Study on the next generation ITS radio communication in Japan

Size: px
Start display at page:

Download "Study on the next generation ITS radio communication in Japan"

Transcription

1 Study on the next generation ITS radio communication in Japan DSRC International Task Force, Japan Contents GHz DSRC in Japan (ARIB STD-T75) 2. Requirements for the next generation ITS radio communication 3. Candidate communication technologies for the next generation ITS radio communications. 4. OFDM (Orthogonal Frequency Division Multiplexing) 5. PSK-VP(Phase Shift Keying with Varied Phase) 6. Conclusion Sep DSRC International Task Force, Japan Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 1

2 1.1 Regional standards of DSRC Item Radio frequency band Europe (CEN) North America (ASTM) Japan (ARIB STD-T75) 5.8GHz GHz 5.8GHz Communication system Passive Active Active Data transmission rate Downlink:500kbps Uplink :250kbps Down/Uplink: 3-27Mbps Down/Uplink: 1 or 4 Mbps Duplex Half-duplex Half-duplex Half-duplex(OBU) Full-duplex (RSU) Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 2

3 2.1 ITS Standardization in ITU-R What is the next generation ITS radio communication? 1994, Question on ITS Recommendations (Answers to the Question) Objectives & Requirements Rec. ITU-R M ITU-R/SG8/WP8A/WG2: Standardization for ITS Functionalities Rec. ITU-R M Technologies Current Use of Spectrum Traffic & Spectrum Requirements Short-range Radar Rec. ITU-R M. 1452* 5.8GHz DSRC Rec. ITU-R M VICS(DSRC)? Next generation ITS radio communication?? Radio services - Broadcast - DSRC - Short-range radar - Short-range vehicle-tovehicle - Short-range continuous - Wide area * Rec. ITU-R M. 1453, Revised in Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 3

4 2.2Data transmission rate requirement for the next generation ITS radio communication Allowable traveling speed (mobility) [Km/h] 180 Information supply-type (high-speed traveling) ARIB STD-T75 generally satisfies the requirement except for the very small area shown below. 100 Image of a new portable telephone 20 Logistic Management Information supply-type (high-speed travelling) Parking lot Drive-through Specific region entry charging Information supply-type (semi-stationary) - high data rate highspeed traveling; Continuous communication - Very high data rate semi-stationary; Filling station Convenience store Pedestrian support On-demand information Video/music distribution Broadband ITS Radiocommunication (Resolution RAST 10/7) 0 Connection to Internet (IP) Data transmission rate 100K 1M 10M [bps] Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 4

5 2.3 Technical Requirement for the next generation ITS Radio Communication Area Extension :Spot Area Continuous or Wide Area 2High Reliability transmition to High Speed Vehicle in multi-path or/and Shadowing Situation Delayed wave 1 Direct wave Delayed wave 2 Multi-path Receive Level Shadowing Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 5

6 CDM (Code Division Multiplexing) DSRC International Task Force, Japan 3.1 Development status in ARIB* for the next generation ITS radio communication Technology Status Overview of the system Under Study Code 1 Code 1 OFDM (Orthogonal Frequency Division Multiplexing) a Under Study Developped OFDM Demonstration Finished Binary S/P Code 2 Low Binary Speed High Speed data data Code N Power QPSK QPSK QPSK Sum Power Code 2 Code N Binary high QPSK speed data Power S/P F3 SUM Transmit F1 F2 Power Fn Power F1 Power Fn F1 - Fn Symbol Frequency Time P/S Binary High Speed data PSK-VP (Phase Shift Keying with Varied Phase) Demonstration Finished * The road-vehicle communications technology group in the study group for Efficient Use of the Radio Spectrum for ITS Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 6

7 3.2 Countermeasures to Multi-path fading Delayed wave 1 Direct wave Delayed wave 2 Multi-path fading Available Technology CDM OFDM PSK-VP Features - RAKE / Path-Diversity - Low Inter-Symbol Interference (Low symbol rate) - Low Inter-symbol Interference (Low symbol rate) - Guard interval to reduce Inter Symbol and Inter Carrier Interference - Implicit RAKE / Path-Diversity Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 7

8 3.3 Countermeasures to Shadowing Technologies to realize reception from multiple antennas Available Technology CDM Features RAKE / Path-Diversity* f1 Shadowing f1 Developped OFDM PSK-VP Guard interval to reduce Inter Symbol Interference / Path-Diversity* Implicit RAKE / Path-Diversity* * ; Features to achieve continuous communication Avoidance of shadowing by reception from multiple Antennas Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 8

9 4.Modulation scheme and features of OFDM - Concept of OFDM modulation scheme Power QPSK Binary high QPSK speed data Power S/P F3 SUM Transmit QPSK QPSK F1 Power F2 Power Fn Power Power F1 - Fn Symbol Frequency - Anti-Multipath mechanism of OFDM Direct wave Direct wave Delayed wave Guard interval Symbol A Symbol B Symbol C F1 Fn Time Features of OFDM - Robustness against frequency selective fading (Narrow subcarrier) - High spectrum efficiency (Minimum carrier frequency spacing) - Low Inter Symbol Interference (ISI) and Inter Carrier Interference (ICI): (Provision of Guard Interval) Delayed wave Delay time Symbol A Symbol B Symbol C Reduced ISI and ICI Guard interval Time Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 9

10 4.1 Specification of a basedofdm DSRC International Task Force, Japan Item a a/RA Std. Body IEEE ASTM Freq. Band 5 GHz band 5.9 GHz band GHz GHz GHz Com. Range* 100m(typ) ex. 35m(54Mbps) 200m( 6Mbps) 1,000m Modulation OFDM OFDM No of channels 12 ch 7 ch Channel separation 20 MHz 10 MHz Data rate 6-54 Mbps 3-27 Mbps Vehicle speed (Stationary) 200 km/h Others Spectrum mask - Severe than 11a TxPWR_level Adjacent ch Rej - Severe than 11a * depends on environment condition and data rate. Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 10

11 4.1.1 BER Simulation Results for a (Line Of Site model,16qam) Fd = 100Hz : 18km/h Rice K=5dB Fd = 200He :36km/h Fd = 300Hz :54km/h Fd = 400Hz :72km/h Fd = 500Hz :90km/h Delay Spread :10ns Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 11

12 4.1.2 BER Simulation Results for a (Line Of Site model,qpsk) Rice K=5dB Fd = 100Hz : 18km/h Fd = 200He :36km/h Fd = 300Hz :54km/h Fd = 400Hz :72km/h Fd = 500Hz :90km/h Delay Spread :10ns Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 12

13 4.1.3 BER Simulation Results for a (Non-Line Of Site model,16qam) Delay Spread :50ns Fd = 100Hz Fd = 200He : 18km/h :36km/h Delay Spread :100ns Fd = 300Hz :54km/h Fd = 400Hz :72km/h Fd = 500Hz :90km/h Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 13

14 4.1.4 BER Simulation Results for a (Non-Line Of Site model,qpsk) Eb/No[dB] 1.E BER 1.E-01 1.E-02 1.E Hz 400Hz 800Hz 1000Hz 1.E-04 1.E-05 a 10ns BER 1.E E-01 1.E-02 1.E-03 1.E-04 1.E-05 Eb/No[dB] BER Eb/No[dB] 1.E E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 b 50ns 1.E-06 c 100ns Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 14

15 4.2 Features of Developed OFDM systems - Parameters of the system Items Communication area Radio zone size Handover distance Channel separation Radio transmission rate (Up / Down) Modulation Error correction RSE TX power OBE TX power - Comparison with IEEE a Model system A 10mx300mxn 10mx(30m-60m) 300m 5MHz 3.253Mbps OFDM-DQPSK RS(31,19) 200mW 10mW Items Model system A IEEEE a Access method TDMAFDD CSMA/CA Modulation DQPSK BPSKQPSK16QAM 64QAM Symbol length µs 3.2µs Guard interval 1/16 1/4 Guard time 0.98µs 0.8µs Subcarrier spacing 64kHz 312.5Hz Number of subcarrier 27 52With 4 pilot carriers Bandwidth per channel 1728kHz About 17MHz Error collection RS(31,19) Convolutional coding R=1/22/33/4 Interleave Within slot Within symbol Number of subcarrier division 2 Features of the system - Seamless hand-over on single radio frequency by dividing the sub-carrier - Time interleave within the slot to compensate for time variation of the received signal - High mobility through adoption of differential PSK without pilot carriers Note; RLAN devices are generally not designed to be used at automotive or higher speeds. Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 15

16 4.2.1 System performance simulation (Developed OFDM systems) - Error rate under Rice (k=6db) type multipath interference, after error correction Maximum Doppler frequency=966hz < < 64,000Hz (Subcarrier spacing) at vehicle speed of 180km/h Parameters are as per listed on the slide No. 4.2 Delay difference=122ns Delay difference=488ns - Power spectrum (6dB Back-off, Class AB) Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 16

17 4.2.2 Hand-over on Single radio frequency by dividing the subcarrier (Developed OFDM systems) Channel No.1 Channel No.2 Divide subcarrier into two groups f Mechanism of high speed handover on single radio frequency - The roadside transmitter transmits subcarrier groups arranged in frequency domain - The roadside transmitters in a data zone simulcast the identical data to reduce shadowing effects - All roadside transmitters are synchronized - When a vehicle passes a boundary between data zones, the receiver demodulates the signal of the two data zones, and extracts suitable data zones (Handover) Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 17

18 4.2.3 An example of seamless hand-over (Developed OFDM systems) DSRC International Task Force, Japan RSE1 RSE 2 RSE 3 RSE 4 Channel No.1 Channel No.2 Divided Channel No.1 Divided Channel No.2 Frequency A B C B C B C D Dividing the subcarrier into two groups f Error free during hand-offs RSE Antenna - RSE Communication range: 30m - RSE Antenna height: 10m Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 18

19 4.2.4 An example of Continuous Communication (Developed OFDM systems) RSE1 RSE 2 RSE 3 RSE 4 Vehicle Speed: 120km/h RSE Antenna Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 19

20 5.1 PSK-VP Modulation Scheme Concept of PSK-VP (Phase Shift Keying with Varied Phase) An anti-multipath scheme by imposing phase-variation on the symbol of PSK Configuration cf. IEEE Trans. VT-42, No.4, pp IEEE Trans. VT-42, No.2, pp ITST2001 Proc., S3-3, pp Triple mode (QPSK-VP/QPSK/ASK) transceiver baseband is easily implemented into single FPGA chip. Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 20 Proto-Modem Example Multimode by swapping waveform tables / A common detector applies to PSK and PSK-VP

21 5.2 Anti-Multipath Mechanism of PSK-VP No complete cancel in multipath by imposed phase-variation, i.e., survivor somewhere exists. Implicit RAKE / Path-Diversity i) Vector Diagram for Conventional PSK ii) Vector Diagram for PSK-VP Total cancel over the effective area occurs when phase difference approaches. Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 21 No complete cancel over the effective area

22 5.4Structure and Specification for DSRC Basic Structure and Specification Main Specification Downlink (Road to Vehicle) Simultaneous transmission using path-diversity effect of PSK-VP Uplink (Vehicle to Road) cf. ITST2002 Proc., S7-1, pp ITST2002 Proc., S7-2, pp IP Application HTML HTTP TCP IPv4,IPv6 PPP, LAN Site-diversity using bit-error based data-combining scheme Non-IP Application Modified Part ETC Application Sub. Layer (ASL) AID=18 ARIB STD-T75 L7 ARIB STD-T75 L2 ARIB STD-T75 L1 ASK AID=14 QPSK-VP QPSK Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) (Downlink only) 22

23 DSRC International Task Force, Japan 5.5 System Performance Simulation (PSK-VP) Power Spectrum Calculation Result FER (Frame Error Rate) Performance Simulation Results i) Downlink MDC frame: 1576bits payload (=200nsfD=1000Hz corresponds to 180km/h) Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 23 ii) Uplink

24 DSRC International Task Force, Japan 5.6 Field Verification for Continuous Communication without Hand-Off Downlink (Road to Vehicle) Uplink (Vehicle to Road) QPSK (STD-T75) QPSK-VP Error! Error Free QPSK (STD-T75) + Data-Combining Starting Point Error Free Position of Roadside Antenna Position of Roadside Antenna Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 24

25 5.7 Field Verification for Anti-Shadowing Effect RFU2 RFU1 Single Transmission from RFU2 Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 25 Simultaneous Transmission from RFU1&2

26 DSRC International Task Force, Japan 5.7 Filed Verification for Realization of Long Radio Area by Simultaneous Transmission Diversity Level Diversity Vehicle Speed: 120km/h Roadside Antenna Setup BER Simultaneous Transmission from Both Antennas Single Transmission from Upper Antenna from Lower Antenna Upper Lower Error Free About 1km Distance [m] Distance [m] Distance [m] Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 26

27 5.8 Feature of PSK-VP in DSRC Application Applicable to simultaneous transmission in downlink by anti-multipath feature Robust for rapid fading by no adaptation process and highly-maintained symbol-rate Simple structure without large-scale circuit like equalizer or FFT Easy realization of multimode modem by swapping waveform tables / common detector for PSK and PSK-VP Easy extension from existing PSK-based standard of ARIB STD-T75 Full compatible in higher layer Major differences are in Downlink / RSU. (multiple RF units and additional waveform table for PSK-VP) Differences in OBU are minimized. (No change in transmission / A common detector is used for PSK-VP) Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 27

28 6. CONCLUSION New technologies have been studied for the Next generation ITS Radio communications In Japan. Simulation results showed a based OFDM technology has performance problem under high mobility Situation. Field test evaluation has already finished for OFDM and PSK-VP scheme. Sep , VSC Session5-4-1 Communication for Vehicle Safety (Field Test) 28

DSRC using OFDM for roadside-vehicle communication systems

DSRC using OFDM for roadside-vehicle communication systems DSRC using OFDM for roadside-vehicle communication systems Akihiro Kamemura, Takashi Maehata SUMITOMO ELECTRIC INDUSTRIES, LTD. Phone: +81 6 6466 5644, Fax: +81 6 6462 4586 e-mail:kamemura@rrad.sei.co.jp,

More information

1. Introduction. Noriyuki Maeda, Hiroyuki Kawai, Junichiro Kawamoto and Kenichi Higuchi

1. Introduction. Noriyuki Maeda, Hiroyuki Kawai, Junichiro Kawamoto and Kenichi Higuchi NTT DoCoMo Technical Journal Vol. 7 No.2 Special Articles on 1-Gbit/s Packet Signal Transmission Experiments toward Broadband Packet Radio Access Configuration and Performances of Implemented Experimental

More information

Wireless Physical Layer Concepts: Part III

Wireless Physical Layer Concepts: Part III Wireless Physical Layer Concepts: Part III Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access

Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access NTT DoCoMo Technical Journal Vol. 8 No.1 Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access Kenichi Higuchi and Hidekazu Taoka A maximum throughput

More information

RECOMMENDATION ITU-R BT Error-correction, data framing, modulation and emission methods for digital terrestrial television broadcasting

RECOMMENDATION ITU-R BT Error-correction, data framing, modulation and emission methods for digital terrestrial television broadcasting Rec. ITU-R BT.1306-3 1 RECOMMENDATION ITU-R BT.1306-3 Error-correction, data framing, modulation and emission methods for digital terrestrial television broadcasting (Question ITU-R 31/6) (1997-2000-2005-2006)

More information

Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM)

Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM) Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM) 1 4G File transfer at 10 Mbps High resolution 1024 1920 pixel hi-vision picture

More information

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Lecture 3: Wireless Physical Layer: Modulation Techniques Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Modulation We saw a simple example of amplitude modulation in the last lecture Modulation how

More information

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates?

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates? Page 1 Outline 18-452/18-750 Wireless Networks and Applications Lecture 7: Physical Layer OFDM Peter Steenkiste Carnegie Mellon University RF introduction Modulation and multiplexing Channel capacity Antennas

More information

Mobile Communication Systems. Part 7- Multiplexing

Mobile Communication Systems. Part 7- Multiplexing Mobile Communication Systems Part 7- Multiplexing Professor Z Ghassemlooy Faculty of Engineering and Environment University of Northumbria U.K. http://soe.ac.uk/ocr Contents Multiple Access Multiplexing

More information

Orthogonal Frequency Division Multiplexing (OFDM)

Orthogonal Frequency Division Multiplexing (OFDM) Orthogonal Frequency Division Multiplexing (OFDM) Presenter: Engr. Dr. Noor M. Khan Professor Department of Electrical Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN

More information

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology CSC344 Wireless and Mobile Computing Department of Computer Science COMSATS Institute of Information Technology Wireless Physical Layer Concepts Part III Noise Error Detection and Correction Hamming Code

More information

Multi-carrier Modulation and OFDM

Multi-carrier Modulation and OFDM 3/28/2 Multi-carrier Modulation and OFDM Prof. Luiz DaSilva dasilval@tcd.ie +353 896-366 Multi-carrier systems: basic idea Typical mobile radio channel is a fading channel that is flat or frequency selective

More information

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2)

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2) 192620010 Mobile & Wireless Networking Lecture 2: Wireless Transmission (2/2) [Schiller, Section 2.6 & 2.7] [Reader Part 1: OFDM: An architecture for the fourth generation] Geert Heijenk Outline of Lecture

More information

EC 551 Telecommunication System Engineering. Mohamed Khedr

EC 551 Telecommunication System Engineering. Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr 1 Mohamed Khedr., 2008 Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week

More information

Radio interface standards of vehicle-tovehicle and vehicle-to-infrastructure communications for Intelligent Transport System applications

Radio interface standards of vehicle-tovehicle and vehicle-to-infrastructure communications for Intelligent Transport System applications Recommendation ITU-R M.2084-0 (09/2015) Radio interface standards of vehicle-tovehicle and vehicle-to-infrastructure communications for Intelligent Transport System applications M Series Mobile, radiodetermination,

More information

Lecture 13. Introduction to OFDM

Lecture 13. Introduction to OFDM Lecture 13 Introduction to OFDM Ref: About-OFDM.pdf Orthogonal frequency division multiplexing (OFDM) is well-known to be effective against multipath distortion. It is a multicarrier communication scheme,

More information

Orthogonal frequency division multiplexing (OFDM)

Orthogonal frequency division multiplexing (OFDM) Orthogonal frequency division multiplexing (OFDM) OFDM was introduced in 1950 but was only completed in 1960 s Originally grew from Multi-Carrier Modulation used in High Frequency military radio. Patent

More information

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context 4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context Mohamed.Messaoudi 1, Majdi.Benzarti 2, Salem.Hasnaoui 3 Al-Manar University, SYSCOM Laboratory / ENIT, Tunisia 1 messaoudi.jmohamed@gmail.com,

More information

Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection

Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection Kenichi Higuchi (1) and Hidekazu Taoka (2) (1) Tokyo University of Science (2)

More information

ATSC 3.0 Physical Layer Overview

ATSC 3.0 Physical Layer Overview ATSC 3.0 Physical Layer Overview Agenda Terminology Real world concerns Technology to combat those concerns Summary Basic Terminology What is OFDM? What is FEC? What is Shannon s Theorem? What does BER

More information

S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY VISHVESHWARAIAH TECHNOLOGICAL UNIVERSITY S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY A seminar report on Orthogonal Frequency Division Multiplexing (OFDM) Submitted by Sandeep Katakol 2SD06CS085 8th semester

More information

Waveform Design Choices for Wideband HF

Waveform Design Choices for Wideband HF Waveform Design Choices for Wideband HF J. W. Nieto Harris Corporation RF Communications Division HFIA 2009, #1 Presentation Overview Motivation Waveforms Design Objectives Waveform Choices Summary HFIA

More information

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system 1 2 TSTE17 System Design, CDIO Introduction telecommunication OFDM principle How to combat ISI How to reduce out of band signaling Practical issue: Group definition Project group sign up list will be put

More information

Pilot Aided Channel Estimation for MIMO MC-CDMA

Pilot Aided Channel Estimation for MIMO MC-CDMA Pilot Aided Channel Estimation for MIMO MC-CDMA Stephan Sand (DLR) Fabrice Portier CNRS/IETR NEWCOM Dept. 1, SWP 2, Barcelona, Spain, 3 rd November, 2005 Outline System model Frame structure MIMO Pilot

More information

One Cell Reuse OFDM/TDMA using. broadband wireless access systems

One Cell Reuse OFDM/TDMA using. broadband wireless access systems One Cell Reuse OFDM/TDMA using subcarrier level adaptive modulation for broadband wireless access systems Seiichi Sampei Department of Information and Communications Technology, Osaka University Outlines

More information

Maximum-Likelihood Co-Channel Interference Cancellation with Power Control for Cellular OFDM Networks

Maximum-Likelihood Co-Channel Interference Cancellation with Power Control for Cellular OFDM Networks Maximum-Likelihood Co-Channel Interference Cancellation with Power Control for Cellular OFDM Networks Manar Mohaisen and KyungHi Chang The Graduate School of Information Technology and Telecommunications

More information

Wireless Networks: An Introduction

Wireless Networks: An Introduction Wireless Networks: An Introduction Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Cellular Networks WLAN WPAN Conclusions Wireless Networks:

More information

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Amr Shehab Amin 37-20200 Abdelrahman Taha 31-2796 Yahia Mobasher 28-11691 Mohamed Yasser

More information

Orthogonal Frequency Division Multiplexing & Measurement of its Performance

Orthogonal Frequency Division Multiplexing & Measurement of its Performance Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 5, Issue. 2, February 2016,

More information

ENHANCING BER PERFORMANCE FOR OFDM

ENHANCING BER PERFORMANCE FOR OFDM RESEARCH ARTICLE OPEN ACCESS ENHANCING BER PERFORMANCE FOR OFDM Amol G. Bakane, Prof. Shraddha Mohod Electronics Engineering (Communication), TGPCET Nagpur Electronics & Telecommunication Engineering,TGPCET

More information

BER Analysis for MC-CDMA

BER Analysis for MC-CDMA BER Analysis for MC-CDMA Nisha Yadav 1, Vikash Yadav 2 1,2 Institute of Technology and Sciences (Bhiwani), Haryana, India Abstract: As demand for higher data rates is continuously rising, there is always

More information

CH 5. Air Interface of the IS-95A CDMA System

CH 5. Air Interface of the IS-95A CDMA System CH 5. Air Interface of the IS-95A CDMA System 1 Contents Summary of IS-95A Physical Layer Parameters Forward Link Structure Pilot, Sync, Paging, and Traffic Channels Channel Coding, Interleaving, Data

More information

Data Dissemination and Broadcasting Systems Lesson 09 Digital Audio Broadcasting

Data Dissemination and Broadcasting Systems Lesson 09 Digital Audio Broadcasting Data Dissemination and Broadcasting Systems Lesson 09 Digital Audio Broadcasting Oxford University Press 2007. All rights reserved. 1 Digital Audio Broadcast System (DAB) OFDM carrier FHSS based technique

More information

A study of Signal Detection for Road-to-Vehicle Communications in ITS

A study of Signal Detection for Road-to-Vehicle Communications in ITS A study of Signal Detection for Road-to-Vehicle Communications in ITS MASUO UMEMOTO Yokosuka ITS Research Center Telecommunication Advancement Organization of Japan Hikarino-oka 3-2-1, Yokosuka, Kanagawa

More information

SPREAD SPECTRUM CHANNEL MEASUREMENT INSTRUMENT

SPREAD SPECTRUM CHANNEL MEASUREMENT INSTRUMENT SPACE SPREAD SPECTRUM CHANNEL MEASUREMENT INSTRUMENT Satellite communications, earth observation, navigation and positioning and control stations indracompany.com SSCMI SPREAD SPECTRUM CHANNEL MEASUREMENT

More information

Performance Evaluation of STBC-OFDM System for Wireless Communication

Performance Evaluation of STBC-OFDM System for Wireless Communication Performance Evaluation of STBC-OFDM System for Wireless Communication Apeksha Deshmukh, Prof. Dr. M. D. Kokate Department of E&TC, K.K.W.I.E.R. College, Nasik, apeksha19may@gmail.com Abstract In this paper

More information

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE Overview 18-759: Wireless Networks Lecture 9: OFDM, WiMAX, LTE Dina Papagiannaki & Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2009 http://www.cs.cmu.edu/~prs/wireless09/

More information

CH 4. Air Interface of the IS-95A CDMA System

CH 4. Air Interface of the IS-95A CDMA System CH 4. Air Interface of the IS-95A CDMA System 1 Contents Summary of IS-95A Physical Layer Parameters Forward Link Structure Pilot, Sync, Paging, and Traffic Channels Channel Coding, Interleaving, Data

More information

ORTHOGONAL frequency division multiplexing (OFDM)

ORTHOGONAL frequency division multiplexing (OFDM) 144 IEEE TRANSACTIONS ON BROADCASTING, VOL. 51, NO. 1, MARCH 2005 Performance Analysis for OFDM-CDMA With Joint Frequency-Time Spreading Kan Zheng, Student Member, IEEE, Guoyan Zeng, and Wenbo Wang, Member,

More information

Diversity techniques for OFDM based WLAN systems: A comparison between hard, soft quantified and soft no quantified decision

Diversity techniques for OFDM based WLAN systems: A comparison between hard, soft quantified and soft no quantified decision Diversity techniques for OFDM based WLAN systems: A comparison between hard, soft quantified and soft no quantified decision Pablo Corral 1, Juan Luis Corral 2 and Vicenç Almenar 2 Universidad Miguel ernández,

More information

Selected answers * Problem set 6

Selected answers * Problem set 6 Selected answers * Problem set 6 Wireless Communications, 2nd Ed 243/212 2 (the second one) GSM channel correlation across a burst A time slot in GSM has a length of 15625 bit-times (577 ) Of these, 825

More information

OFDMA and MIMO Notes

OFDMA and MIMO Notes OFDMA and MIMO Notes EE 442 Spring Semester Lecture 14 Orthogonal Frequency Division Multiplexing (OFDM) is a digital multi-carrier modulation technique extending the concept of single subcarrier modulation

More information

ISDB-T Transmission Technologies and Emergency Warning System

ISDB-T Transmission Technologies and Emergency Warning System ISDB-T Seminar Presentation 2 ISDB-T Transmission Technologies and Emergency Warning System 13 14 June, 2007 Bangkok, Thailand JAPAN Koichiro IMAMURA (NHK) Contents 1. ISDB-T System 2. DTTB Implementation

More information

Experimenting with Orthogonal Frequency-Division Multiplexing OFDM Modulation

Experimenting with Orthogonal Frequency-Division Multiplexing OFDM Modulation FUTEBOL Federated Union of Telecommunications Research Facilities for an EU-Brazil Open Laboratory Experimenting with Orthogonal Frequency-Division Multiplexing OFDM Modulation The content of these slides

More information

FUJITSU TEN's Approach to Digital Broadcasting

FUJITSU TEN's Approach to Digital Broadcasting FUJITSU TEN's Approach to Digital Broadcasting Mitsuru Sasaki Kazuo Takayama 1. Introduction There has been a notable increase recently in the number of television commercials advertising television sets

More information

Adoption of this document as basis for broadband wireless access PHY

Adoption of this document as basis for broadband wireless access PHY Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Proposal on modulation methods for PHY of FWA 1999-10-29 Source Jay Bao and Partha De Mitsubishi Electric ITA 571 Central

More information

Underwater communication implementation with OFDM

Underwater communication implementation with OFDM Indian Journal of Geo-Marine Sciences Vol. 44(2), February 2015, pp. 259-266 Underwater communication implementation with OFDM K. Chithra*, N. Sireesha, C. Thangavel, V. Gowthaman, S. Sathya Narayanan,

More information

Systems for Audio and Video Broadcasting (part 2 of 2)

Systems for Audio and Video Broadcasting (part 2 of 2) Systems for Audio and Video Broadcasting (part 2 of 2) Ing. Karel Ulovec, Ph.D. CTU in Prague, Faculty of Electrical Engineering xulovec@fel.cvut.cz Only for study purposes for students of the! 1/30 Systems

More information

An Equalization Technique for Orthogonal Frequency-Division Multiplexing Systems in Time-Variant Multipath Channels

An Equalization Technique for Orthogonal Frequency-Division Multiplexing Systems in Time-Variant Multipath Channels IEEE TRANSACTIONS ON COMMUNICATIONS, VOL 47, NO 1, JANUARY 1999 27 An Equalization Technique for Orthogonal Frequency-Division Multiplexing Systems in Time-Variant Multipath Channels Won Gi Jeon, Student

More information

Improving the Data Rate of OFDM System in Rayleigh Fading Channel Using Spatial Multiplexing with Different Modulation Techniques

Improving the Data Rate of OFDM System in Rayleigh Fading Channel Using Spatial Multiplexing with Different Modulation Techniques 2009 International Symposium on Computing, Communication, and Control (ISCCC 2009) Proc.of CSIT vol.1 (2011) (2011) IACSIT Press, Singapore Improving the Data Rate of OFDM System in Rayleigh Fading Channel

More information

Performance of OFDM-Based WiMAX System Using Cyclic Prefix

Performance of OFDM-Based WiMAX System Using Cyclic Prefix ICoSE Conference on Instrumentation, Environment and Renewable Energy (2015), Volume 2016 Conference Paper Performance of OFDM-Based WiMAX System Using Cyclic Prefix Benriwati Maharmi Electrical Engineering

More information

DESIGN, IMPLEMENTATION AND OPTIMISATION OF 4X4 MIMO-OFDM TRANSMITTER FOR

DESIGN, IMPLEMENTATION AND OPTIMISATION OF 4X4 MIMO-OFDM TRANSMITTER FOR DESIGN, IMPLEMENTATION AND OPTIMISATION OF 4X4 MIMO-OFDM TRANSMITTER FOR COMMUNICATION SYSTEMS Abstract M. Chethan Kumar, *Sanket Dessai Department of Computer Engineering, M.S. Ramaiah School of Advanced

More information

Analysis of Interference & BER with Simulation Concept for MC-CDMA

Analysis of Interference & BER with Simulation Concept for MC-CDMA IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 4, Ver. IV (Jul - Aug. 2014), PP 46-51 Analysis of Interference & BER with Simulation

More information

Broadband OFDM-FDMA System for the Uplink of a Wireless LAN

Broadband OFDM-FDMA System for the Uplink of a Wireless LAN Broadband OFDM-FDMA System for the Uplink of a Wireless LAN Dirk Galda and Hermann Rohling Department of Telecommunications,TU of Hamburg-Harburg Eißendorfer Straße 40, 21073 Hamburg, Germany Elena Costa,

More information

A Simulation Tool for Third Generation CDMA Systems Presentation to IEEE Sarnoff Symposium

A Simulation Tool for Third Generation CDMA Systems Presentation to IEEE Sarnoff Symposium A Simulation Tool for Third Generation CDMA Systems Presentation to IEEE Sarnoff Symposium March 22, 2000 Fakhrul Alam, William Tranter, Brian Woerner Mobile and Portable Radio Research Group () e-mail:

More information

Digital Modulation Schemes

Digital Modulation Schemes Digital Modulation Schemes 1. In binary data transmission DPSK is preferred to PSK because (a) a coherent carrier is not required to be generated at the receiver (b) for a given energy per bit, the probability

More information

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) Long Term Evolution (LTE) What is LTE? LTE is the next generation of Mobile broadband technology Data Rates up to 100Mbps Next level of

More information

Part 3. Multiple Access Methods. p. 1 ELEC6040 Mobile Radio Communications, Dept. of E.E.E., HKU

Part 3. Multiple Access Methods. p. 1 ELEC6040 Mobile Radio Communications, Dept. of E.E.E., HKU Part 3. Multiple Access Methods p. 1 ELEC6040 Mobile Radio Communications, Dept. of E.E.E., HKU Review of Multiple Access Methods Aim of multiple access To simultaneously support communications between

More information

Performance Analysis of n Wireless LAN Physical Layer

Performance Analysis of n Wireless LAN Physical Layer 120 1 Performance Analysis of 802.11n Wireless LAN Physical Layer Amr M. Otefa, Namat M. ElBoghdadly, and Essam A. Sourour Abstract In the last few years, we have seen an explosive growth of wireless LAN

More information

Major Leaps in Evolution of IEEE WLAN Technologies

Major Leaps in Evolution of IEEE WLAN Technologies Major Leaps in Evolution of IEEE 802.11 WLAN Technologies Thomas A. KNEIDEL Rohde & Schwarz Product Management Mobile Radio Tester WLAN Mayor Player in Wireless Communications Wearables Smart Homes Smart

More information

Working Party 5B DRAFT NEW RECOMMENDATION ITU-R M.[500KHZ]

Working Party 5B DRAFT NEW RECOMMENDATION ITU-R M.[500KHZ] Radiocommunication Study Groups Source: Subject: Document 5B/TEMP/376 Draft new Recommendation ITU-R M.[500kHz] Document 17 November 2011 English only Working Party 5B DRAFT NEW RECOMMENDATION ITU-R M.[500KHZ]

More information

Fading & OFDM Implementation Details EECS 562

Fading & OFDM Implementation Details EECS 562 Fading & OFDM Implementation Details EECS 562 1 Discrete Mulitpath Channel P ~ 2 a ( t) 2 ak ~ ( t ) P a~ ( 1 1 t ) Channel Input (Impulse) Channel Output (Impulse response) a~ 1( t) a ~2 ( t ) R a~ a~

More information

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels Abstract A Orthogonal Frequency Division Multiplexing (OFDM) scheme offers high spectral efficiency and better resistance to

More information

Introduction to WiMAX Dr. Piraporn Limpaphayom

Introduction to WiMAX Dr. Piraporn Limpaphayom Introduction to WiMAX Dr. Piraporn Limpaphayom 1 WiMAX : Broadband Wireless 2 1 Agenda Introduction to Broadband Wireless Overview of WiMAX and Application WiMAX: PHY layer Broadband Wireless Channel OFDM

More information

Comparative Study of OFDM & MC-CDMA in WiMAX System

Comparative Study of OFDM & MC-CDMA in WiMAX System IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 1, Ver. IV (Jan. 2014), PP 64-68 Comparative Study of OFDM & MC-CDMA in WiMAX

More information

WiMAX/ Wireless WAN Case Study: WiMAX/ W.wan.6. IEEE 802 suite. IEEE802 suite. IEEE 802 suite WiMAX/802.16

WiMAX/ Wireless WAN Case Study: WiMAX/ W.wan.6. IEEE 802 suite. IEEE802 suite. IEEE 802 suite WiMAX/802.16 W.wan.6-2 Wireless WAN Case Study: WiMAX/802.16 W.wan.6 WiMAX/802.16 IEEE 802 suite WiMAX/802.16 PHY Dr.M.Y.Wu@CSE Shanghai Jiaotong University Shanghai, China Dr.W.Shu@ECE University of New Mexico Albuquerque,

More information

Performance Analysis of WiMAX Physical Layer Model using Various Techniques

Performance Analysis of WiMAX Physical Layer Model using Various Techniques Volume-4, Issue-4, August-2014, ISSN No.: 2250-0758 International Journal of Engineering and Management Research Available at: www.ijemr.net Page Number: 316-320 Performance Analysis of WiMAX Physical

More information

Chapter 7. Multiple Division Techniques

Chapter 7. Multiple Division Techniques Chapter 7 Multiple Division Techniques 1 Outline Frequency Division Multiple Access (FDMA) Division Multiple Access (TDMA) Code Division Multiple Access (CDMA) Comparison of FDMA, TDMA, and CDMA Walsh

More information

Chapter 2 Overview - 1 -

Chapter 2 Overview - 1 - Chapter 2 Overview Part 1 (last week) Digital Transmission System Frequencies, Spectrum Allocation Radio Propagation and Radio Channels Part 2 (today) Modulation, Coding, Error Correction Part 3 (next

More information

FPGA Implementation of Gaussian Multicarrier. Receiver with Iterative. Interference. Canceller. Tokyo Institute of Technology

FPGA Implementation of Gaussian Multicarrier. Receiver with Iterative. Interference. Canceller. Tokyo Institute of Technology FPGA Implementation of Gaussian Multicarrier Receiver with Iterative Interference Canceller Tetsuou Ohori,, Satoshi Suyama, Hiroshi Suzuki, and Kazuhiko Fukawa Tokyo Institute of Technology This work was

More information

Performance Evaluation of ½ Rate Convolution Coding with Different Modulation Techniques for DS-CDMA System over Rician Channel

Performance Evaluation of ½ Rate Convolution Coding with Different Modulation Techniques for DS-CDMA System over Rician Channel Performance Evaluation of ½ Rate Convolution Coding with Different Modulation Techniques for DS-CDMA System over Rician Channel Dilip Mandloi PG Scholar Department of ECE, IES, IPS Academy, Indore [India]

More information

Wireless WAN Case Study: WiMAX/ W.wan.6

Wireless WAN Case Study: WiMAX/ W.wan.6 Wireless WAN Case Study: WiMAX/802.16 W.wan.6 Dr.M.Y.Wu@CSE Shanghai Jiaotong University Shanghai, China Dr.W.Shu@ECE University of New Mexico Albuquerque, NM, USA W.wan.6-2 WiMAX/802.16 IEEE 802 suite

More information

Mobile Data Communication Terminals Compatible with Xi (Crossy) LTE Service

Mobile Data Communication Terminals Compatible with Xi (Crossy) LTE Service Mobile Data Communication Terminals Compatible with Xi (Crossy) LTE Service LTE Data communication terminal Throughput Special Articles on Xi (Crossy) LTE Service Toward Smart Innovation Mobile Data Communication

More information

Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary

Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary M.Tech Scholar, ECE Department,SKIT, Jaipur, Abstract Orthogonal Frequency Division

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

Design and Implementation of OFDM System and Reduction of Inter-Carrier Interference at Different Variance

Design and Implementation of OFDM System and Reduction of Inter-Carrier Interference at Different Variance Design and Implementation of OFDM System and Reduction of Inter-Carrier Interference at Different Variance Gaurav Verma 1, Navneet Singh 2 1 Research Scholar, JCDMCOE, Sirsa, Haryana, India 2 Assistance

More information

Planning of LTE Radio Networks in WinProp

Planning of LTE Radio Networks in WinProp Planning of LTE Radio Networks in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen mail@awe-communications.com Issue Date Changes V1.0 Nov. 2010 First version of document V2.0

More information

WiMAX: , e, WiBRO Introduction to WiMAX Measurements

WiMAX: , e, WiBRO Introduction to WiMAX Measurements Products: R&S FSQ, R&S SMU, R&S SMJ, R&S SMATE WiMAX: 802.16-2004, 802.16e, WiBRO Introduction to WiMAX Measurements Application Note 1EF57 The new WiMAX radio technology worldwide interoperability for

More information

SYSTEM ARCHITECTURE ADVANCED SYSTEM ARCHITECTURE LUO Chapter18.1 and Introduction to OFDM

SYSTEM ARCHITECTURE ADVANCED SYSTEM ARCHITECTURE LUO Chapter18.1 and Introduction to OFDM SYSTEM ARCHITECTURE ADVANCED SYSTEM ARCHITECTURE LUO Chapter18.1 and 18.2 Introduction to OFDM 2013/Fall-Winter Term Monday 12:50 Room# 1-322 or 5F Meeting Room Instructor: Fire Tom Wada, Professor 12/9/2013

More information

Chapter 2 Overview - 1 -

Chapter 2 Overview - 1 - Chapter 2 Overview Part 1 (last week) Digital Transmission System Frequencies, Spectrum Allocation Radio Propagation and Radio Channels Part 2 (today) Modulation, Coding, Error Correction Part 3 (next

More information

ANALYSIS OF BER AND SEP OF QPSK SIGNAL FOR MULTIPLE ANENNAS

ANALYSIS OF BER AND SEP OF QPSK SIGNAL FOR MULTIPLE ANENNAS ANALYSIS OF BER AND SEP OF QPSK SIGNAL FOR MULTIPLE ANENNAS Suganya.S 1 1 PG scholar, Department of ECE A.V.C College of Engineering Mannampandhal, India Karthikeyan.T 2 2 Assistant Professor, Department

More information

MODULATION AND MULTIPLE ACCESS TECHNIQUES

MODULATION AND MULTIPLE ACCESS TECHNIQUES 1 MODULATION AND MULTIPLE ACCESS TECHNIQUES Networks and Communication Department Dr. Marwah Ahmed Outlines 2 Introduction Digital Transmission Digital Modulation Digital Transmission of Analog Signal

More information

Chapter 2: Wireless Transmission. Mobile Communications. Spread spectrum. Multiplexing. Modulation. Frequencies. Antenna. Signals

Chapter 2: Wireless Transmission. Mobile Communications. Spread spectrum. Multiplexing. Modulation. Frequencies. Antenna. Signals Mobile Communications Chapter 2: Wireless Transmission Frequencies Multiplexing Signals Spread spectrum Antenna Modulation Signal propagation Cellular systems Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/

More information

2-2 Advanced Wireless Packet Cellular System using Multi User OFDM- SDMA/Inter-BTS Cooperation with 1.3 Gbit/s Downlink Capacity

2-2 Advanced Wireless Packet Cellular System using Multi User OFDM- SDMA/Inter-BTS Cooperation with 1.3 Gbit/s Downlink Capacity 2-2 Advanced Wireless Packet Cellular System using Multi User OFDM- SDMA/Inter-BTS Cooperation with 1.3 Gbit/s Downlink Capacity KAWAZAWA Toshio, INOUE Takashi, FUJISHIMA Kenzaburo, TAIRA Masanori, YOSHIDA

More information

IEEE c-00/40. IEEE Broadband Wireless Access Working Group <

IEEE c-00/40. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted Source(s) IEEE 802.16 Broadband Wireless Access Working Group Initial PHY Layer System Proposal for Sub 11 GHz BWA 2000-10-30 Anader Benyamin-Seeyar

More information

Level 6 Graduate Diploma in Engineering Wireless and mobile communications

Level 6 Graduate Diploma in Engineering Wireless and mobile communications 9210-119 Level 6 Graduate Diploma in Engineering Wireless and mobile communications Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil,

More information

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth.

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth. UNIT- 7 Radio wave propagation and propagation models EM waves below 2Mhz tend to travel as ground waves, These wave tend to follow the curvature of the earth and lose strength rapidly as they travel away

More information

Frequency Offset Compensation In OFDM System Using Neural Network

Frequency Offset Compensation In OFDM System Using Neural Network Frequency Offset Compensation In OFDM System Using Neural Network Rachana P. Borghate 1, Suvarna K. Gosavi 2 Lecturer, Dept. of ETRX, Rajiv Gandhi college of Engg, Nagpur, Maharashtra, India 1 Lecturer,

More information

CDMA Key Technology. ZTE Corporation CDMA Division

CDMA Key Technology. ZTE Corporation CDMA Division CDMA Key Technology ZTE Corporation CDMA Division CDMA Key Technology Spread Spectrum Communication Code Division Multiple Access Power Control Diversity Soft Handoff Rake Receiver Variable Rate Vocoder

More information

Receiver Designs for the Radio Channel

Receiver Designs for the Radio Channel Receiver Designs for the Radio Channel COS 463: Wireless Networks Lecture 15 Kyle Jamieson [Parts adapted from C. Sodini, W. Ozan, J. Tan] Today 1. Delay Spread and Frequency-Selective Fading 2. Time-Domain

More information

Transmit Diversity Schemes for CDMA-2000

Transmit Diversity Schemes for CDMA-2000 1 of 5 Transmit Diversity Schemes for CDMA-2000 Dinesh Rajan Rice University 6100 Main St. Houston, TX 77005 dinesh@rice.edu Steven D. Gray Nokia Research Center 6000, Connection Dr. Irving, TX 75240 steven.gray@nokia.com

More information

Channel Estimation in Multipath fading Environment using Combined Equalizer and Diversity Techniques

Channel Estimation in Multipath fading Environment using Combined Equalizer and Diversity Techniques International Journal of Scientific & Engineering Research Volume3, Issue 1, January 2012 1 Channel Estimation in Multipath fading Environment using Combined Equalizer and Diversity Techniques Deepmala

More information

UNIFIED DIGITAL AUDIO AND DIGITAL VIDEO BROADCASTING SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM

UNIFIED DIGITAL AUDIO AND DIGITAL VIDEO BROADCASTING SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM UNIFIED DIGITAL AUDIO AND DIGITAL VIDEO BROADCASTING SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM 1 Drakshayini M N, 2 Dr. Arun Vikas Singh 1 drakshayini@tjohngroup.com, 2 arunsingh@tjohngroup.com

More information

Channel Estimation for Downlink LTE System Based on LAGRANGE Polynomial Interpolation

Channel Estimation for Downlink LTE System Based on LAGRANGE Polynomial Interpolation Channel Estimation for Downlink LTE System Based on LAGRANGE Polynomial Interpolation Mallouki Nasreddine,Nsiri Bechir,Walid Hakimiand Mahmoud Ammar University of Tunis El Manar, National Engineering School

More information

CDMA Principle and Measurement

CDMA Principle and Measurement CDMA Principle and Measurement Concepts of CDMA CDMA Key Technologies CDMA Air Interface CDMA Measurement Basic Agilent Restricted Page 1 Cellular Access Methods Power Time Power Time FDMA Frequency Power

More information

Revision of Lecture One

Revision of Lecture One Revision of Lecture One System blocks and basic concepts Multiple access, MIMO, space-time Transceiver Wireless Channel Signal/System: Bandpass (Passband) Baseband Baseband complex envelope Linear system:

More information

OFDMA PHY for EPoC: a Baseline Proposal. Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1

OFDMA PHY for EPoC: a Baseline Proposal. Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1 OFDMA PHY for EPoC: a Baseline Proposal Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1 Supported by Jorge Salinger (Comcast) Rick Li (Cortina) Lup Ng (Cortina) PAGE 2 Outline OFDM: motivation

More information

The 5th Smart Antenna Workshop 21 April 2003, Hanyang University, Korea Broadband Mobile Technology Fumiyuki Adachi

The 5th Smart Antenna Workshop 21 April 2003, Hanyang University, Korea Broadband Mobile Technology Fumiyuki Adachi The 5th Smart Antenna Workshop 21 April 2003, Hanyang University, Korea Broadband Mobile Technology Fumiyuki Adachi Dept. of Electrical and Communications Engineering, Tohoku University, Japan adachi@ecei.tohoku.ac.jp

More information

Multi-Carrier Systems

Multi-Carrier Systems Wireless Information Transmission System Lab. Multi-Carrier Systems 2006/3/9 王森弘 Institute of Communications Engineering National Sun Yat-sen University Outline Multi-Carrier Systems Overview Multi-Carrier

More information

OFDM (Orthogonal Frequency Division Multiplexing) SIMULATION USING MATLAB Neha Pathak MTech Scholar, Shri am Institute of Technology

OFDM (Orthogonal Frequency Division Multiplexing) SIMULATION USING MATLAB Neha Pathak MTech Scholar, Shri am Institute of Technology OFDM (Orthogonal Frequency Division Multiplexing) SIMULATION USING MATLAB Neha Pathak MTech Scholar, Shri am Institute of Technology ABSTRACT This paper discusses the design and implementation of an OFDM

More information