Group 1616B: Wireless Power Transfer. Brandon Conlon Juan Carlos Lluberes Tyler Hayslett Advisors: Peng Zhang & Taofeek Orekan

Size: px
Start display at page:

Download "Group 1616B: Wireless Power Transfer. Brandon Conlon Juan Carlos Lluberes Tyler Hayslett Advisors: Peng Zhang & Taofeek Orekan"

Transcription

1 Group 1616B: Wireless Power Transfer Brandon Conlon Juan Carlos Lluberes Tyler Hayslett Advisors: Peng Zhang & Taofeek Orekan

2 System Overview Frequency adjustable subsea Resonant Wireless Power transfer System

3 Frequency determination In tank tests show decreasing efficiency with increasing frequency 20 khz range close enough to air to give similar results WPT generally in MHz

4 Frequency increase comparison

5 Additional preliminary testing Along with the marine testing, the addition of booster coils added approximately 1.75dB to received signals at all distances, extending range. All data shown was taken with full 4 coil circuit.

6 Testing equipment Testing conducted in water fixed to average Atlantic Ocean salinity with aquarium salt (~3.5% salt) Low amplitude sine wave applied to Tx coil arranged in series with capacitor. All other coils arranged as tank circuits, measurements taken over capacitor.

7 ANSYS Maxwell (Guidance form Taofeek Orekan) In WPT coil shape and size has an enormous effect on transmission efficiency. Simulation targeted high coupling coefficient in a modeled salt water environment. Several factors all have interrelating effects on coupling coefficient. Coil shape, radius, wire diameter, wire spacing, and separation distance ANSYS allowed for accelerated testing with automated sweeps for different variables.

8 General distance curve Coupling Coefficient is exponentially decreasing with distance as verified in lab testing.

9 Turn Count and Coil Diameter As turn count increases, so does Coupling Coefficient, but with obvious diminishing returns. Coil resistance, and wire thickness/diameter limit maximum. Improvements are less than.001 by ~20 turns. Coupling coefficient increases with area. All distances held to scale, CC still increases. Size limited by AUV, 100mm goal

10 Types of coils (Pictures of coil shapes)

11 Coil Coupling comparison

12 Magnetic Field visualization

13 Effect of pitch Optimal pitch ~1.4mm for 100mm coil Measurable reception possible out to ~10cm

14 Coil Design 100mm diameter, 20 turn, 35.6uH transmitter and receiver coils 20ga copper wire with.25mm jacket for ~1.32 pitch Spiral shape, with space in center. Operating at 20kHz, skin depth is 27kHz for 20ga 3D printed center spacer (ME Michael Bennett) Attached to plexiglass backing for testing

15 Coil Design notes Slightly smaller pitch in order to be physically realized. Ferrite backing/core could additionally improve coupling.

16 Mutual Inductance and Frequency Inductor pairing creates a higher order system. Resonance splits in two One pole races off to infinity, the other slowly decays Much easier to adjust to match the lower frequency

17 Controls ATmega328P chip Allows for up to 3 PWM signals 16MHz won t limit switching for H-Bridge operation Programmable nature allows for frequency change to maintain resonance Output is 40mA@5V, so intermediary MOSFET drivers are needed to drive HBridge To eliminate shoot through, generated waveforms are timed to switch P-FET off fully before attempting to switch N-FET on. Reduced precision for two of the PWM signals High precision signal prevents shoot through, lower precision signal switches direction.

18 Control Signals Fast switching Logic gates (<20ns) correct controller output for MOSFET drivers.

19 Power Inverter Specification 13.8V from WEC battery >=20kHz operation Driven by 5V input signals High efficiency Low cost

20 Component Selection While the battery voltage is only about 13.8 at the most, the reactive nature of the load requires that the MOSFETs have both a large margin of error and clamping diodes. To minimize both switching times and peak switching current, low Qg MOSFETs were chosen. (total switching speed, ~200ns) The MOSFET drivers were chosen for both their propagation speed and their peak current of 9A. Worst case gate current for the two FETs selected

21 H-Bridge simulation Correct capacitance for 20kHz resonance calculated to be 1.78uF. Simulation of whole system was run to ensure correct operation.

22 H-Bridge testing Similar to transients coming off microcontroller, higher amplitude and sudden current draw caused output oscillation over MOSFET drivers.

23 Noise/Harmonic Suppression Operation resulted in large ringing and unwanted transient spikes when switching gates. Small capacitors added across MOSFET driver rails, as well as a large one across the battery terminals. Current limiting resistors were added to the FET gates.

24 Final H-Bridge Circuit

25 Successful operation

26 Bubba Inverter Circuit

27 Alternative Options FM transmitters can output up to megawatts of power. This one by CZHFM outputs up to 25W of power with a 60W input. This is an efficiency of only 42 percent before the wave is transmitted or rectified still too large of a loss for our applications. These are also extremely expensive with this model costing $500.

28 H-Bridge Inverter Circuit

29 H Bridge continued The mutual inductance of the transmission coil with the receiving coil will decrease as the coupling factor of the two coils falls below 1 shown by the equation. This will alter the resonant frequency of the LC circuit to Which can be matched in real time by the frequency of switching in the MOSFETS to accompany for changes in distance in the circuit.

30 Power Electronics Simulation assumes receiver retains 20 khz Schottky diodes w/ voltage drop <. 52 V Smoothing capacitor to ensure full wave is rectified Time constant (1/RC) << signal frequency Time Const. = 1,000

31 Power Electronics Without meeting this time constant condition, we cannot fully convert to a DC voltage Here Time Const. = 10,000

32 Questions?

Project: Electromagnetic Ring Launcher

Project: Electromagnetic Ring Launcher Project: Electromagnetic Ring Launcher Introduction: In science museums and physics-classrooms an experiment is very commonly demonstrated called the Jumping Ring or Electromagnetic Ring Launcher. The

More information

Smart Ocean Wave Energy Converter ECE 1616A

Smart Ocean Wave Energy Converter ECE 1616A Smart Ocean Wave Energy Converter ECE 1616A Nana Ahiabli, Andrew Budd, John Jacquinet Faculty Advisor: Peng Zhang Graduate Advisor: Taofeek Orekan Overview Recap Generator Improvements 3-Coil system Mechanical

More information

Application Note 0009

Application Note 0009 Recommended External Circuitry for Transphorm GaN FETs Application Note 9 Table of Contents Part I: Introduction... 2 Part II: Solutions to Suppress Oscillation... 2 Part III: The di/dt Limits of GaN Switching

More information

Boundary Mode Offline LED Driver Using MP4000. Application Note

Boundary Mode Offline LED Driver Using MP4000. Application Note The Future of Analog IC Technology AN046 Boundary Mode Offline LED Driver Using MP4000 Boundary Mode Offline LED Driver Using MP4000 Application Note Prepared by Zheng Luo March 25, 2011 AN046 Rev. 1.0

More information

Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session

Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session March 24 th 2016 Dan Kinzer, COO/CTO dan.kinzer@navitassemi.com 1 Mobility (cm 2 /Vs) EBR Field (MV/cm) GaN vs. Si WBG GaN material

More information

EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi

EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi 2.1 INTRODUCTION An electronic circuit which is designed to generate a periodic waveform continuously at

More information

Filters And Waveform Shaping

Filters And Waveform Shaping Physics 3330 Experiment #3 Fall 2001 Purpose Filters And Waveform Shaping The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and

More information

Effects of Initial Conditions in a DRSSTC. Steven Ward. 6/26/09

Effects of Initial Conditions in a DRSSTC. Steven Ward.   6/26/09 Effects of Initial Conditions in a DRSSTC Steven Ward www.stevehv.4hv.org 6/26/09 The DRSSTC is based on the idea that the initial conditions of the tank circuit are that the primary inductor has zero

More information

Microcircuit Electrical Issues

Microcircuit Electrical Issues Microcircuit Electrical Issues Distortion The frequency at which transmitted power has dropped to 50 percent of the injected power is called the "3 db" point and is used to define the bandwidth of the

More information

Single-phase Variable Frequency Switch Gear

Single-phase Variable Frequency Switch Gear Single-phase Variable Frequency Switch Gear Eric Motyl, Leslie Zeman Advisor: Professor Steven Gutschlag Department of Electrical and Computer Engineering Bradley University, Peoria, IL May 13, 2016 ABSTRACT

More information

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz ) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz Solution: a) Input is of constant amplitude of 2 V from 0 to 0. ms and 2 V from 0. ms to 0.2 ms. The output

More information

Inductive Power Transfer in the MHz ISM bands: Drones without batteries

Inductive Power Transfer in the MHz ISM bands: Drones without batteries Inductive Power Transfer in the MHz ISM bands: Drones without batteries Paul D. Mitcheson, S. Aldhaher, Juan M. Arteaga, G. Kkelis and D. C. Yates EH017, Manchester 1 The Concept 3 Challenges for Drone

More information

Qi Developer Forum. Circuit Design Considerations. Dave Wilson 16-February-2017

Qi Developer Forum. Circuit Design Considerations. Dave Wilson 16-February-2017 WPC1701 Qi Developer Forum Circuit Design Considerations Dave Wilson 16-February-2017 Overview Getting Started Basics The Qi Advantage for Circuit Design Practical Design Issues Practical Implementation

More information

Improvements of LLC Resonant Converter

Improvements of LLC Resonant Converter Chapter 5 Improvements of LLC Resonant Converter From previous chapter, the characteristic and design of LLC resonant converter were discussed. In this chapter, two improvements for LLC resonant converter

More information

CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER

CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER 61 CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER This Chapter deals with the procedure of embedding PI controller in the ARM processor LPC2148. The error signal which is generated from the reference

More information

Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University

Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University Lab 1. Resonance and Wireless Energy Transfer Physics Enhancement Programme Department of Physics, Hong Kong Baptist University 1. OBJECTIVES Introduction to the concept of resonance Observing resonance

More information

6.115 Final Project Proposal: An RFID Access Control System

6.115 Final Project Proposal: An RFID Access Control System 6.115 Final Project Proposal: An RFID Access Control System Christopher Merrill April 24, 2012 Abstract The goal of this nal project is to implement a device to read standard 125 khz RFID cards using the

More information

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit.

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit. I.E.S-(Conv.)-1995 ELECTRONICS AND TELECOMMUNICATION ENGINEERING PAPER - I Some useful data: Electron charge: 1.6 10 19 Coulomb Free space permeability: 4 10 7 H/m Free space permittivity: 8.85 pf/m Velocity

More information

Power Electronics for Inductive Power Transfer Systems

Power Electronics for Inductive Power Transfer Systems Power Electronics for Inductive Power Transfer Systems George Kkelis g.kkelis13@imperial.ac.uk Power Electronics Centre Imperial Open Day, July 2015 System Overview Transmitting End Inductive Link Receiving

More information

The Tuned Circuit. Aim of the experiment. Circuit. Equipment and components. Display of a decaying oscillation. Dependence of L, C and R.

The Tuned Circuit. Aim of the experiment. Circuit. Equipment and components. Display of a decaying oscillation. Dependence of L, C and R. The Tuned Circuit Aim of the experiment Display of a decaying oscillation. Dependence of L, C and R. Circuit Equipment and components 1 Rastered socket panel 1 Resistor R 1 = 10 Ω, 1 Resistor R 2 = 1 kω

More information

Exercise 2: Q and Bandwidth of a Series RLC Circuit

Exercise 2: Q and Bandwidth of a Series RLC Circuit Series Resonance AC 2 Fundamentals Exercise 2: Q and Bandwidth of a Series RLC Circuit EXERCISE OBJECTIVE When you have completed this exercise, you will be able to calculate the bandwidth and Q of a series

More information

Recommended External Circuitry for Transphorm GaN FETs. Zan Huang Jason Cuadra

Recommended External Circuitry for Transphorm GaN FETs. Zan Huang Jason Cuadra Recommended External Circuitry for Transphorm GaN FETs Zan Huang Jason Cuadra Application Note Rev. 1.0 November 22, 2016 Table of Contents 1 Introduction 3 2 Sustained oscillation 3 3 Solutions to suppress

More information

Lecture 4 ECEN 4517/5517

Lecture 4 ECEN 4517/5517 Lecture 4 ECEN 4517/5517 Experiment 3 weeks 2 and 3: interleaved flyback and feedback loop Battery 12 VDC HVDC: 120-200 VDC DC-DC converter Isolated flyback DC-AC inverter H-bridge v ac AC load 120 Vrms

More information

HV739 ±100V 3.0A Ultrasound Pulser Demo Board

HV739 ±100V 3.0A Ultrasound Pulser Demo Board HV79 ±00V.0A Ultrasound Pulser Demo Board HV79DB Introduction The HV79 is a monolithic single channel, high-speed, high voltage, ultrasound transmitter pulser. This integrated, high performance circuit

More information

Exercise 1: Series RLC Circuits

Exercise 1: Series RLC Circuits RLC Circuits AC 2 Fundamentals Exercise 1: Series RLC Circuits EXERCISE OBJECTIVE When you have completed this exercise, you will be able to analyze series RLC circuits by using calculations and measurements.

More information

Expect to be successful, expect to be liked,

Expect to be successful, expect to be liked, Thought of the Day Expect to be successful, expect to be liked, expect to be popular everywhere you go. Oscillators 1 Oscillators D.C. Kulshreshtha Oscillators 2 Need of an Oscillator An oscillator circuit

More information

Lab 3-mod: Diode Circuits

Lab 3-mod: Diode Circuits , 2:15 (+ 1 hr optional) Lab 3-mod: Diode Circuits Reading: Problems: Finish Chapter 1, including P ower in reactive circuits (pp 33-35) Appendix E Problems in text. Additional Exercises 7,8. FEBRUARY

More information

Investigation about how to drive a double resonance Tesla coil

Investigation about how to drive a double resonance Tesla coil Investigation about how to drive a double resonance Tesla coil Antonio Carlos M. de Queiroz A double resonance Tesla coil can be designed for optimal efficiency in the way described in http://www.coe.ufrj.br/~acmq/tesla/drsstc.html

More information

Efficiency Improvement of High Frequency Inverter for Wireless Power Transfer System Using a Series Reactive Power Compensator

Efficiency Improvement of High Frequency Inverter for Wireless Power Transfer System Using a Series Reactive Power Compensator IEEE PEDS 27, Honolulu, USA 2-5 December 27 Efficiency Improvement of High Frequency Inverter for Wireless Power Transfer System Using a Series Reactive Power Compensator Jun Osawa Graduate School of Pure

More information

Designers Series XII. Switching Power Magazine. Copyright 2005

Designers Series XII. Switching Power Magazine. Copyright 2005 Designers Series XII n this issue, and previous issues of SPM, we cover the latest technologies in exotic high-density power. Most power supplies in the commercial world, however, are built with the bread-and-butter

More information

Exclusive Technology Feature. Integrated Driver Shrinks Class D Audio Amplifiers. Audio Driver Features. ISSUE: November 2009

Exclusive Technology Feature. Integrated Driver Shrinks Class D Audio Amplifiers. Audio Driver Features. ISSUE: November 2009 ISSUE: November 2009 Integrated Driver Shrinks Class D Audio Amplifiers By Jun Honda, International Rectifier, El Segundo, Calif. From automotive entertainment to home theater systems, consumers are demanding

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Engineering Acoustics Session 1pEAb: Transduction, Transducers, and Energy

More information

Conventional Paper-II-2011 Part-1A

Conventional Paper-II-2011 Part-1A Conventional Paper-II-2011 Part-1A 1(a) (b) (c) (d) (e) (f) (g) (h) The purpose of providing dummy coils in the armature of a DC machine is to: (A) Increase voltage induced (B) Decrease the armature resistance

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

Chapter 13 Oscillators and Data Converters

Chapter 13 Oscillators and Data Converters Chapter 13 Oscillators and Data Converters 13.1 General Considerations 13.2 Ring Oscillators 13.3 LC Oscillators 13.4 Phase Shift Oscillator 13.5 Wien-Bridge Oscillator 13.6 Crystal Oscillators 13.7 Chapter

More information

Exercise 1: Series Resonant Circuits

Exercise 1: Series Resonant Circuits Series Resonance AC 2 Fundamentals Exercise 1: Series Resonant Circuits EXERCISE OBJECTIVE When you have completed this exercise, you will be able to compute the resonant frequency, total current, and

More information

Power Electronics. Exercise: Circuit Feedback

Power Electronics. Exercise: Circuit Feedback Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Prof Dr-Ing Ralph Kennel Aricsstr 21 Email: eat@eitumde Tel: +49 (0)89 289-28358 D-80333 München Internet:

More information

EE152 Green Electronics

EE152 Green Electronics EE152 Green Electronics Power Factor and Inverters 10/28/14 Prof. William Dally Computer Systems Laboratory Stanford University Lab 5 PV lab this week Course Logistics Solar day is on Thursday 10/30/14

More information

Electronic Concepts and Troubleshooting 101. Experiment 1

Electronic Concepts and Troubleshooting 101. Experiment 1 Electronic Concepts and Troubleshooting 101 Experiment 1 o Concept: What is the capacity of a typical alkaline 1.5V D-Cell? o TS: Assume that a battery is connected to a 20Ω load and the voltage across

More information

ANP030. Contents. Application Note AP2014/A Synchronous PWM Controller. 1. AP2014/A Specification. 2. Hardware. 3. Design Procedure. 4.

ANP030. Contents. Application Note AP2014/A Synchronous PWM Controller. 1. AP2014/A Specification. 2. Hardware. 3. Design Procedure. 4. Contents 1. AP2014/A Specification 1.1 Features 1.2 General Description 1.3 Pin Assignments 1.4 Pin Descriptions 1.5 Block Diagram 1.6 Absolute Maximum Ratings 2. Hardware 2.1 Introduction 2.2 Description

More information

Preliminary. Synchronous Buck PWM DC-DC Controller FP6329/A. Features. Description. Applications. Ordering Information.

Preliminary. Synchronous Buck PWM DC-DC Controller FP6329/A. Features. Description. Applications. Ordering Information. Synchronous Buck PWM DC-DC Controller Description The is designed to drive two N-channel MOSFETs in a synchronous rectified buck topology. It provides the output adjustment, internal soft-start, frequency

More information

Impact of inductor current ringing in DCM on output voltage of DC-DC buck power converters

Impact of inductor current ringing in DCM on output voltage of DC-DC buck power converters ARCHIVES OF ELECTRICAL ENGINEERING VOL. 66(2), pp. 313-323 (2017) DOI 10.1515/aee-2017-0023 Impact of inductor current ringing in DCM on output voltage of DC-DC buck power converters MARCIN WALCZAK Department

More information

Introducing egan IC targeting Highly Resonant Wireless Power

Introducing egan IC targeting Highly Resonant Wireless Power Dr. M. A. de Rooij The egan FET Journey Continues Introducing egan IC targeting Highly Resonant Wireless Power Efficient Power Conversion Corporation EPC - The Leader in egan FETs www.epc-co.com 1 Agenda

More information

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans. Electronic Measurements & Instrumentation

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans.   Electronic Measurements & Instrumentation UNIT 2 Q.1) Describe the functioning of standard signal generator Ans. STANDARD SIGNAL GENERATOR A standard signal generator produces known and controllable voltages. It is used as power source for the

More information

WIRELESS LAPTOP CHARGER

WIRELESS LAPTOP CHARGER WIRELESS LAPTOP CHARGER By Enrique Ramirez Jason Kao Onur Cam Final Report for ECE 445, Senior Design, Spring 2018 TA: Zhen Qin 2 May 2018 Project No. 37 Abstract We designed a system that allows a user

More information

EUP A,40V,200KHz Step-Down Converter

EUP A,40V,200KHz Step-Down Converter 3A,40V,200KHz Step-Down Converter DESCRIPTION The is current mode, step-down switching regulator capable of driving 3A continuous load with excellent line and load regulation. The operates with an input

More information

Figure 1a Three small inductors are show what inductors look like. Figure 1b Three large inductors

Figure 1a Three small inductors are show what inductors look like. Figure 1b Three large inductors A Series RLC Circuit This lab will let you learn the characteristics of both amplitude and phase of a series RLC circuit. Theory nductors and Capacitors Resistors (R), inductors (L) and capacitors (C)

More information

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES 47 CHAPTER 3 DC-DC CONVERTER TOPOLOGIES 3.1 INTRODUCTION In recent decades, much research efforts are directed towards finding an isolated DC-DC converter with high volumetric power density, low electro

More information

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation It should be noted that the frequency of oscillation ω o is determined by the phase characteristics of the feedback loop. the loop oscillates at the frequency for which the phase is zero The steeper the

More information

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier.

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier. Oscillators An oscillator may be described as a source of alternating voltage. It is different than amplifier. An amplifier delivers an output signal whose waveform corresponds to the input signal but

More information

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1 5V/12V Synchronous Buck PWM Controller DESCRIPTION The is a high efficiency, fixed 300kHz frequency, voltage mode, synchronous PWM controller. The device drives two low cost N-channel MOSFETs and is designed

More information

Digital Isolators: A Space-Saving Alternative to Gate-Drive Transformers in DC-DC Converters

Digital Isolators: A Space-Saving Alternative to Gate-Drive Transformers in DC-DC Converters ISSUE: March 2010 Digital Isolators: A Space-Saving Alternative to Gate-Drive Transformers in DC-DC Converters by Bob Bell, National Semiconductor, Phoenix, Ariz. and Don Alfano, Silicon Labs, Austin,

More information

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1 Contents 1 FUNDAMENTAL CONCEPTS 1 1.1 What is Noise Coupling 1 1.2 Resistance 3 1.2.1 Resistivity and Resistance 3 1.2.2 Wire Resistance 4 1.2.3 Sheet Resistance 5 1.2.4 Skin Effect 6 1.2.5 Resistance

More information

CONSONANCE. 4A, Standalone Li-ion Battery Charger CN3761. General Descriptions: Features: Pin Assignment: Applications:

CONSONANCE. 4A, Standalone Li-ion Battery Charger CN3761. General Descriptions: Features: Pin Assignment: Applications: 4A, Standalone Li-ion Battery Charger CN3761 General Descriptions: The CN3761 is a PWM switch-mode lithium ion battery charger controller for 1 cell li-ion battery in a small package using few external

More information

Core Technology Group Application Note 1 AN-1

Core Technology Group Application Note 1 AN-1 Measuring the Impedance of Inductors and Transformers. John F. Iannuzzi Introduction In many cases it is necessary to characterize the impedance of inductors and transformers. For instance, power supply

More information

High Current Amplifier

High Current Amplifier High Current Amplifier - Introduction High Current Amplifier High current amplifier is often a very useful piece of instrument to have in the lab. It is very handy for increasing the current driving capability

More information

4/30/2012. General Class Element 3 Course Presentation. Practical Circuits. Practical Circuits. Subelement G7. 2 Exam Questions, 2 Groups

4/30/2012. General Class Element 3 Course Presentation. Practical Circuits. Practical Circuits. Subelement G7. 2 Exam Questions, 2 Groups General Class Element 3 Course Presentation ti ELEMENT 3 SUB ELEMENTS General Licensing Class Subelement G7 2 Exam Questions, 2 Groups G1 Commission s Rules G2 Operating Procedures G3 Radio Wave Propagation

More information

Engineering Design 2 REGULATED POWER SUPPLY PCB PROJECT. Alexander Knapik S Kosta Goulas S Due: Friday

Engineering Design 2 REGULATED POWER SUPPLY PCB PROJECT. Alexander Knapik S Kosta Goulas S Due: Friday Engineering Design 2 REGULATED POWER SUPPLY PCB PROJECT Alexander Knapik S3543757 Kosta Goulas S3448324 Due: Friday 14.10.2016 Class: Monday 5:30pm 7:30pm AIM The purpose of this experiment is to design

More information

Keywords Wireless power transfer, Magnetic resonance, Electric vehicle, Parameter estimation, Secondary-side control

Keywords Wireless power transfer, Magnetic resonance, Electric vehicle, Parameter estimation, Secondary-side control Efficiency Maximization of Wireless Power Transfer Based on Simultaneous Estimation of Primary Voltage and Mutual Inductance Using Secondary-Side Information Katsuhiro Hata, Takehiro Imura, and Yoichi

More information

CONSONANCE. 4A, Standalone Li-ion Battery Charger IC With Photovoltaic Cell MPPT Function CN3791. General Descriptions: Features: Pin Assignment:

CONSONANCE. 4A, Standalone Li-ion Battery Charger IC With Photovoltaic Cell MPPT Function CN3791. General Descriptions: Features: Pin Assignment: 4A, Standalone Li-ion Battery Charger IC With Photovoltaic Cell MPPT Function CN3791 General Descriptions: The CN3791 is a PWM switch-mode lithium ion battery charger controller that can be powered by

More information

Transistor Digital Circuits

Transistor Digital Circuits Recapitulation Transistor Digital Circuits The transistor Operating principle and regions Utilization of the transistor Transfer characteristics, symbols Controlled switch model BJT digital circuits MOSFET

More information

CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER

CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER 59 CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER 4.1 Conventional Method A buck-boost converter circuit is a combination of the buck converter topology and a boost converter

More information

POWER MANAGEMENT PRODUCTS. Application Note. Simple PWM Boost Converter with I/O Disconnect Solves Malfunctions Caused when V OUT <V IN

POWER MANAGEMENT PRODUCTS. Application Note. Simple PWM Boost Converter with I/O Disconnect Solves Malfunctions Caused when V OUT <V IN POWER MANAGEMENT PRODUCTS Application Note Simple PWM Boost Converter with I/O Disconnect Solves Malfunctions Caused when V OUT

More information

Wireless Power Transmission from Solar Input

Wireless Power Transmission from Solar Input International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-0056 Wireless Power Transmission from Solar Input Indhu G1, Lisha R2, Sangeetha V3, Dhanalakshmi V4 1,2,3-Student,B.E,

More information

CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE

CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE 40 CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE 2.1 INTRODUCTION Interleaving technique in the boost converter effectively reduces the ripple current

More information

BEST BMET CBET STUDY GUIDE MODULE ONE

BEST BMET CBET STUDY GUIDE MODULE ONE BEST BMET CBET STUDY GUIDE MODULE ONE 1 OCTOBER, 2008 1. The phase relation for pure capacitance is a. current leads voltage by 90 degrees b. current leads voltage by 180 degrees c. current lags voltage

More information

Properties of Inductor and Applications

Properties of Inductor and Applications LABORATORY Experiment 3 Properties of Inductor and Applications 1. Objectives To investigate the properties of inductor for different types of magnetic material To calculate the resonant frequency of a

More information

MAXREFDES116# ISOLATED 24V TO 5V 40W POWER SUPPLY

MAXREFDES116# ISOLATED 24V TO 5V 40W POWER SUPPLY System Board 6283 MAXREFDES116# ISOLATED 24V TO 5V 40W POWER SUPPLY Overview Maxim s power supply experts have designed and built a series of isolated, industrial power-supply reference designs. Each of

More information

6.334 Final Project Buck Converter

6.334 Final Project Buck Converter Nathan Monroe monroe@mit.edu 4/6/13 6.334 Final Project Buck Converter Design Input Filter Filter Capacitor - 40µF x 0µF Capstick CS6 film capacitors in parallel Filter Inductor - 10.08µH RM10/I-3F3-A630

More information

ZVS Power Resonator. CRO-SM1 Ultra Compact Self Resonating Power Oscillator

ZVS Power Resonator. CRO-SM1 Ultra Compact Self Resonating Power Oscillator ZVS Power Resonator CRO-SM1 Ultra Compact Self Resonating Power Oscillator Features and Specifications Automatic Resonance, no tuning needed Wide supply voltage range (12V 30V) ZVS (Zero Voltage Switching)

More information

Successful Qi Transmitter Implementation (making things go right for a change) Dave Wilson 16November2017 v1.

Successful Qi Transmitter Implementation (making things go right for a change) Dave Wilson 16November2017 v1. Successful Qi Transmitter Implementation (making things go right for a change) Dave Wilson dwilson@kinet-ic.com 16November2017 v1.0 Overview Introduction Implementation Flow Design Tips and Tricks Important

More information

Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits. dc to ac converters

Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits. dc to ac converters Straightforward questions are marked! Tripos standard questions are marked * Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits dc to ac converters! 1. A three-phase bridge converter using

More information

CONTENTS. Chapter 1. Introduction to Power Conversion 1. Basso_FM.qxd 11/20/07 8:39 PM Page v. Foreword xiii Preface xv Nomenclature

CONTENTS. Chapter 1. Introduction to Power Conversion 1. Basso_FM.qxd 11/20/07 8:39 PM Page v. Foreword xiii Preface xv Nomenclature Basso_FM.qxd 11/20/07 8:39 PM Page v Foreword xiii Preface xv Nomenclature xvii Chapter 1. Introduction to Power Conversion 1 1.1. Do You Really Need to Simulate? / 1 1.2. What You Will Find in the Following

More information

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. 500KHz, 18V, 2A Synchronous Step-Down Converter

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. 500KHz, 18V, 2A Synchronous Step-Down Converter DESCRIPTION The is a fully integrated, high-efficiency 2A synchronous rectified step-down converter. The operates at high efficiency over a wide output current load range. This device offers two operation

More information

Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design procedure and concern

Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design procedure and concern Active Clamp Forward Converters Design Using UCC2897 Hong Huang August 2007 1 Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design

More information

EE 42/100: Lecture 8. 1 st -Order RC Transient Example, Introduction to 2 nd -Order Transients. EE 42/100 Summer 2012, UC Berkeley T.

EE 42/100: Lecture 8. 1 st -Order RC Transient Example, Introduction to 2 nd -Order Transients. EE 42/100 Summer 2012, UC Berkeley T. EE 42/100: Lecture 8 1 st -Order RC Transient Example, Introduction to 2 nd -Order Transients Circuits with non-dc Sources Recall that the solution to our ODEs is Particular solution is constant for DC

More information

In-Class Exercises for Lab 2: Input and Output Impedance

In-Class Exercises for Lab 2: Input and Output Impedance In-Class Exercises for Lab 2: Input and Output Impedance. What is the output resistance of the output device below? Suppose that you want to select an input device with which to measure the voltage produced

More information

PCB Crosstalk Simulation Toolkit Mark Sitkowski Design Simulation Systems Ltd Based on a paper by Ladd & Costache

PCB Crosstalk Simulation Toolkit Mark Sitkowski Design Simulation Systems Ltd   Based on a paper by Ladd & Costache PCB Crosstalk Simulation Toolkit Mark Sitkowski Design Simulation Systems Ltd www.designsim.com.au Based on a paper by Ladd & Costache Introduction Many of the techniques used for the modelling of PCB

More information

EXPERIMENT 8: LRC CIRCUITS

EXPERIMENT 8: LRC CIRCUITS EXPERIMENT 8: LRC CIRCUITS Equipment List S 1 BK Precision 4011 or 4011A 5 MHz Function Generator OS BK 2120B Dual Channel Oscilloscope V 1 BK 388B Multimeter L 1 Leeds & Northrup #1532 100 mh Inductor

More information

T6322A TE CH FEATURES GENERAL DESCRIPTION. Applications LED/Display Back Light Driver Lightings Portable Communication Devices Handheld Electronics

T6322A TE CH FEATURES GENERAL DESCRIPTION. Applications LED/Display Back Light Driver Lightings Portable Communication Devices Handheld Electronics PWM Control 1.5A Step-Down Converter FEATURES Wide Input Voltage Range: 7V to 30V LED Output Current Up to 1.5A Soft-start Single pin on/off and brightness control using DC voltage or PWM High efficiency

More information

Fixed Frequency Control vs Constant On-Time Control of Step-Down Converters

Fixed Frequency Control vs Constant On-Time Control of Step-Down Converters Fixed Frequency Control vs Constant On-Time Control of Step-Down Converters Voltage-mode/Current-mode vs D-CAP2 /D-CAP3 Spandana Kocherlakota Systems Engineer, Analog Power Products 1 Contents Abbreviation/Acronym

More information

Electromagnetic Interference Shielding Effects in Wireless Power Transfer using Magnetic Resonance Coupling for Board-to-Board Level Interconnection

Electromagnetic Interference Shielding Effects in Wireless Power Transfer using Magnetic Resonance Coupling for Board-to-Board Level Interconnection Electromagnetic Interference Shielding Effects in Wireless Power Transfer using Magnetic Resonance Coupling for Board-to-Board Level Interconnection Sukjin Kim 1, Hongseok Kim, Jonghoon J. Kim, Bumhee

More information

Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications

Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications Ranjan Sharma Technical University of Denmark ransharma@gmail.com Tonny

More information

2015 International Future Energy Challenge Topic B: Battery Energy Storage with an Inverter That Mimics Synchronous Generators. Qualification Report

2015 International Future Energy Challenge Topic B: Battery Energy Storage with an Inverter That Mimics Synchronous Generators. Qualification Report 2015 International Future Energy Challenge Topic B: Battery Energy Storage with an Inverter That Mimics Synchronous Generators Qualification Report Team members: Sabahudin Lalic, David Hooper, Nerian Kulla,

More information

MAXREFDES121# Isolated 24V to 3.3V 33W Power Supply

MAXREFDES121# Isolated 24V to 3.3V 33W Power Supply System Board 6309 MAXREFDES121# Isolated 24V to 3.3V 33W Power Supply Maxim s power-supply experts have designed and built a series of isolated, industrial power-supply reference designs. Each of these

More information

Lab Experiments. Boost converter (Experiment 2) Control circuit (Experiment 1) Power diode. + V g. C Power MOSFET. Load.

Lab Experiments. Boost converter (Experiment 2) Control circuit (Experiment 1) Power diode. + V g. C Power MOSFET. Load. Lab Experiments L Power diode V g C Power MOSFET Load Boost converter (Experiment 2) V ref PWM chip UC3525A Gate driver TSC427 Control circuit (Experiment 1) Adjust duty cycle D The UC3525 PWM Control

More information

Final Research Update - Bimodal Tesla Coil

Final Research Update - Bimodal Tesla Coil Final Research Update - Bimodal Tesla Coil Collin Matthews Advisor: Dr. Jovan Jevtic 5/21/2013 Abstract The Tesla coil, invented in the 1890s, has found applications in areas as varied as radio-technology,

More information

ACE4704. Fully 5A, 4cell Standalone Li-ion Battery Charger

ACE4704. Fully 5A, 4cell Standalone Li-ion Battery Charger Description The ACE4704 is a PWM switch-mode lithium ion battery charger controller for 4 cell li-ion battery in a small package using few external components. The ACE4704 is specially designed for charging

More information

T8302AX TE CH FEATURES GENERAL DESCRIPTION. Applications LED/Display Back Light Driver Lightings Portable Communication Devices Handheld Electronics

T8302AX TE CH FEATURES GENERAL DESCRIPTION. Applications LED/Display Back Light Driver Lightings Portable Communication Devices Handheld Electronics PWM Control 1A Step-Down Converter FEATURES Wide Input Voltage Range: 6V to 60V LED Output Current Up to 1A Soft-start Single pin on/off and brightness control using DC voltage or PWM High efficiency (up

More information

SC A LED DRIVER with INTERNAL SWITCH. Features. Description. Applications. Package Information

SC A LED DRIVER with INTERNAL SWITCH. Features. Description. Applications. Package Information 1.2A LED DRVER with NTERNAL SWTCH Features Simple low parts count Wide input voltage range: 4V to 40V 1.2A output current Single pin on/off Brightness control by using DC voltage Brightness control by

More information

MICROCONTROLLER BASED BOOST PID MUNAJAH BINTI MOHD RUBAEE

MICROCONTROLLER BASED BOOST PID MUNAJAH BINTI MOHD RUBAEE MICROCONTROLLER BASED BOOST PID MUNAJAH BINTI MOHD RUBAEE This thesis is submitted as partial fulfillment of the requirement for the award of Bachelor of Electrical Engineering (Power System) Faculty of

More information

Project 1 Final System Design and Performance Report. Class D Amplifier

Project 1 Final System Design and Performance Report. Class D Amplifier Taylor Murphy & Remo Panella EE 333 12/12/18 Project 1 Final System Design and Performance Report Class D Amplifier Intro For this project, we designed a class D amplifier circuit. Class D amplifiers work

More information

Transcutaneous Energy Transmission Based Wireless Energy Transfer to Implantable Biomedical Devices

Transcutaneous Energy Transmission Based Wireless Energy Transfer to Implantable Biomedical Devices Transcutaneous Energy Transmission Based Wireless Energy Transfer to Implantable Biomedical Devices Anand Garg, Lakshmi Sridevi B.Tech, Dept. of Electronics and Instrumentation Engineering, SRM University

More information

Wireless Power Transmission: A Simulation Study

Wireless Power Transmission: A Simulation Study International Journal of Control Theory and Applications ISSN : 0974-5572 International Science Press Volume 10 Number 29 2017 Wireless Power Transmission: A Simulation Study M. Likhith a, P. Naveen Kumar

More information

HM1410 FEATURES APPLICATIONS PACKAGE REFERENCE HM1410

HM1410 FEATURES APPLICATIONS PACKAGE REFERENCE HM1410 DESCRIPTION The is a monolithic step-down switch mode converter with a built in internal power MOSFET. It achieves 2A continuous output current over a wide input supply range with excellent load and line

More information

23V, 1.8A, 1.4MHz Asynchronous Step-Down DC/DC Converter

23V, 1.8A, 1.4MHz Asynchronous Step-Down DC/DC Converter 23V, 1.8A, 1.4MHz Asynchronous StepDown DC/DC Converter Description The is a monolithic stepdown switch mode converter with a builtin power MOSFET. It achieves 1.8A output current over a wide input supply

More information

A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer

A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer Progress In Electromagnetics Research Letters, Vol. 80, 53 59, 2018 A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer Keke Ding 1, 2, *, Ying Yu 1, 2, and Hong Lin 1, 2 Abstract In

More information

are equally illuminated, the lamp I 1

are equally illuminated, the lamp I 1 Student ID: 21643431 Exam: 387018RR - PRACTICAL EXERCISE ADVANCED ELECTRONIC COMPONENTS When you have completed your exam and reviewed your answers, click Submit Exam. Answers will not be recorded until

More information

CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM

CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM 63 CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM 3.1 INTRODUCTION The power output of the PV module varies with the irradiation and the temperature and the output

More information

SiC Transistor Basics: FAQs

SiC Transistor Basics: FAQs SiC Transistor Basics: FAQs Silicon Carbide (SiC) MOSFETs exhibit higher blocking voltage, lower on state resistance and higher thermal conductivity than their silicon counterparts. Oct. 9, 2013 Sam Davis

More information