.72% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098%

If a fair coin is tossed 10 times, what will we see? 24.61% 20.51% 20.51% 11.72% 11.72% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098% Coin tosses If a fair coin is tossed 10 times, what will we see? 30% 25% 24.61% 20% 15% 10% Probability 20.51% 20.51% 11.72% 11.72% 5% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098% 0 1 2 3 4 5 6 7 8 9 10 Number

More information

The point value of each problem is in the left-hand margin. You must show your work to receive any credit, except on problems 1 & 2. Work neatly.

The point value of each problem is in the left-hand margin. You must show your work to receive any credit, except on problems 1 & 2. Work neatly. Introduction to Statistics Math 1040 Sample Exam II Chapters 5-7 4 Problem Pages 4 Formula/Table Pages Time Limit: 90 Minutes 1 No Scratch Paper Calculator Allowed: Scientific Name: The point value of

More information

Player Speed vs. Wild Pokémon Encounter Frequency in Pokémon SoulSilver Joshua and AP Statistics, pd. 3B

Player Speed vs. Wild Pokémon Encounter Frequency in Pokémon SoulSilver Joshua and AP Statistics, pd. 3B Player Speed vs. Wild Pokémon Encounter Frequency in Pokémon SoulSilver Joshua and AP Statistics, pd. 3B In the newest iterations of Nintendo s famous Pokémon franchise, Pokémon HeartGold and SoulSilver

More information

Probability Rules. 2) The probability, P, of any event ranges from which of the following?

Probability Rules. 2) The probability, P, of any event ranges from which of the following? Name: WORKSHEET : Date: Answer the following questions. 1) Probability of event E occurring is... P(E) = Number of ways to get E/Total number of outcomes possible in S, the sample space....if. 2) The probability,

More information

How Many Imputations are Really Needed? Some Practical Clarifications of Multiple Imputation Theory

How Many Imputations are Really Needed? Some Practical Clarifications of Multiple Imputation Theory Prev Sci (2007) 8:206 213 DOI 10.1007/s11121-007-0070-9 How Many Imputations are Really Needed? Some Practical Clarifications of Multiple Imputation Theory John W. Graham & Allison E. Olchowski & Tamika

More information

Algebra II Journal. Module 4: Inferences. Predicting the Future

Algebra II Journal. Module 4: Inferences. Predicting the Future Algebra II Journal Predicting the Future This journal belongs to: 1 Algebra II Journal: Reflection 1 Let s perform a simulation to answer the question Can lightning strike the same place twice? Storm chaser

More information

The genealogical history of a population The coalescent process. Identity by descent Distribution of pairwise coalescence times

The genealogical history of a population The coalescent process. Identity by descent Distribution of pairwise coalescence times The coalescent The genealogical history of a population The coalescent process Identity by descent Distribution of pairwise coalescence times Adding mutations Expected pairwise differences Evolutionary

More information

Raise your hand if you rode a bus within the past month. Record the number of raised hands.

Raise your hand if you rode a bus within the past month. Record the number of raised hands. 166 CHAPTER 3 PROBABILITY TOPICS Raise your hand if you rode a bus within the past month. Record the number of raised hands. Raise your hand if you answered "yes" to BOTH of the first two questions. Record

More information

ECON 214 Elements of Statistics for Economists

ECON 214 Elements of Statistics for Economists ECON 214 Elements of Statistics for Economists Session 4 Probability Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh College of Education School of Continuing

More information

Game Mechanics Minesweeper is a game in which the player must correctly deduce the positions of

Game Mechanics Minesweeper is a game in which the player must correctly deduce the positions of Table of Contents Game Mechanics...2 Game Play...3 Game Strategy...4 Truth...4 Contrapositive... 5 Exhaustion...6 Burnout...8 Game Difficulty... 10 Experiment One... 12 Experiment Two...14 Experiment Three...16

More information

Math 1313 Section 6.2 Definition of Probability

Math 1313 Section 6.2 Definition of Probability Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability

More information

Jednoczynnikowa analiza wariancji (ANOVA)

Jednoczynnikowa analiza wariancji (ANOVA) Wydział Matematyki Jednoczynnikowa analiza wariancji (ANOVA) Wykład 07 Example 1 An accounting firm has developed three methods to guide its seasonal employees in preparing individual income tax returns.

More information

x y

x y 1. Find the mean of the following numbers: ans: 26.25 3, 8, 15, 23, 35, 37, 41, 48 2. Find the median of the following numbers: ans: 24 8, 15, 2, 23, 41, 83, 91, 112, 17, 25 3. Find the sample standard

More information

MATH 1115, Mathematics for Commerce WINTER 2011 Toby Kenney Homework Sheet 6 Model Solutions

MATH 1115, Mathematics for Commerce WINTER 2011 Toby Kenney Homework Sheet 6 Model Solutions MATH, Mathematics for Commerce WINTER 0 Toby Kenney Homework Sheet Model Solutions. A company has two machines for producing a product. The first machine produces defective products % of the time. The

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE IN STATISTICS, 2011 MODULE 3 : Basic statistical methods Time allowed: One and a half hours Candidates should answer THREE questions. Each

More information

Lectures 15/16 ANOVA. ANOVA Tests. Analysis of Variance. >ANOVA stands for ANalysis Of VAriance >ANOVA allows us to:

Lectures 15/16 ANOVA. ANOVA Tests. Analysis of Variance. >ANOVA stands for ANalysis Of VAriance >ANOVA allows us to: Lectures 5/6 Analysis of Variance ANOVA >ANOVA stands for ANalysis Of VAriance >ANOVA allows us to: Do multiple tests at one time more than two groups Test for multiple effects simultaneously more than

More information

Name: Unit 7 Study Guide 1. Use the spinner to name the color that fits each of the following statements.

Name: Unit 7 Study Guide 1. Use the spinner to name the color that fits each of the following statements. 1. Use the spinner to name the color that fits each of the following statements. green blue white white blue a. The spinner will land on this color about as often as it lands on white. b. The chance of

More information

Geometric Distribution

Geometric Distribution Geometric Distribution Review Binomial Distribution Properties The experiment consists of n repeated trials. Each trial can result in just two possible outcomes. The probability of success is the same

More information

Nessie is alive! Gerco Onderwater. Role of statistics, bias and reproducibility in scientific research

Nessie is alive! Gerco Onderwater. Role of statistics, bias and reproducibility in scientific research Nessie is alive! Role of statistics, bias and reproducibility in scientific research Gerco Onderwater c.j.g.onderwater@rug.nl 4/23/15 2 Loch Ness, Scotland 4/23/15 3 Legendary monster Saint Adomnán of

More information

On a loose leaf sheet of paper answer the following questions about the random samples.

On a loose leaf sheet of paper answer the following questions about the random samples. 7.SP.5 Probability Bell Ringers On a loose leaf sheet of paper answer the following questions about the random samples. 1. Veterinary doctors marked 30 deer and released them. Later on, they counted 150

More information

Ex 1: A coin is flipped. Heads, you win $1. Tails, you lose $1. What is the expected value of this game?

Ex 1: A coin is flipped. Heads, you win $1. Tails, you lose $1. What is the expected value of this game? AFM Unit 7 Day 5 Notes Expected Value and Fairness Name Date Expected Value: the weighted average of possible values of a random variable, with weights given by their respective theoretical probabilities.

More information

Contents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting - Permutation and Combination 39

Contents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting - Permutation and Combination 39 CHAPTER 2 PROBABILITY Contents 2.1 Basic Concepts of Probability 38 2.2 Probability of an Event 39 2.3 Methods of Assigning Probabilities 39 2.4 Principle of Counting - Permutation and Combination 39 2.5

More information

a) Getting 10 +/- 2 head in 20 tosses is the same probability as getting +/- heads in 320 tosses

a) Getting 10 +/- 2 head in 20 tosses is the same probability as getting +/- heads in 320 tosses Question 1 pertains to tossing a fair coin (8 pts.) Fill in the blanks with the correct numbers to make the 2 scenarios equally likely: a) Getting 10 +/- 2 head in 20 tosses is the same probability as

More information

Laboratory 1: Uncertainty Analysis

Laboratory 1: Uncertainty Analysis University of Alabama Department of Physics and Astronomy PH101 / LeClair May 26, 2014 Laboratory 1: Uncertainty Analysis Hypothesis: A statistical analysis including both mean and standard deviation can

More information

Math 58. Rumbos Fall Solutions to Exam Give thorough answers to the following questions:

Math 58. Rumbos Fall Solutions to Exam Give thorough answers to the following questions: Math 58. Rumbos Fall 2008 1 Solutions to Exam 2 1. Give thorough answers to the following questions: (a) Define a Bernoulli trial. Answer: A Bernoulli trial is a random experiment with two possible, mutually

More information

If a fair coin is tossed 10 times, what will we see? 24.61% 20.51% 20.51% 11.72% 11.72% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098%

If a fair coin is tossed 10 times, what will we see? 24.61% 20.51% 20.51% 11.72% 11.72% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098% Coin tosses If a fair coin is tossed 10 times, what will we see? 30% 25% 24.61% 20% 15% 10% Probability 20.51% 20.51% 11.72% 11.72% 5% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098% 0 1 2 3 4 5 6 7 8 9 10 Number

More information

Unit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability

Unit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability Unit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability Lesson Practice Problems Lesson 1: Predicting to Win (Finding Theoretical Probabilities) 1-3 Lesson 2: Choosing Marbles

More information

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 13

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 13 Introduction to Econometrics (3 rd Updated Edition by James H. Stock and Mark W. Watson Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 13 (This version July 0, 014 Stock/Watson - Introduction

More information

7.1 Chance Surprises, 7.2 Predicting the Future in an Uncertain World, 7.4 Down for the Count

7.1 Chance Surprises, 7.2 Predicting the Future in an Uncertain World, 7.4 Down for the Count 7.1 Chance Surprises, 7.2 Predicting the Future in an Uncertain World, 7.4 Down for the Count Probability deals with predicting the outcome of future experiments in a quantitative way. The experiments

More information

A Probability Work Sheet

A Probability Work Sheet A Probability Work Sheet October 19, 2006 Introduction: Rolling a Die Suppose Geoff is given a fair six-sided die, which he rolls. What are the chances he rolls a six? In order to solve this problem, we

More information

Probability. March 06, J. Boulton MDM 4U1. P(A) = n(a) n(s) Introductory Probability

Probability. March 06, J. Boulton MDM 4U1. P(A) = n(a) n(s) Introductory Probability Most people think they understand odds and probability. Do you? Decision 1: Pick a card Decision 2: Switch or don't Outcomes: Make a tree diagram Do you think you understand probability? Probability Write

More information

Chapter 5 - Elementary Probability Theory

Chapter 5 - Elementary Probability Theory Chapter 5 - Elementary Probability Theory Historical Background Much of the early work in probability concerned games and gambling. One of the first to apply probability to matters other than gambling

More information

1. The chance of getting a flush in a 5-card poker hand is about 2 in 1000.

1. The chance of getting a flush in a 5-card poker hand is about 2 in 1000. CS 70 Discrete Mathematics for CS Spring 2008 David Wagner Note 15 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice, roulette wheels. Today

More information

7.1 Experiments, Sample Spaces, and Events

7.1 Experiments, Sample Spaces, and Events 7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment

More information

Sampling Terminology. all possible entities (known or unknown) of a group being studied. MKT 450. MARKETING TOOLS Buyer Behavior and Market Analysis

Sampling Terminology. all possible entities (known or unknown) of a group being studied. MKT 450. MARKETING TOOLS Buyer Behavior and Market Analysis Sampling Terminology MARKETING TOOLS Buyer Behavior and Market Analysis Population all possible entities (known or unknown) of a group being studied. Sampling Procedures Census study containing data from

More information

Lecture 21/Chapter 18 When Intuition Differs from Relative Frequency

Lecture 21/Chapter 18 When Intuition Differs from Relative Frequency Lecture 21/Chapter 18 When Intuition Differs from Relative Frequency Birthday Problem and Coincidences Gambler s Fallacy Confusion of the Inverse Expected Value: Short Run vs. Long Run Psychological Influences

More information

Multivariate Permutation Tests: With Applications in Biostatistics

Multivariate Permutation Tests: With Applications in Biostatistics Multivariate Permutation Tests: With Applications in Biostatistics Fortunato Pesarin University ofpadova, Italy JOHN WILEY & SONS, LTD Chichester New York Weinheim Brisbane Singapore Toronto Contents Preface

More information

Author Manuscript Behav Res Methods. Author manuscript; available in PMC 2012 September 01.

Author Manuscript Behav Res Methods. Author manuscript; available in PMC 2012 September 01. NIH Public Access Author Manuscript Published in final edited form as: Behav Res Methods. 2012 September ; 44(3): 806 844. doi:10.3758/s13428-011-0181-x. Four applications of permutation methods to testing

More information

8.6 Jonckheere-Terpstra Test for Ordered Alternatives. 6.5 Jonckheere-Terpstra Test for Ordered Alternatives

8.6 Jonckheere-Terpstra Test for Ordered Alternatives. 6.5 Jonckheere-Terpstra Test for Ordered Alternatives 8.6 Jonckheere-Terpstra Test for Ordered Alternatives 6.5 Jonckheere-Terpstra Test for Ordered Alternatives 136 183 184 137 138 185 Jonckheere-Terpstra Test Example 186 139 Jonckheere-Terpstra Test Example

More information

EXACT P-VALUES OF SAVAGE TEST STATISTIC

EXACT P-VALUES OF SAVAGE TEST STATISTIC EXACT P-VALUES OF SAVAGE TEST STATISTIC J. I. Odiase and S. M. Ogbonmwan Department of Mathematics University of Benin, igeria ABSTRACT In recent years, the use of software for the calculation of statistical

More information

Key Concepts. Theoretical Probability. Terminology. Lesson 11-1

Key Concepts. Theoretical Probability. Terminology. Lesson 11-1 Key Concepts Theoretical Probability Lesson - Objective Teach students the terminology used in probability theory, and how to make calculations pertaining to experiments where all outcomes are equally

More information

Sampling distributions and the Central Limit Theorem

Sampling distributions and the Central Limit Theorem Sampling distributions and the Central Limit Theorem Johan A. Elkink University College Dublin 14 October 2013 Johan A. Elkink (UCD) Central Limit Theorem 14 October 2013 1 / 29 Outline 1 Sampling 2 Statistical

More information

The topic for the third and final major portion of the course is Probability. We will aim to make sense of statements such as the following:

The topic for the third and final major portion of the course is Probability. We will aim to make sense of statements such as the following: CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 17 Introduction to Probability The topic for the third and final major portion of the course is Probability. We will aim to make sense of

More information

The next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following:

The next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following: CS 70 Discrete Mathematics for CS Fall 2004 Rao Lecture 14 Introduction to Probability The next several lectures will be concerned with probability theory. We will aim to make sense of statements such

More information

TEST A CHAPTER 11, PROBABILITY

TEST A CHAPTER 11, PROBABILITY TEST A CHAPTER 11, PROBABILITY 1. Two fair dice are rolled. Find the probability that the sum turning up is 9, given that the first die turns up an even number. 2. Two fair dice are rolled. Find the probability

More information

Probabilities and Probability Distributions

Probabilities and Probability Distributions Probabilities and Probability Distributions George H Olson, PhD Doctoral Program in Educational Leadership Appalachian State University May 2012 Contents Basic Probability Theory Independent vs. Dependent

More information

Lesson 1: Chance Experiments

Lesson 1: Chance Experiments Student Outcomes Students understand that a probability is a number between and that represents the likelihood that an event will occur. Students interpret a probability as the proportion of the time that

More information

Confidence Intervals. Class 23. November 29, 2011

Confidence Intervals. Class 23. November 29, 2011 Confidence Intervals Class 23 November 29, 2011 Last Time When sampling from a population in which 30% of individuals share a certain characteristic, we identified the reasonably likely values for the

More information

Why Randomize? Jim Berry Cornell University

Why Randomize? Jim Berry Cornell University Why Randomize? Jim Berry Cornell University Session Overview I. Basic vocabulary for impact evaluation II. III. IV. Randomized evaluation Other methods of impact evaluation Conclusions J-PAL WHY RANDOMIZE

More information

AP Statistics Ch In-Class Practice (Probability)

AP Statistics Ch In-Class Practice (Probability) AP Statistics Ch 14-15 In-Class Practice (Probability) #1a) A batter who had failed to get a hit in seven consecutive times at bat then hits a game-winning home run. When talking to reporters afterward,

More information

Name. Is the game fair or not? Prove your answer with math. If the game is fair, play it 36 times and record the results.

Name. Is the game fair or not? Prove your answer with math. If the game is fair, play it 36 times and record the results. Homework 5.1C You must complete table. Use math to decide if the game is fair or not. If Period the game is not fair, change the point system to make it fair. Game 1 Circle one: Fair or Not 2 six sided

More information

The Coin Toss Experiment

The Coin Toss Experiment Experiments p. 1/1 The Coin Toss Experiment Perhaps the simplest probability experiment is the coin toss experiment. Experiments p. 1/1 The Coin Toss Experiment Perhaps the simplest probability experiment

More information

What Do You Expect? Concepts

What Do You Expect? Concepts Important Concepts What Do You Expect? Concepts Examples Probability A number from 0 to 1 that describes the likelihood that an event will occur. Theoretical Probability A probability obtained by analyzing

More information

4.1 Sample Spaces and Events

4.1 Sample Spaces and Events 4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an

More information

CORRELATION BASED CLASSIFICATION OF COMPLEX PRI MODULATION TYPES

CORRELATION BASED CLASSIFICATION OF COMPLEX PRI MODULATION TYPES CORRELATION BASED CLASSIFICATION OF COMPLEX PRI MODULATION TYPES Fotios Katsilieris, Sabine Apfeld, Alexander Charlish Sensor Data and Information Fusion Fraunhofer Institute for Communication, Information

More information

Statistical Methods in Computer Science

Statistical Methods in Computer Science Statistical Methods in Computer Science Experiment Design Gal A. Kaminka galk@cs.biu.ac.il Experimental Lifecycle Vague idea groping around experiences Initial observations Model/Theory Data, analysis,

More information

There is no class tomorrow! Have a good weekend! Scores will be posted in Compass early Friday morning J

There is no class tomorrow! Have a good weekend! Scores will be posted in Compass early Friday morning J STATISTICS 100 EXAM 3 Fall 2016 PRINT NAME (Last name) (First name) *NETID CIRCLE SECTION: L1 12:30pm L2 3:30pm Online MWF 12pm Write answers in appropriate blanks. When no blanks are provided CIRCLE your

More information

Tree and Venn Diagrams

Tree and Venn Diagrams OpenStax-CNX module: m46944 1 Tree and Venn Diagrams OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Sometimes, when the probability

More information

Class XII Chapter 13 Probability Maths. Exercise 13.1

Class XII Chapter 13 Probability Maths. Exercise 13.1 Exercise 13.1 Question 1: Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E F) = 0.2, find P (E F) and P(F E). It is given that P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.2 Question 2:

More information

Probability. Dr. Zhang Fordham Univ.

Probability. Dr. Zhang Fordham Univ. Probability! Dr. Zhang Fordham Univ. 1 Probability: outline Introduction! Experiment, event, sample space! Probability of events! Calculate Probability! Through counting! Sum rule and general sum rule!

More information

GROUND DATA PROCESSING & PRODUCTION OF THE LEVEL 1 HIGH RESOLUTION MAPS

GROUND DATA PROCESSING & PRODUCTION OF THE LEVEL 1 HIGH RESOLUTION MAPS GROUND DATA PROCESSING & PRODUCTION OF THE LEVEL 1 HIGH RESOLUTION MAPS VALERI 2004 Camerons site (broadleaf forest) Philippe Rossello, Frédéric Baret June 2007 CONTENTS 1. Introduction... 2 2. Available

More information

Exam III Review Problems

Exam III Review Problems c Kathryn Bollinger and Benjamin Aurispa, November 10, 2011 1 Exam III Review Problems Fall 2011 Note: Not every topic is covered in this review. Please also take a look at the previous Week-in-Reviews

More information

1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2)

1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2) Math 1090 Test 2 Review Worksheet Ch5 and Ch 6 Name Use the following distribution to answer the question. 1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2) 3) Estimate

More information

Math 1313 Conditional Probability. Basic Information

Math 1313 Conditional Probability. Basic Information Math 1313 Conditional Probability Basic Information We have already covered the basic rules of probability, and we have learned the techniques for solving problems with large sample spaces. Next we will

More information

Comparing Means. Chapter 24. Case Study Gas Mileage for Classes of Vehicles. Case Study Gas Mileage for Classes of Vehicles Data collection

Comparing Means. Chapter 24. Case Study Gas Mileage for Classes of Vehicles. Case Study Gas Mileage for Classes of Vehicles Data collection Chapter 24 One-Way Analysis of Variance: Comparing Several Means BPS - 5th Ed. Chapter 24 1 Comparing Means Chapter 18: compared the means of two populations or the mean responses to two treatments in

More information

II/IV B.Tech (Supplementary) DEGREE EXAMINATION

II/IV B.Tech (Supplementary) DEGREE EXAMINATION CS/IT 221 April, 2017 1. a) Define a continuous random variable. b) Explain Normal approximation to binomial distribution. c) Write any two properties of Normal distribution. d) Define Point estimation.

More information

Basic Probability Concepts

Basic Probability Concepts 6.1 Basic Probability Concepts How likely is rain tomorrow? What are the chances that you will pass your driving test on the first attempt? What are the odds that the flight will be on time when you go

More information

What is the probability Jordan will pick a red marble out of the bag and land on the red section when spinning the spinner?

What is the probability Jordan will pick a red marble out of the bag and land on the red section when spinning the spinner? Name: Class: Date: Question #1 Jordan has a bag of marbles and a spinner. The bag of marbles has 10 marbles in it, 6 of which are red. The spinner is divided into 4 equal sections: blue, green, red, and

More information

Lecture 13: Physical Randomness and the Local Uniformity Principle

Lecture 13: Physical Randomness and the Local Uniformity Principle Lecture 13: Physical Randomness and the Local Uniformity Principle David Aldous October 17, 2017 Where does chance comes from? In many of our lectures it s just uncertainty about the future. Of course

More information

Module 4 Project Maths Development Team Draft (Version 2)

Module 4 Project Maths Development Team Draft (Version 2) 5 Week Modular Course in Statistics & Probability Strand 1 Module 4 Set Theory and Probability It is often said that the three basic rules of probability are: 1. Draw a picture 2. Draw a picture 3. Draw

More information

Mathematical Foundations HW 5 By 11:59pm, 12 Dec, 2015

Mathematical Foundations HW 5 By 11:59pm, 12 Dec, 2015 1 Probability Axioms Let A,B,C be three arbitrary events. Find the probability of exactly one of these events occuring. Sample space S: {ABC, AB, AC, BC, A, B, C, }, and S = 8. P(A or B or C) = 3 8. note:

More information

6. Methods of Experimental Control. Chapter 6: Control Problems in Experimental Research

6. Methods of Experimental Control. Chapter 6: Control Problems in Experimental Research 6. Methods of Experimental Control Chapter 6: Control Problems in Experimental Research 1 Goals Understand: Advantages/disadvantages of within- and between-subjects experimental designs Methods of controlling

More information

Name: Exam 01 (Midterm Part 2 Take Home, Open Everything)

Name: Exam 01 (Midterm Part 2 Take Home, Open Everything) Name: Exam 01 (Midterm Part 2 Take Home, Open Everything) To help you budget your time, questions are marked with *s. One * indicates a straightforward question testing foundational knowledge. Two ** indicate

More information

MITOCW watch?v=krzi60lkpek

MITOCW watch?v=krzi60lkpek MITOCW watch?v=krzi60lkpek The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

SUPPLEMENT TO THE PAPER TESTING EQUALITY OF SPECTRAL DENSITIES USING RANDOMIZATION TECHNIQUES

SUPPLEMENT TO THE PAPER TESTING EQUALITY OF SPECTRAL DENSITIES USING RANDOMIZATION TECHNIQUES SUPPLEMENT TO THE PAPER TESTING EQUALITY OF SPECTRAL DENSITIES USING RANDOMIZATION TECHNIQUES CARSTEN JENTSCH AND MARKUS PAULY Abstract. In this supplementary material we provide additional supporting

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) Blood type Frequency

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) Blood type Frequency MATH 1342 Final Exam Review Name Construct a frequency distribution for the given qualitative data. 1) The blood types for 40 people who agreed to participate in a medical study were as follows. 1) O A

More information

Chapter 3: Elements of Chance: Probability Methods

Chapter 3: Elements of Chance: Probability Methods Chapter 3: Elements of Chance: Methods Department of Mathematics Izmir University of Economics Week 3-4 2014-2015 Introduction In this chapter we will focus on the definitions of random experiment, outcome,

More information

WEEK 7 REVIEW. Multiplication Principle (6.3) Combinations and Permutations (6.4) Experiments, Sample Spaces and Events (7.1)

WEEK 7 REVIEW. Multiplication Principle (6.3) Combinations and Permutations (6.4) Experiments, Sample Spaces and Events (7.1) WEEK 7 REVIEW Multiplication Principle (6.3) Combinations and Permutations (6.4) Experiments, Sample Spaces and Events (7.) Definition of Probability (7.2) WEEK 8-7.3, 7.4 and Test Review THE MULTIPLICATION

More information

Genealogical trees, coalescent theory, and the analysis of genetic polymorphisms

Genealogical trees, coalescent theory, and the analysis of genetic polymorphisms Genealogical trees, coalescent theory, and the analysis of genetic polymorphisms Magnus Nordborg University of Southern California The importance of history Genetic polymorphism data represent the outcome

More information

Unit 6: Probability Summative Assessment. 2. The probability of a given event can be represented as a ratio between what two numbers?

Unit 6: Probability Summative Assessment. 2. The probability of a given event can be represented as a ratio between what two numbers? Math 7 Unit 6: Probability Summative Assessment Name Date Knowledge and Understanding 1. Explain the difference between theoretical and experimental probability. 2. The probability of a given event can

More information

Probability. Ms. Weinstein Probability & Statistics

Probability. Ms. Weinstein Probability & Statistics Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random

More information

Unit 8: Sample Surveys

Unit 8: Sample Surveys Unit 8: Sample Surveys Marius Ionescu 10/27/2011 Marius Ionescu () Unit 8: Sample Surveys 10/27/2011 1 / 13 Chapter 19: Surveys Why take a survey? Marius Ionescu () Unit 8: Sample Surveys 10/27/2011 2

More information

More on games (Ch )

More on games (Ch ) More on games (Ch. 5.4-5.6) Announcements Midterm next Tuesday: covers weeks 1-4 (Chapters 1-4) Take the full class period Open book/notes (can use ebook) ^^ No programing/code, internet searches or friends

More information