DC Line Protection for Multi-terminal (MT)- HVDC Systems

Size: px
Start display at page:

Download "DC Line Protection for Multi-terminal (MT)- HVDC Systems"

Transcription

1 DC Line Protection for Multi-terminal (MT)- HVDC Systems Monday Ikhide PhD Research Student Faculty of Computing, Engineering and Sciences, Staffordshire University 9 th Universities High Voltage Network Colloquium (Electrical Networks Infrastructure and Equipment for 2030) Cardiff University 14 th 15 th January, 2016

2 Content 2 Motivation Multi-terminal (MT) HVDC System (DC Grid) Options and Strategies for DC Grid Protection DC Line Protection Techniques Proposals for DC Grid Protection Conclusions

3 Motivation 3 Increased offshore wind farm Penetration. Offshore wind farm moving further into the sea. HVAC becoming uneconomical losses HVDC is the preferred option!!! Future HVDC scheme will be interconnected to form a multi-terminal network (DC Grid)

4 Multi-terminal HVDC System (DC grid) 4 1 On shore 3 Off shore Transmission Line Cable 2 On shore Key Issue : Protection!!! DC fault current rises exponentially Long Length of Lines/cables (up to 800km in some cases ) Frequency dependency of line/cable parameters Key advantages : Equipment utilisation Increased Flexibility Increased Reliability Travelling wave phenomenon Selectivity Existing protection for two-terminal DC line not suitable for DC grids

5 Multi-terminal HVDC System (DC grid) 5 Two terminal HVDC System - Protection System Control Rectifier Fault Inverter Use of AC side Breakers AC 1 AC 1 Rectifier Protection System Fault Inverter AC 2 AC 2 Line Commutated s (LCC) Voltage Source s (VSC) LCC has large DC smoothing Inductance Existing protection for two-terminal DC line not suitable for DC grids

6 Options and Strategies for DC Grid Protection 6 1 On shore 3 Off shore Transmission Line Cable 2 On shore Option 1: AC side Circuit Breakers(CB) + Fast Mechanical isolators AC side CB at all converter stations are operated following fault inception Faulty section isolated by the use of fast DC switches or isolators Disadvantages: Entire Grid is de-energised. Significant amount of time needed to re-established active and reactive power flow

7 Options and Strategies for DC Grid Protection 7 1 On shore 3 Off shore Transmission Line Cable 2 On shore (a) =MMC Topology (b)=half-bridge submodule (c)=full Bridge Submodule Option 2: Full Bridge Modular Multi-level (MMC) + Fast Mechanical isolators s are blocked, and fault current is limited Faulty section isolated by fast DC switches. Disadvantages: Entire Grid is de-energised. Significant amount of time needed to re-established active and reactive power flow

8 Options and Strategies for DC Grid Protection 8 1 On shore Transmission Line 2 On shore DC circuit breakers placed at both ends of the DC lines or cables. 3 Off shore Cable Faulty section is selectively isolated during DC side short circuit. Option 3: Use of DC side HVDC Circuit Breakers DC circuit breakers also have di/dt limiting inductor Half-Bridge MMC are suited for this option Key Advantages: Faulty section is selectively isolated No power disruption on healthy sections

9 DC Line Protection Techniques (with DC Circuit Breakers) 9 R 1 R 2 F 2 With respect to relay R 1 ; MMC 1 MMC 2 L1 L2 F i1 F i2 F i1 and F i2 are internal faults; MMC 3 L3 R 3 R 4 F 3 L 1 L 4 are Circuit Breaker di/dt limiting inductor The goal is to operate the relay only for internal faults. - F i1 and F i2 as shown. L4 F 2 and F 3 are external faults. F i1, F i2, and F 3 are forward faults. Relay must distinguish between forward internal (F i1 F i2 ) and forward external (F 3 ) faults. F 2 is a reverse external fault

10 Current (ka) 9 th Universities High Voltage Network Colloquium (UHVnet 2016) DC Line Protection Techniques (with DC Circuit Breakers) 10 F 2 R 1 R 2 MMC 1 MMC 2 L1 L2 F i1 F i2 MMC 3 L3 R 3 R 4 F 3 L Fi1 (without DC Inductor) Fi2 (without DC Inductor) F2 (without DC Inductor) F3 (without DC Inductor) Fi1 (with DC Inductor) Fi2 (with DC inductor) F2(with DC Inductor) F3 (with DC Inductor) time (s) Rate of rise (di/dt) of fault current varies with fault distance DC inductor provides attenuation

11 DC Line Protection Techniques (with DC Circuit Breakers) di/dt Technique = i n+1 i n t MMC 1 MMC 2 L1 L2 F i1 F i2 MMC 3 F 2 L3 R 1 R 2 R 3 R 4 F 3 For F 2 ; di/dt is Negative (reverse fault) For F i1, F i2, F 3 di/dt is Positive (forward Faults) Relay, R1 must discriminate between remote internal (Fi2) and external fault (F3) L4 11

12 DC Line Protection Techniques (with DC Circuit Breakers) di/dt Technique = i n+1 i n t F 2 R 1 R 2 MMC 1 MMC 2 L1 L2 F i1 F i2 R 3 R 4 12 MMC 3 Constraints: Travelling wave effect, L3 F 3 L4 oscillation, time window, fault resistance (R f ) di/dt for remote internal fault (F i2 )with large fault resistance may be lower than for external faults (F 3 )

13 DC Line Protection Techniques (with DC Circuit Breakers) dv/dt Technique = v n+1 v n t Constraints: Travelling wave effect, oscillation, time window, fault resistance (R f ) MMC 1 MMC 2 L1 L2 F i1 F i2 MMC 3 F 2 L3 R 1 R 2 R 3 R 4 F 3 dv/dt for remote internal fault with large fault resistance may be lower than for external faults L4 13

14 DC Line Protection Techniques (with DC Circuit Breakers) 14 Travelling wave A B A t A1 t B11 t A2 R 1 R 2 l f F 1 t p2 l F B t B1 t B2 t A11 l l f f v ( t A t ) 2 A1 2 l 1 2 v ( t t ) 1 LC v= velocity of propagation B1 A v Constraints: Single ended Method Double ended Method Time Constraints Multiple reflections Communication delay Signal Processing Wave travel faster in Lines than in cables.

15 DC Line Protection Techniques (with DC Circuit Breakers) 15 Distance Protection F e1 A Z 1 Z 2 Z 3 R i R V R l f1 Z f = v R(f) i R(f) l f2 F i1 F i2 F i3 l f3 B In DC system, there is no nominal frequency. F e2 Fault distance, Z f is proportional to loop/line impedance When Z f < Z, the relay operates; Z f = Fault impedance. Z = Reach point impedance In AC systems, reactive components and the concept of zoning provides discrimination for Fe1 and Fe1 respectively

16 Proposals for DC Grid Protection 16 Unit Scheme : - High sensitivity, low speed- Hybrid Protection : Scheme di/dt, dv/dt, I, v, distance protection, Polarity identification, etc Communication delay Non-Unit Scheme : di/dt, dv/dt, I, v distance protection, - Low sensitivity, High speed - Insensitive to Fault Resistance - Combination of two or more of the above- di/dt, dv/dt, I, v, Polarity identification, Travelling wave, distance protection, Digital Signal Processing(DSP): FFT, Wavelet Transform, etc There should be trade off between security, sensitivity and speed

17 Conclusions 17 High speed, robust and transient based protection algorithms must be developed for the realisation of DC grids. Primary protection must be non-unit based: - No communication delay The protection scheme must discriminate between faults and disturbances (such as normal load transient, switching, lightning conditions) Protection algorithms for AC system should be re-developed for DC grids Sampling must meet IEC standard ( 96 khz )

18 Publications 18 [1] M. Ikhide, S. Tennakoon, A. Griffiths, S. Subramanian, H. Ha; Fault Detection in Multi-terminal Modular Multilevel (MMC) based High Voltage DC (HVDC) Transmission Systems, IEEE Conferences (UPEC),2015 [2] M. Ikhide, S. Tennakoon, A. Griffiths, S. Subramanian, H. Ha A, Adamczyk. Limitations of di/dt Techniques in DC Line Protection, IEEE Conferences (DPSP),2016 (Accepted for Publication)

19 References 19 1) Adamczyk, H. Ha, and C. D. Barker, Fault Detection and Branch Identification for HVDC Grids, 12th IET Int. Conf. Dev. Power Syst. Prot. (DPSP 2014), pp. 1 6, ) J. Wang, B. Berggren, K. Linden, J. Pan, and R. Nuqui, Multi-Terminal DC System line Protection Requirement and High Speed Protection Solutions" CIGRE, (LUND 2015), 3) I. Dallas and C. Booth, Teleprotection in multi-terminal HVDC supergrids, 12th IET Int. Conf. Dev. Power Syst. Prot. (DPSP 2014), pp. 1-6, ) J. I. Marvik, S. D. Arco, and J. A. Suul, Communication-less fault detection in radial multiterminal offshore HVDC grids, 10th IET Int. Conf. AC DC Power Transm., pp. 1 8, ) J. Sneath and A. D. Rajapakse, Fault Detection and Interruption in an Earthed HVDC Grid using ROCOV and Hybrid DC Breakers, IEEE Trans. Power Deliv., vol.pp, no. 99, pp. 1 8, ) D. Naidoo and N. M. Ijumba, HVDC Line Protection for the Proposed Future HVDC Systems, (POWERCON) vol.2, pp , ) Van Hertem, and R. Belmans, Wavelet-based protection strategy for DC faults in multi-terminal VSC HVDC systems, IET Gener. Transm. Distrib., vol. 5, no.4, p , ) K. De Kerf, K. Srivastava, M. Reza, D. Bekaert, S. Cole, D. Van Hertem, and R. Belmans, Wavelet-based protection strategy for DC faults in multi-terminal VSC HVDC systems, IET Gener. Transm. Distrib., vol. 5, no.4, p , ) W. Leterme, J. Beerten, and D. Van Hertem, Non-unit protection of HVDC grids with inductive dc cable termination, IEEE Trans. Power Deliv., vol. PP, no. 99, pp. 1 9, 2015.

20 DC Line Protection for Multi-terminal (MT)-HVDC Systems 20 THANK YOU Faculty of Computing, Engineering and Sciences, Staffordshire University 9 th Universities High Voltage Network Colloquium (UHVnet 2016) Cardiff University 14 th 15 th January, 2016

Challenges in Fault Detection and Discrimination in Multi-terminal HVDC Grids and Potential Solutions M. H. Naushath, A.D.

Challenges in Fault Detection and Discrimination in Multi-terminal HVDC Grids and Potential Solutions M. H. Naushath, A.D. Challenges in Fault Detection and Discrimination in Multi-terminal HVDC Grids and Potential Solutions M. H. Naushath, A.D. Rajapakse Abstract By simulating a multi-terminal high voltage DC grid using a

More information

Selective Wave-Front Based Protection Algorithm for MTDC Systems

Selective Wave-Front Based Protection Algorithm for MTDC Systems Selective Wave-Front Based Protection Algorithm for MTDC Systems N Johannesson*, S Norrga*, C Wikström *KTH Royal Institute of Technology, Sweden, njohanne@kth.se, norrga@kth.se ABB HVDC, Sweden, christian.wikstrom@se.abb.com

More information

Robustness Evaluation of Fast Breaker Failure Backup Protection in Bipolar HVDC Grids

Robustness Evaluation of Fast Breaker Failure Backup Protection in Bipolar HVDC Grids Robustness Evaluation of Fast Breaker Failure Backup Protection in Bipolar HVDC Grids M. Wang, W. Leterme, J. Beerten, D. Van Hertem Department of Electrical Engineering (ESAT), Division ELECTA & Energyville,

More information

Using Fault Current Limiting mode of a Hybrid DC Breaker

Using Fault Current Limiting mode of a Hybrid DC Breaker Using Fault Current Limiting mode of a Hybrid DC Breaker M. Wang, W. Leterme, J. Beerten, D. Van Hertem Department of Electrical Engineering (ESAT), Division ELECTA & Energyville, University of Leuven

More information

Impact of VSC Converter Topology on Fault Characteristics in HVDC Transmission Systems

Impact of VSC Converter Topology on Fault Characteristics in HVDC Transmission Systems Impact of VSC Converter Topology on Fault Characteristics in HVDC Transmission Systems Dimitrios Tzelepis, Sul Ademi, Dimitrios Vozikis, Adam Dyśko, Sankara Subramanian, Hengxu Ha University of Strathclyde,

More information

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter 1 Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter Nee, Staffan Norrga, Remus Teodorescu ISBN-10: 1118851560

More information

A Fast Local Bus Current-Based Primary Relaying Algorithm for HVDC Grids

A Fast Local Bus Current-Based Primary Relaying Algorithm for HVDC Grids A Fast Local Bus Current-Based Primary Relaying Algorithm for HVDC Grids Sahar Pirooz Azad, Member, IEEE and Dirk Van Hertem, Senior Member, IEEE Abstract This paper proposes a fast, selective, reliable

More information

Protection Strategy for Multi-terminal DC Networks with Fault Current Blocking Capability of Converters

Protection Strategy for Multi-terminal DC Networks with Fault Current Blocking Capability of Converters Protection Strategy for Multi-terminal DC Networks with Fault Current Blocking Capability of Converters R. Dantas *, J. Liang *, C. E. Ugalde-Loo *, A. Adamczyk, C. Barker, R. Whitehouse * Cardiff University,

More information

A New Network Proposal for Fault-Tolerant HVDC Transmission Systems

A New Network Proposal for Fault-Tolerant HVDC Transmission Systems A New Network Proposal for Fault-Tolerant HVDC Transmission Systems Malothu Malliswari 1, M. Srinu 2 1 PG Scholar, Anurag Engineering College 2 Assistant Professor, Anurag Engineering College Abstract:

More information

The University of Nottingham

The University of Nottingham The University of Nottingham Power Electronic Converters for HVDC Applications Prof Pat Wheeler Power Electronics, Machines and Control (PEMC) Group UNIVERSITY OF NOTTINGHAM, UK Email pat.wheeler@nottingham.ac.uk

More information

U I. HVDC Control. LCC Reactive power characteristics

U I. HVDC Control. LCC Reactive power characteristics Lecture 29 HVDC Control Series Compensation 1 Fall 2017 LCC Reactive power characteristics LCC HVDC Reactive compensation by switched filters and shunt capacitor banks Operates at lagging power factor

More information

Fault Current Characterisation in VSC-based HVDC Systems

Fault Current Characterisation in VSC-based HVDC Systems Fault Current Characterisation in VSC-based HVDC Systems Sul Ademi, Dimitrios Tzelepis, Adam Dyśko, Sankara Subramanian, Hengxu Ha University of Strathclyde, Glasgow, UK, sul.ademi@strath.ac.uk, dimitrios.tzelepis@strath.ac.uk,

More information

Partial Power Operation of Multi-level Modular Converters under Subsystem Faults

Partial Power Operation of Multi-level Modular Converters under Subsystem Faults Partial Power Operation of Multi-level Modular Converters under Subsystem Faults Philip Clemow Email: philipclemow@imperialacuk Timothy C Green Email: tgreen@imperialacuk Michael M C Merlin Email: michaelmerlin7@imperialacuk

More information

AORC Technical meeting 2014

AORC Technical meeting 2014 http : //www.cigre.org B4-112 AORC Technical meeting 214 HVDC Circuit Breakers for HVDC Grid Applications K. Tahata, S. Ka, S. Tokoyoda, K. Kamei, K. Kikuchi, D. Yoshida, Y. Kono, R. Yamamoto, H. Ito Mitsubishi

More information

Sequential Tripping of Hybrid DC Circuit Breakers to Enhance the Fault Interruption Capability in Multi-Terminal DC Grids

Sequential Tripping of Hybrid DC Circuit Breakers to Enhance the Fault Interruption Capability in Multi-Terminal DC Grids Sequential Tripping of Hybrid DC Circuit Breakers to Enhance the Fault Interruption Capability in Multi-Terminal DC Grids J. SUN, Y. SONG, M. SAEEDIFARD, and A. P. MELIOPOULOS Georgia Institute of Technology

More information

A cost effective hybrid HVDC transmission system with high performance in DC line fault handling

A cost effective hybrid HVDC transmission system with high performance in DC line fault handling 2, rue d Artois, F-758 PARIS B4-7 CIGRE 28 http : //www.cigre.org A cost effective hybrid HVDC transmission system with high performance in DC line fault handling Mats Andersson, Xiaobo ang and ing-jiang

More information

Operating DC Circuit Breakers with MMC

Operating DC Circuit Breakers with MMC > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Operating DC Circuit Breakers with MMC Oliver Cwikowski, Alan Wood, Member, IEEE, Allan Miller, Senior Member,

More information

DC Fault Analysis in Bipolar HVDC Grids

DC Fault Analysis in Bipolar HVDC Grids DC Fault Analysis in Bipolar HVDC Grids Mian Wang*, Jef Beerten*, Dirk Van Hertem* *KU Leuven, ESAT, div. Electa/EnergeVille, Kasteelpark Arenberg 1 - box 44, 31 Leuven Belgium Email: mian.wang@esat.kuleuven.be

More information

Submodule Configuration of HVDC-DC Auto Transformer Considering DC Fault

Submodule Configuration of HVDC-DC Auto Transformer Considering DC Fault This paper is a post-print of a paper submitted to and accepted for publication in IET ower Electronics and is subject to Institution of Engineering and Technology Copyright. The copy of record is available

More information

High Voltage DC Transmission 2

High Voltage DC Transmission 2 High Voltage DC Transmission 2 1.0 Introduction Interconnecting HVDC within an AC system requires conversion from AC to DC and inversion from DC to AC. We refer to the circuits which provide conversion

More information

Internal DC Short-Circuit Fault Analysis and Protection for VSI of Wind Power Generation Systems

Internal DC Short-Circuit Fault Analysis and Protection for VSI of Wind Power Generation Systems April 2014, Volume 5, No.2 International Journal of Chemical and Environmental Engineering Internal DC Short-Circuit Fault Analysis and Protection for VSI of Wind Power Generation Systems M.Radmehr a,*,

More information

Grounded HVDC Grid Line Fault Protection Using Rate of Change of Voltage and Hybrid DC Breakers. Jeremy Sneath. The University of Manitoba

Grounded HVDC Grid Line Fault Protection Using Rate of Change of Voltage and Hybrid DC Breakers. Jeremy Sneath. The University of Manitoba Grounded HVDC Grid Line Fault Protection Using Rate of Change of Voltage and Hybrid DC Breakers By Jeremy Sneath A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba In partial

More information

Introduction to HVDC in GB. Ian Cowan Simulation Engineer 12 March 2018

Introduction to HVDC in GB. Ian Cowan Simulation Engineer 12 March 2018 Introduction to HVDC in GB Ian Cowan Simulation Engineer 12 March 2018 Contents 1) History of Electricity Networks 2) Overview of HVDC 3) Existing Schemes 4) Future Schemes 5) Regulation and Ownership

More information

Transient system behaviour under DC fault conditions in meshed HVDC system

Transient system behaviour under DC fault conditions in meshed HVDC system Transient system behaviour under DC fault conditions in meshed HVDC system A. Yanushkevich, N.A. Belda Abstract-- Nowadays, development of multi-terminal HVDC systems is driven by aim to connect remote

More information

Open Access Simulation Toolbox for Wind Power Transmission using High Voltage Direct Current Technology

Open Access Simulation Toolbox for Wind Power Transmission using High Voltage Direct Current Technology Open Access Simulation Toolbox for Wind Power Transmission using High Voltage Direct Current Technology Daniel Adeuyi (Cardiff University, Wales) Sheng WANG, Carlos UGALDE-LOO (Cardiff University, Wales);

More information

ZERO PHASE SEQUENCE VOLTAGE INJECTION FOR THE ALTERNATE ARM CONVERTER

ZERO PHASE SEQUENCE VOLTAGE INJECTION FOR THE ALTERNATE ARM CONVERTER ZERO PHASE SEQUENCE VOLTAGE INJECTION FOR THE ALTERNATE ARM CONVERTER F J Moreno*, M M C Merlin, D R Trainer*, T C Green, K J Dyke* *Alstom Grid, St Leonards Ave, Stafford, ST17 4LX Imperial College, South

More information

Aalborg Universitet. Design and Control of A DC Grid for Offshore Wind Farms Deng, Fujin. Publication date: 2012

Aalborg Universitet. Design and Control of A DC Grid for Offshore Wind Farms Deng, Fujin. Publication date: 2012 Aalborg Universitet Design and Control of A DC Grid for Offshore Wind Farms Deng, Fujin Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link to publication from

More information

MMC Design Aspects and Applications. John Strauss Siemens AG.

MMC Design Aspects and Applications. John Strauss Siemens AG. MMC Design Aspects and Applications John Strauss Siemens AG. John.Strauss@Siemens.com 1 VSC-HVDC with MMC Basic Scheme Reference HVDC PLUS Converter Arm Converter Module Power Module Electronics (PME)

More information

Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL. Basically the HVDC transmission consists in the basic case of two

Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL. Basically the HVDC transmission consists in the basic case of two Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL Basically the HVDC transmission consists in the basic case of two convertor stations which are connected to each other by a transmission link consisting of an overhead

More information

Impacts of DC Circuit Breakers on AC/DC System Stability Subject to DC Faults

Impacts of DC Circuit Breakers on AC/DC System Stability Subject to DC Faults 216 International High Voltage Direct Current Conference (HVDC 216) Impacts of DC Circuit Breakers on AC/DC System Stability Subject to DC Faults Gen Li 1, Jun Liang 1, Carlos E Ugalde-Loo 1, Paul Coventry

More information

Importance of DC-DC Transformation in Grids of the Future

Importance of DC-DC Transformation in Grids of the Future 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2015 Grid of the Future Symposium Importance of DC-DC Transformation in Grids of the Future L. BARTHOLD 1, D. WOODFORD

More information

IMPORTANCE OF VSC IN HVDC

IMPORTANCE OF VSC IN HVDC IMPORTANCE OF VSC IN HVDC Snigdha Sharma (Electrical Department, SIT, Meerut) ABSTRACT The demand of electrical energy has been increasing day by day. To meet these high demands, reliable and stable transmission

More information

Trans Bay Cable A Breakthrough of VSC Multilevel Converters in HVDC Transmission

Trans Bay Cable A Breakthrough of VSC Multilevel Converters in HVDC Transmission Trans Bay Cable A Breakthrough of VSC Multilevel Converters in HVDC Transmission Siemens AG Power Transmission Solutions J. Dorn, joerg.dorn@siemens.com CIGRE Colloquium on HVDC and Power Electronic Systems

More information

Control and protection strategy for MMC MTDC system under converter-side AC fault during converter blocking failure

Control and protection strategy for MMC MTDC system under converter-side AC fault during converter blocking failure J. Mod. Power Syst. Clean Energy (4) (3):7 8 DOI.7/s4565-4-64- Control and protection strategy for MMC MT system under converter-side AC fault during converter blocking failure Puyu WANG, Xiao-Ping ZHANG

More information

Fault Current Control Methods for Multi-Terminal DC Systems based on Fault Blocking Converters

Fault Current Control Methods for Multi-Terminal DC Systems based on Fault Blocking Converters Fault Current Methods for Multi-Terminal DC Systems based on Fault Blocking Converters P. Ruffing, C. Brantl, C. Petino, A. Schnettler Institute for High Voltage Technology, RWTH Aachen University, Schinkelstr.

More information

Offshore AC Grid Management for an AC Integrated VSC-HVDC Scheme with Large WPPs

Offshore AC Grid Management for an AC Integrated VSC-HVDC Scheme with Large WPPs Offshore AC Grid Management for an AC Integrated VSC-HVDC Scheme with Large WPPs Rakibuzzaman Shah, Member, IEEE, Mike Barnes, Senior Member, IEEE, and Robin Preece, Member, IEEE School of Electrical and

More information

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter 1 Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter Nee, Staffan Norrga, Remus Teodorescu ISBN-10: 1118851560

More information

Copyright 2012 IEEE. Paper presented at 2012 IEEE Workshop on Complexity in Engineering 11 June, Aachen,

Copyright 2012 IEEE. Paper presented at 2012 IEEE Workshop on Complexity in Engineering 11 June, Aachen, Copyright 22 IEEE Paper presented at 22 IEEE Workshop on Complexity in Engineering June, Aachen, Germany 22 This material is posted here with the permission of the IEEE. Such permission of the IEEE does

More information

Introduction to HVDC Transmission. High Voltage Direct Current (HVDC) Transmission

Introduction to HVDC Transmission. High Voltage Direct Current (HVDC) Transmission Lecture 29 Introduction to HVDC Transmission Series Compensation 1 Fall 2003 High Voltage Direct Current (HVDC) Transmission Update to Edison s Vision AC Power Generation at Relatively Lower Voltage» Step

More information

OPERATION AND CONTROL OF AN ALTERNATE ARM MODULAR MULTILEVEL CONVERTER

OPERATION AND CONTROL OF AN ALTERNATE ARM MODULAR MULTILEVEL CONVERTER OPERATION AND CONTROL OF AN ALTERNATE ARM MODULAR MULTILEVEL CONVERTER J. M. Kharade 1 and A. R. Thorat 2 1 Department of Electrical Engineering, Rajarambapu Institute of Technology, Islampur, India 2

More information

Review of HVDC Circuit Breakers Topologies.

Review of HVDC Circuit Breakers Topologies. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 3 Ver. II (May June 2017), PP 109-117 www.iosrjournals.org Review of HVDC Circuit

More information

(2015) 8 (3) ISSN

(2015) 8 (3) ISSN afferty, John and Xu, Lie and Morrow, John (21) Analysis of voltage source converter-based high-voltage direct current under DC line-toearth fault. IET Power Electronics, 8 (3). 428 438. ISSN 17-43, http://dx.doi.org/1.149/iet-pel.214.32

More information

Digital Object Identifier: /TPWRD URL:

Digital Object Identifier: /TPWRD URL: Leterme, W., Tielens, P., De Boeck, S., Van Hertem, D. (214). Overview of rounding and Configuration Options for Meshed HVDC grids. IEEE Transactions on Power Delivery. Digital Object Identifier: 1.119/TPWRD.214.233116

More information

DC current interruption tests with HV mechanical DC circuit breaker

DC current interruption tests with HV mechanical DC circuit breaker http: //www.cigre.org CIGRÉ A3/B4-124 CIGRÉ Winnipeg 2017 Colloquium Study Committees A3, B4 & D1 Winnipeg, Canada September 30 October 6, 2017 DC current interruption tests with HV mechanical DC circuit

More information

DC side faults in high voltage direct current (HVDC)

DC side faults in high voltage direct current (HVDC) 1 Single-Ended Differential Protection in MTDC Networks using Optical Sensors D. Tzelepis, Student Member, IEEE, A. Dyśko, Member, IEEE, G. Fusiek, Member, IEEE, J. Nelson, P. Niewczas, Member, IEEE, D.

More information

New Converter Topologies for High-Voltage Dc Converters. Prof. Ani Gole University of Manitoba, Canada

New Converter Topologies for High-Voltage Dc Converters. Prof. Ani Gole University of Manitoba, Canada New Converter Topologies for High-Voltage Dc Converters Prof. Ani Gole University of Manitoba, Canada IEEE Southern Alberta Section, Sept. 12, 2011 Outline Brief History of HVDC Transmission Conventional

More information

BEST PATHS Project: Real-Time Demonstrator for the Integration of Offshore Wind Farms using Multi- Terminal HVDC Grids

BEST PATHS Project: Real-Time Demonstrator for the Integration of Offshore Wind Farms using Multi- Terminal HVDC Grids BEST PATHS Project: Real-Time Demonstrator for the Integration of Wind Farms using Multi- Terminal HVDC Grids Carlos UGALDE (Cardiff University, Wales) Salvatore D ARCO (SINTEF, Norway); Daniel ADEUYI,

More information

IJEETC. InternationalJournalof. ElectricalandElectronicEngineering& Telecommunications.

IJEETC. InternationalJournalof. ElectricalandElectronicEngineering& Telecommunications. IJEETC www.ijeetc.com InternationalJournalof ElectricalandElectronicEngineering& Telecommunications editorijeetc@gmail.com oreditor@ijeetc.com Int. J. Elec&Electr.Eng&Telecoms. 2015 Anoop Dhayani A P et

More information

Grid integration of offshore wind farms using HVDC links: HVDC-VSC technology overview

Grid integration of offshore wind farms using HVDC links: HVDC-VSC technology overview Grid integration of offshore wind farms using HVDC links: HVDC-VSC technology overview ICREPQ 2013, Basque Country, 22 nd March 2013 Salvador Ceballos Salvador.ceballos@tecnalia.com Introduction OWPP layouts

More information

DC Transmission Grid with Low Speed Protection using Mechanical DC Circuit Breakers

DC Transmission Grid with Low Speed Protection using Mechanical DC Circuit Breakers 1 DC Transmission Grid with Low Speed Protection using Mechanical DC Circuit Breakers M. Hajian, Member, IEEE, L. Zhang, Student Member, IEEE, and D. Jovcic, Senior Member, IEEE Abstract--This paper introduces

More information

Improvement of Rotor Angle Stability and Dynamic Performance of AC/DC Interconnected Transmission System

Improvement of Rotor Angle Stability and Dynamic Performance of AC/DC Interconnected Transmission System Improvement of Rotor Angle Stability and Dynamic Performance of AC/DC Interconnected Transmission System 1 Ramesh Gantha 1, Rasool Ahemmed 2 1 eee Kl University, India 2 AsstProfessor, EEE KL University,

More information

A New VSC HVDC model with IEEE 5 bus system

A New VSC HVDC model with IEEE 5 bus system A New VSC HVDC model with IEEE 5 bus system M.Sujatha 1 1 PG Student, Department of EEE, JNTUA, Ananthapuramu, Andhra Pradesh, India. ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

Digital Object Identifier: /PESMG URL:

Digital Object Identifier: /PESMG URL: De Boeck, S., Tielens, P., Leterme, W., Van Hertem, D. (23). Configurations and arthing of HVDC Grids. Proc. I PS GM 23. I Power & nergy Society General Meeting. Vancouver, Canada, 2-25 July 23 (pp. -5).

More information

Fault analysis method of integrated high voltage direct current transmission lines for onshore wind farm

Fault analysis method of integrated high voltage direct current transmission lines for onshore wind farm J. Mod. Power Syst. Clean Energy https://doi.org/10.1007/s40565-018-0483-4 Fault analysis method of integrated high voltage direct current transmission s for onshore wind farm Shobha AGARWAL 1, Aleena

More information

Distributed Current Sensing Technology for protection and Fault Location Applications in HVDC networks

Distributed Current Sensing Technology for protection and Fault Location Applications in HVDC networks Distributed Current Sensing Technology for protection and Fault Location Applications in HVDC networks Dimitrios Tzelepis, Adam Dyśko, Campbell Booth, Grzegorz Fusiek, Pawel Niewczas, Tzu Chief Peng Department

More information

Fast Fault Clearance and Automatic Recovery of Power Transmission in MMC-Based HVDC Systems

Fast Fault Clearance and Automatic Recovery of Power Transmission in MMC-Based HVDC Systems Fast Fault Clearance and Automatic Recovery of Power Transmission in MMC-Based HVDC Systems Arun Kumar E Abstract: In this thesis, i explore the idea of the fault clearance in automatic manner without

More information

HVDC Solutions for Integration of the Renewable Energy Resources

HVDC Solutions for Integration of the Renewable Energy Resources HVDC Solutions for Integration of the Renewable Energy Resources Comparison of Technical Alternatives and System Configurations Marcus Haeusler Energy Management, Large Transmission Solutions Siemens AG

More information

Circuit Breakers. Doctor of Philosophy. In the Faculty of Engineering and Physical Sciences. Oliver Nicholas Cwikowski

Circuit Breakers. Doctor of Philosophy. In the Faculty of Engineering and Physical Sciences. Oliver Nicholas Cwikowski Synthetic Testing of High Voltage Direct Current Circuit Breakers A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy In the Faculty of Engineering and Physical Sciences

More information

Feasibility of DC Transmission Networks

Feasibility of DC Transmission Networks 1 Feasibility of DC Transmission Networks Dragan Jovcic, Dirk van Hertem, Kerstin Linden, Jean-Pierre Taisne and Wolfgang Grieshaber Abstract This paper examines the current status of technology and discusses

More information

The Thyristor based Hybrid Multiterminal HVDC System

The Thyristor based Hybrid Multiterminal HVDC System The Thyristor based Hybrid Multiterminal HVDC System Chunming Yuan, Xiaobo Yang, Dawei Yao, Chao Yang, Chengyan Yue Abstract In the multiterminal high voltage dc current (MTDC) transmission system, the

More information

HVDC AND POWER ELECTRONICS INTERNATIONAL COLLOQUIUM

HVDC AND POWER ELECTRONICS INTERNATIONAL COLLOQUIUM HVDC AND POWER ELECTRONICS INTERNATIONAL COLLOQUIUM 21, rue d Artois, F-75008 PARIS Paper No. 14 AGRA, INDIA 2015 http : //www.cigre.org DC-to-DC Capacitor-Based Power Transformation PS 1: Planning Study

More information

B4 HVDC Systems and their Applications. System Impacts of an Efficient DC-DC Transformer

B4 HVDC Systems and their Applications. System Impacts of an Efficient DC-DC Transformer Winnipeg, 2015 http : //www.cigre.org B4 HVDC Systems and their Applications System Impacts of an Efficient DC-DC Transformer L. BARTHOLD 1, M. SALIMI 2, D. WOODFORD 3 imod Inc 1 - USA, University of Manitoba

More information

Improved differential relay for bus bar protection scheme with saturated current transformers based on second order harmonics

Improved differential relay for bus bar protection scheme with saturated current transformers based on second order harmonics Journal of King Saud University Engineering Sciences (2016) xxx, xxx xxx King Saud University Journal of King Saud University Engineering Sciences www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLES

More information

Annex: HVDC Code comments

Annex: HVDC Code comments EnergyVille Thor Park 8300 Poort Genk 8300 3600 Genk Annex: HVDC Code comments Dr. Geraint Chaffey, Dr. Willem Leterme, Firew Dejene, Mian Wang, Alejandro Bayo Salas, Thomas Roose, Ozgur Can Sakinci, prof.

More information

A Generic Point-to-Point MMC-VSC System for Real-Time and Off-Line Simulation Studies

A Generic Point-to-Point MMC-VSC System for Real-Time and Off-Line Simulation Studies A Generic Point-to-Point MMC-VSC System for Real-Time and Off-Line Simulation Studies S. Arunprasanth, U.D. Annakkage, C. Karawita and R. Kuffel Abstract--The numerous advantages identified on Modular

More information

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter 1 Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter Nee, Staffan Norrga, Remus Teodorescu ISBN-10: 1118851560

More information

Small-signal Stability Analysis and Control System Design of a Meshed Multi-terminal High-Voltage Direct Current Grid with a Current Flow Controller

Small-signal Stability Analysis and Control System Design of a Meshed Multi-terminal High-Voltage Direct Current Grid with a Current Flow Controller Electric Power Components and Systems ISSN: 1532-58 (Print) 1532-516 (Online) Journal homepage: https://www.tandfonline.com/loi/uemp2 Small-signal Stability Analysis and Control System Design of a Meshed

More information

HVDC CAPACITOR COMMUTATED CONVERTERS IN WEAK NETWORKS GUNNAR PERSSON, VICTOR F LESCALE, ALF PERSSON ABB AB, HVDC SWEDEN

HVDC CAPACITOR COMMUTATED CONVERTERS IN WEAK NETWORKS GUNNAR PERSSON, VICTOR F LESCALE, ALF PERSSON ABB AB, HVDC SWEDEN HVDC CAPACITOR COMMUTATED CONVERTERS IN WEAK NETWORKS GUNNAR PERSSON, VICTOR F LESCALE, ALF PERSSON ABB AB, HVDC SWEDEN Summary Capacitor Commutated Converters (CCC) were introduced to the HVDC market

More information

p. 1 p. 6 p. 22 p. 46 p. 58

p. 1 p. 6 p. 22 p. 46 p. 58 Comparing power factor and displacement power factor corrections based on IEEE Std. 18-2002 Harmonic problems produced from the use of adjustable speed drives in industrial plants : case study Theory for

More information

Minimizing DC System Loss in Multi-Terminal HVDC Systems through Adaptive Droop control

Minimizing DC System Loss in Multi-Terminal HVDC Systems through Adaptive Droop control Minimizing DC System oss in Multi-Terminal HVDC Systems through Adaptive Droop control Javad Khazaei, Zhixin Miao, akshan Piyasinghe, and ingling Fan Department of lectrical ngineering, University of South

More information

USE OF HVDC MULTI TERMINAL OPTIONS FOR FUTURE UPGRADE OF THE NATIONAL GRID

USE OF HVDC MULTI TERMINAL OPTIONS FOR FUTURE UPGRADE OF THE NATIONAL GRID USE OF HVDC MULTI TERMINAL OPTIONS FOR FUTURE UPGRADE OF THE NATIONAL GRID JOS ARRILLAGA Emeritus Professor, FIEE, FIEEE, MNZM 2/77 HINAU STREET, RICCARTON CHRISTCHURCH ARRILLJ@ELEC.CANTERBURY.AC.NZ TELEPHONE

More information

A DC Voltage Control Strategy for MMC MTDC Grids incorporating Multiple Master Stations

A DC Voltage Control Strategy for MMC MTDC Grids incorporating Multiple Master Stations A DC Voltage Control Strategy for MMC MTDC Grids incorporating Multiple Master Stations C. E. Spallarossa T. C. Green Imperial College London London, UK claudia.spallarossa10@ic.ac.uk Chang Lin Xueguang

More information

Stress Analysis of HVDC Circuit Breakers for Defining Test Requirements and its Implementation

Stress Analysis of HVDC Circuit Breakers for Defining Test Requirements and its Implementation http: //www.cigre.org CIGRÉ A3/B4-009 CIGRÉ Winnipeg 2017 Colloquium Study Committees A3, B4 & D1 Winnipeg, Canada September 30 October 6, 2017 Stress Analysis of HVDC Circuit Breakers for Defining Test

More information

High frequent modelling of a modular multilevel converter using passive components

High frequent modelling of a modular multilevel converter using passive components High frequent modelling of a modular multilevel converter using passive components W. Z. El-Khatib, J. Holboell, T. W. Rasmussen Abstract Prevalence of High Voltage direct current (HVDC) based on Voltage

More information

DC Chopper Based Test Circuit for High Voltage DC Circuit Breakers

DC Chopper Based Test Circuit for High Voltage DC Circuit Breakers DC Chopper Based Test Circuit for High Voltage DC Circuit Breakers D. Jovcic*, M.H. Hedayati *University of Aberdeen,UK, d.jovcic@abdn.ac.uk University of Aberdeen,UK, mhh@abdn.ac.uk Keywords: High Voltage

More information

Islanding and Detection of Distributed Generation Islanding using Negative Sequence Component of Current

Islanding and Detection of Distributed Generation Islanding using Negative Sequence Component of Current http:// and Detection of Distributed Generation using Negative Sequence Component of Current Doan Van Dong Danang College of Technology, Danang, Vietnam Abstract - There is a renewed interest in the distributed

More information

Compact Systems for HVDC Applications Dr. Denis Imamovic

Compact Systems for HVDC Applications Dr. Denis Imamovic 13. Symposium Energieinnovation, 12. -14. February 2014, Graz Compact Systems for HVDC Applications Dr. Denis Imamovic Answers for energy. Agenda Main Drivers 3 Fault Clearing in HVDC Multi- Terminals

More information

Power System Reliability and Transfer Capability Improvement by VSC- HVDC (HVDC Light )

Power System Reliability and Transfer Capability Improvement by VSC- HVDC (HVDC Light ) 21, rue d Artois, F-75008 PARIS SECURITY AND RELIABILITY OF ELECTRIC POWER SYSTEMS http : //www.cigre.org CIGRÉ Regional Meeting June 18-20, 2007, Tallinn, Estonia Power System Reliability and Transfer

More information

AC and DC fault ride through hybrid MMC integrating wind power

AC and DC fault ride through hybrid MMC integrating wind power The 6th International Conference on Renewable Power Generation (RPG) 19 20 October 2017 AC and DC fault ride through hybrid MMC integrating wind power Shuai Cao 1, Wang Xiang 1, Liangzhong Yao 2, Bo Yang

More information

Topology Assessment for 3+3 Terminal Offshore DC Grid considering DC fault management

Topology Assessment for 3+3 Terminal Offshore DC Grid considering DC fault management Topology Assessment for 3+3 Terminal Offshore DC Grid considering DC fault management Journal: IET Generation, Transmission & Distribution Manuscript ID: GTD-2013-0838.R1 Manuscript Type: Research Paper

More information

Grid West Project HVDC Technology Review

Grid West Project HVDC Technology Review Prepared by For Reference Les Brand / Ranil de Silva / Errol Bebbington / Kalyan Chilukuri EirGrid JA4846 Date 17 th December 2014 Revision Table Revision Issue Date Description 0 12/12/2014 Final for

More information

VSC Transmission. Presentation Overview. CIGRE B4 HVDC and Power Electronics HVDC Colloquium, Oslo, April LCC HVDC Transmission

VSC Transmission. Presentation Overview. CIGRE B4 HVDC and Power Electronics HVDC Colloquium, Oslo, April LCC HVDC Transmission CIGRE B4 HVDC and Power Electronics HVDC Colloquium, Oslo, April 2006 VSC Transmission presented by Dr Bjarne R Andersen, Andersen Power Electronic Solutions Ltd Presentation Overview - Basic Characteristics

More information

A LC PARALLEL RESONANT CONVERTER FOR GRID-CONNECTED RENEWABLE ENERGY SOURCES

A LC PARALLEL RESONANT CONVERTER FOR GRID-CONNECTED RENEWABLE ENERGY SOURCES A LC PARALLEL RESONANT CONVERTER FOR GRID-CONNECTED RENEWABLE ENERGY SOURCES #1PATAN RIYASATH KHAN, PG STUDENT #2Mr. E.RAMAKRISHNA, Associate Professor & HOD #3Mr.S.SHAMSHUL HAQ,Associate professor & coordinator

More information

Power Upgrading of Transmission Line by Injecting DC Power in to AC Line with the help of ZIG-ZAG Transformer

Power Upgrading of Transmission Line by Injecting DC Power in to AC Line with the help of ZIG-ZAG Transformer Power Upgrading of Transmission Line by Injecting DC Power in to AC Line with the help of ZIG-ZAG Transformer C.GOPI*, M.KISHOR** *(Department. of Electrical and Electronics Engineering, SVPCET, Puttur)

More information

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Integrated HVDC Circuit Breakers with Current Flow Control Capability Oliver Cwikowski, Joan Sau-Bassols, Student

More information

A Review on HVDC Circuit Breakers

A Review on HVDC Circuit Breakers A Review on HVDC Circuit Breakers Ataollah Mokhberdoran*, Adriano Carvalho, Helder Leite, Nuno Silva *, Efacec Engenharia e Sistemas S.A.,Portugal, mokhber@fe.up.pt, nuno.silva@efacec.com, Department of

More information

The rapid evolution of voltage Source Converters as applied to High Voltage DC power transmission Carl Barker

The rapid evolution of voltage Source Converters as applied to High Voltage DC power transmission Carl Barker The rapid evolution of voltage Source Converters as applied to High Voltage DC power transmission Carl Barker Chief Engineer HVDC Applications Tuesday 30 June 2015 HVDC Today Finding an increasing market

More information

WITH THE increasing size of offshore power parks and

WITH THE increasing size of offshore power parks and IEEE TRANSACTIONS ON POWER DELIVERY 1 Multiport High-Power LCL DC Hub for Use in DC Transmission Grids Dragan Jovcic, Senior Member, IEEE, and Weixing Lin, Member, IEEE Abstract This paper proposes an

More information

UProtection Requirements. Ufor a Large scale Wind Park. Shyam Musunuri Siemens Energy

UProtection Requirements. Ufor a Large scale Wind Park. Shyam Musunuri Siemens Energy UProtection Requirements Ufor a Large scale Wind Park Shyam Musunuri Siemens Energy Abstract: In the past wind power plants typically had a small power rating when compared to the strength of the connected

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 377 Self-Healing Framework for Distribution Systems Fazil Haneef, S.Angalaeswari Abstract - The self healing framework

More information

M.Tech in Industrial Electronics, SJCE, Mysore, 2 Associate Professor, Dept. of ECE, SJCE, Mysore

M.Tech in Industrial Electronics, SJCE, Mysore, 2 Associate Professor, Dept. of ECE, SJCE, Mysore Implementation of Five Level Buck Converter for High Voltage Application Manu.N.R 1, V.Nattarasu 2 1 M.Tech in Industrial Electronics, SJCE, Mysore, 2 Associate Professor, Dept. of ECE, SJCE, Mysore Abstract-

More information

Single Line Diagram of Substations

Single Line Diagram of Substations Single Line Diagram of Substations Substations Electric power is produced at the power generating stations, which are generally located far away from the load centers. High voltage transmission lines are

More information

HVDC Transmission and AC hubs for Offshore Wind Generation

HVDC Transmission and AC hubs for Offshore Wind Generation HVDC Transmission and AC hubs for Offshore Wind Generation Jonathan Mark Stevens School of Engineering Cardiff University A thesis submitted for the degree of Doctor of Philosophy September, 2015 To my

More information

THE modular multilevel converter (MMC), first presented

THE modular multilevel converter (MMC), first presented IECON215-Yokohama November 9-12, 215 Performance of the Modular Multilevel Converter With Redundant Submodules Noman Ahmed, Lennart Ängquist, Antonios Antonopoulos, Lennart Harnefors, Staffan Norrga, Hans-Peter

More information

Planning the Next Nelson River HVDC Development Phase Considering LCC vs. VSC Technology

Planning the Next Nelson River HVDC Development Phase Considering LCC vs. VSC Technology 21, rue d Artois, F-75008 PARIS B4-103 CIGRE 2012 http : //www.cigre.org Planning the Next Nelson River HVDC Development Phase Considering LCC vs. VSC Technology D.A.N. JACOBSON 1, P. WANG 1, C. KARAWITA

More information

Overview of Actuation Thrust

Overview of Actuation Thrust Overview of Actuation Thrust Fred Wang Thrust Leader, UTK Professor ECE 620 CURENT Course September 13, 2017 Actuation in CURENT Wide Area Control of Power Power Grid Grid Measurement &Monitoring HVDC

More information

(2017) 2017). IET, ISBN

(2017) 2017). IET, ISBN Ugalde-Loo, C E and Adeuyi, O D and Wang, S and Liang, J and Jenkins, N and Ceballos, S and Santos, M and Vidaurrazaga, I and D'Arco, S and Bergna, G and Barenys, M and Parker, M and Finney, S and Gatti,

More information

Harmonic Reduction in Five Level Inverter Based Dynamic Voltage Restorer

Harmonic Reduction in Five Level Inverter Based Dynamic Voltage Restorer Research Journal of Applied Sciences, Engineering and Technology 2(8): 789-797, 2010 ISSN: 2040-7467 Maxwell Scientific Organization, 2010 Submitted date: September 27, 2010 Accepted date: November 18,

More information

Zambezi (previously Caprivi) Link HVDC Interconnector: Review of Operational Performance in the First Five Years

Zambezi (previously Caprivi) Link HVDC Interconnector: Review of Operational Performance in the First Five Years 21, rue d Artois, F-758 PARIS B4-18 CIGRE 216 http : //www.cigre.org Zambezi (previously Caprivi) Link HVDC Interconnector: Review of Operational Performance in the First Five Years T G MAGG, Power System

More information

Steady State Fault Analysis of VSC- HVDC Transmission System

Steady State Fault Analysis of VSC- HVDC Transmission System International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 4 Issue: 9 Sep -27 www.irjet.net p-issn: 2395-72 Steady State Fault Analysis of VSC- HVDC Transmission System

More information