Application of H-infinity Robust Controller on PAC

Size: px
Start display at page:

Download "Application of H-infinity Robust Controller on PAC"

Transcription

1 Application of H-infinity Robust Controller on PAC S.Ozana*, M.Pies* *VSB-Technical University of Ostrava, FEI Czech Republic (Tel: ; Abstract: The paper deals with the design and implementation of chosen algorithm based on modern control theory into programmable automation controllers (PAC) used for tutorial purposes. Physical model of Ball&Beam was chosen as an example of a real system to be controlled by H-inf robust controller, using a mixed sensitivity configuration scheme. It covers all the phases of design and implementation of robust controller in Matlab&Simulink, while the implementation was carried out in REX Control system with WinPAC controllers as special embedded systems, mainly WinPAC WP-884. Keywords: Matlab, Simulink, REX Control System, PAC, embedded system, robust control. INTRODUCTION. Programmable Automation Controller A programmable automation controller (PAC) is a compact controller that combines the features and capabilities of a PCbased control system with that of a typical programmable logic controller (PLC). A PAC thus provides not only the reliability of a PLC, but also the task flexibility and computing power of a PC. PACs are most often used in industrial settings for process control, data acquisition, remote equipment monitoring, machine vision, and motion control. Additionally, because they function and communicate over popular network interface protocols like TCP/IP, OLE for process control (OPC) and SMTP, PACs are able to transfer data from the machines they control to other machines and components in a networked control system or to application software and databases. A PAC at the core of an automation system can integrate more multiple fieldbus networks like RS-485, RS-232, RS-422, CAN, Ethernet, EtherNet/IP, and others..2 WinPAC-8000 with REX Control System This series, particularly WP-884, runs on Windows CE operating system, as described at It provides OPC communication to visualize trends and store the data. It can be programmed in.net platform or in Simulink environment, but the way of the design is rather different. There's a very elegant way how to program these controllers, using REX Control system as described below. REX is the multiplatform real-time control system compatible with the globally spread MATLAB/Simulink. At present, REX is implemented for MS Windows (2000 or XP recommended), Windows CE.NET and for real-time operating system Phar Lap ETS. The compatibility between REX and Matlab-Simulink is ensured by the large function block library RexLib, which exists for Matlab-Simulink and all target platforms. The control algorithm can be designed directly in Matlab-Simulink (or even simulated) or in a special RexDraw SW (part of REX). Full version of the REX control system for WinPAC-8000 (WinPAC successor) by ICPDAS comes with Windows CE 5.NET operating system. The system is purchased with a software license bound to the particular WinPAC station. The version is suitable for: Control application of medium-rate machines and processes Good price/performance ratio applications where the HMI (human machine interface) software runs on the same station as the control algorithm. REX OPC server (included in the product) is used for the communication between REX and HMI software Both centralized and distributed applications with a wide range of input/output modules Hard real-time" applications with strict requirements on the sampling period stability. Minimum achievable sampling period is 2 msec, typical minimum sampling period is 5-0 msec The main advantages of REX are the following: Matlab/Simulink compatibility. The complete control algorithm can be simulated and tuned before final implementation, further info at OPC support - visualization screens can be done in all common SCADA/HMI systems (Genesis, Labview, Indusoft, Reliance,... ) Java support. The visualization screens or applets embedded into web pages can be written in Java. The client side can be run at all common operating systems and all common web browsers. This is the main advantage compared to Microsoft ActiveX components. The visualization screens can be done also in C#.

2 The complete diagnostic and any changes in control strategy can be done remotely via Internet. More info can be found in sections Technologies/REX Control System and Technologies/Micro RexLib at Fig.. shows physical plant that served for implementation of robust algorithm on programmable automation controller. Fig. 2. Physical model of Ball&Beam 2.2 System Equations Fig.. Physical model of Ball&Beam.3 Algorithms Based on Modern Control Theory The modern control theory is a discipline dealing with formal foundations of the analysis and design of computer control and management systems. Some of the algorithms date back to the 60 s but other arose in the late 80 s and they re still having been developed recently. To demonstrate the capabilities of WinPAC controller, this paper covers the problematic of design and implementation of H-infinity robust control (mixed sensitivity problem) 2. MATHEMATICAL MODEL 2. Problem setup A ball is placed on a beam, where it is allowed to roll with degree of freedom along the length of the beam, see Fig. 2. A lever arm is attached to the beam at one end and a servo gear at the other. As the servo gear turns by an angle theta, the lever changes the angle of the beam by alpha. When the angle is changed from the vertical position, gravity causes the ball to roll along the beam. A controller will be designed for this system so that the ball's position can be manipulated. 2. Parameters, constants and variables m mass of the ball R radius of the ball g gravitational acceleration J ball's moment of inertia L length of the beam r ball position α beam angle coordinate d lever arm offset θ servo gear angle [kg] [m.s-2] [kg.m2] [rad] [rad] The Lagrangian equation of motion for the ball is given by the following: 0 Linearization of this equation about the beam angle, alpha = 0, supposing sin(α) α for small angles, gives us the following linear approximation of the system: 2.2 Transfer Function Rearranging we find the transfer function from the beam angle to the ball position: -mg m+ J R State-space Description The linearized system equations can also be represented in state-space form. This can be done by selecting the ball's position r and velocity as the state variables and the beam angle α as the input. Introducing the following terms leads to state-space representation. ; x 2t= -m g α m+ J R ; 0 Fig. 3. shows a general feedback control scheme for Ball&Beam plant. It has to be modified for application of H- infinity robust control as described in next chapter. Fig. 3. General Feedback Control Scheme

3 3. H-INFINITY ROBUST CONTROL 2.2 H-infinity Robust Control Design Basic scheme with the plant P(s) and a robust controller K(s) is shown on Fig. 4. and on Fig. 5 in detail. The main function of this circuit is to handle with low-frequency disturbance d and high-frequency noise n. The resulting controller doesn t automatically meet some common conditions required on a regulation process, such as overshoot. To follow further requirements, the scheme must be extended that leads to defining so called mixed sensitivity problem describe in next chapter, or at [Dorf,Bishop] and [Zhou,Doyle]. Fig.4. Basic H-infinity scheme Fig.5. H-infinity scheme in detail Typical inputs covered by vector w are external disturbance, sensor noise and tracking signal. The outputs are divided into two groups: a) vector y measured output for a feedback, also input to the controller b) vector z regulated output that doesn t go to the controller. Mathematical description with so called packed matrix is given as follows: 2.2 Mixed Sensitivity Problem with Weighting Functions Weights (weighting functions) make it possible to define requirements on a robust controller. Before defining it is necessary to determine their initial values. Weights are defined by through transfer functions that arise from physical conditions or guesses. Robust controller is then being found for such designed weights. If the regulation process doesn t meet the requirements, it is necessary to keep modifying the weights until the result is satisfactory. W u ~ u r e K u _ W i ~ d i ~ d Fig. 6. Mixed Sensitivity Scheme for Robust Control Design Fig. 6 shows a typical scheme with a robust controller for mixed sensitivity problem. The noise d i is brought to the input of the plant G and noise d to its output. Requirements on a regulation process and its quality are evaluated according quantity of actuating value u and control error e. These requirements can be described by weights W i, W d, W e, W u. Input weights are designed according given amplitudes of disturbances and noises, for example: W i = 0,00 W d = 0,0 This means that a disturbance input d i accepts a white noise with amplitude of 0,00 and noise input d receives a white noise with amplitude of 0,0. If the noise is different from white noise, it could be described by a first order system and thus its color would be determined then. The sense of weights become clear from the scheme above, if we assume dimensionless variable (ω) on the inputs d i and d which are transformed by the weights to the physical units of the plant (for example voltage or angle). For output weights the situation is similar. Control error e and actuating value u have generally different units and it is necessary to define priorities of their minimization. On the outputs e ~, u ~ we also assume dimensionless variable (ω). Then weight /W e represents required behavior (limitation) of control error and weight /W u required behavior (limitation) of actuating value. Fig. 7 and Fig. 8 show typical courses of /W e and /W u. Parameters M s and M u determine maximal values that are expected on control error e and actuating value u. The first one affects limitation of overshoot of a regulation process, the latter expresses limitation of actuating value (for example torque moment of a servomotor). Parameter ω b makes it possible to define frequency on which the steady state of regulation process is expected, its reciprocal value means the time constant. Parameter ω bc makes it possible to define frequency limitation of actuating value (for example limitation of a servomotor on higher frequencies due to inertia). For determination of its value it is necessary to consider the fact that it depends on M u. It leads to a conclusion that time constant of limitation of actuating value is approximately M u /ω bc. Parameters ε and ε are realization constants and they should be chosen several times smaller than M s resp. M u. d i G W d d W e ~ e

4 For chosen parameters it is possible to evaluate transfer functions of the weights W e a W u : W W e u /W e s = M s + ω s + ω ε b b s + ωbc M = ε s + ω bc u M s ε Fig. 7. Weighting function /W e /W u M u ε Fig. 8. Weighting function /W u For designed weights it is possible to calculate acceptable controller that minimizes criteria given by the weights. Resulting frequency characteristics are shown on Fig. 9. Transfer function S(ω) represents transfer function of control error in closed loop. Transfer T(ω) represents transfer function of desired value r in closed loop. Functions S(ω) and T(ω) are complementary, thus S(ω)+T(ω)=. Their transfer functions affect the speed of regulation process. Characteristics K(ω),S(ω) determine frequency behavior of a controller and actuating value. An appropriate design should meet the condition S(ω) <=/ W e (ω) and K(ω),S(ω) <=/ W u (ω). A found robust controller might not satisfy this condition at all frequencies which is also obvious from Fig. 9. This is so because the design is a trade-off solution. If the control process has to be accelerated or an overshoot has to be reduced, the bigger actuating value should be allowed. Step-by-step experiments with the parameters of weighting functions should lead to optimal and satisfactory result. In Matlab&Simulink environment, the mixed sensitivity problem can be easily programmed, using sysic command: ω b ω bc ω ω Fig. 9. Frequency characteristics of control circuit and design of weigts W e and W u clear;close all s = tf('s'); G = ss(7.4/(s^2+e-3*s+e-6)); Ms =.5; wb = 2.5e-; eps = e-3; We = (s/ms+wb)/(s+wb*eps); Mu = 0.0; wbc = 0.; eps = Mu/00; Wu = (s+wbc/mu)/(eps*s+wbc); Wd = ss(0.0); Wi = ss(0.00); systemnames = 'G We Wu Wi Wd'; inputvar = '[di; d; u]'; outputvar = '[We; Wu; -G-Wd]'; input_to_we = '[G+Wd]'; input_to_wu = '[u]'; input_to_wi = '[di]'; input_to_wd = '[d]'; input_to_g = '[u+wi]'; cleanupsysic = 'yes'; P = sysic; nmeas=; nctrl=; gmin=0.0; gmax=000; tol=0.0; [K,g,gfin] = hinfsyn(ltisys(p.a,p.b,p.c,p.d),nmeas,nct rl,gmin,gmax,tol); [KA, KB, KC, KD] = ltiss(k); G = ss(7.4/(s^2)); K = tf(ss(ka,kb,kc,kd)); The crucial part of mixed sensitivity problem design is to create a structure according Fig. 6. The design documented in the lines of code above leads to controller K described by its transfer function as follows: >> K Transfer function: s^ s^2+0.43s s^4+42.3s^ s^ s+0.243

5 Before implementation into the controller, function of robust controller can be easily simulated in Simulink, using standard blocks with respect to nonlinearities of the model physical limits for beam angle and for ball position, see Fig.0. Fig. 0. Simulation of designed robust controller in Simulink Fig.. then shows simulation of step change of desired ball position from initial value 0,5 to 0,. The transfer function of the controller is then implemented in the REX Control System environment, see Fig. 2. Details of the content of block representing the controller can be seen on Fig.3. The representation of real plant in REX is shown on Fig. 4., it covers two I/O blocks that express connection analogue signals from the position sensor and for controlling the servo. Before uploading the scheme into the real WinPAC controller, it can be simulated in REX, to be sure of appropriate functionality, see Fig.5., compare to Fig.. Fig. 3. Screenshot of REXView simulation of robust controller in REX Fig. 4. Screenshot of REXView control of real plant Fig.. Simulated result Fig. 2. Screenshot of REXView simulation of robust controller in REX Finally, the scheme is uploaded into WinPAC controller, its fiction is documented on Fig.6. in REXView utility. Fig. 5. Screenshot of REXView result of simulation of robust controller in REX Among other capabilities, WinPAC controller provides OPC communication, thus it is possible to visualize the task in HMI/SCADA system, in this case PROMOTIC system was chosen for demonstration, see Fig. 7. and as it is described at the producer webpage

6 models that can be handled and visualized in many ways. As a typical model to be described in detail, a model of Ball&Beam has been chosen. Fig. 6. Screenshot of REXView result of controlling a real plant Programmable automation controllers make up particular group of embedded systems that provide a huge computational performance and reliability with possibility of use modern communication standards, see Fig. 8. Equation of forces equlibrium in mathematical model doesn t contain static and rolling friction. It leads to the simple design of robust controller, but it also causes different behavior of real plant compared to simulation, as it can be seen from comparison between Fig. 5. And Fig. 6. Simulation shows an overshoot unlike controlling real plant, moreover the ball might not reach the desired position due to static friction up to expectation: control error is non-zero, actuating value rises and then the ball breaks-off, causing other unwanted overshoot. Other future plan is to include uncertainty to the model. ACKNOWLEDGMENT The work and the contribution were supported by the project Grant Agency of Czech Republic GAČR 02/08/429 Safety and security of networked embedded system applications. Also supported by the Ministry of Education of the Czech Republic under Project M0567. Fig. 7. Visualization of the control process in PROMOTIC system REFERENCES Richard C. Dorf,Robert H. Bishop.(2007). Modern Control Systems. Kemin Zhou, John C. Doyle.(997). Essentials of Robust Control. Fig. 8. Programmable automation controller WP CONCLUSIONS This paper introduces new approaches and methods for implementation of real-time embedded systems at the Department of Measurement and Control at VSB-TU Ostrava with use of Matlab&Simulink and REX environment. They are applied for a number of mechatronical educational

SRV02-Series Rotary Experiment # 3. Ball & Beam. Student Handout

SRV02-Series Rotary Experiment # 3. Ball & Beam. Student Handout SRV02-Series Rotary Experiment # 3 Ball & Beam Student Handout SRV02-Series Rotary Experiment # 3 Ball & Beam Student Handout 1. Objectives The objective in this experiment is to design a controller for

More information

Penn State Erie, The Behrend College School of Engineering

Penn State Erie, The Behrend College School of Engineering Penn State Erie, The Behrend College School of Engineering EE BD 327 Signals and Control Lab Spring 2008 Lab 9 Ball and Beam Balancing Problem April 10, 17, 24, 2008 Due: May 1, 2008 Number of Lab Periods:

More information

9 Things to Consider When Specifying Servo Motors

9 Things to Consider When Specifying Servo Motors 9 Things to Consider When Specifying Servo Motors Ensuring Optimal Servo System Performance for your Application Michael Miller and Jerry Tyson, Regional Motion Engineering Yaskawa America, Inc. There

More information

FUZZY LOGIC CONTROL FOR NON-LINEAR MODEL OF THE BALL AND BEAM SYSTEM

FUZZY LOGIC CONTROL FOR NON-LINEAR MODEL OF THE BALL AND BEAM SYSTEM 11th International DAAAM Baltic Conference INDUSTRIAL ENGINEERING 20-22 nd April 2016, Tallinn, Estonia FUZZY LOGIC CONTROL FOR NON-LINEAR MODEL OF THE BALL AND BEAM SYSTEM Moezzi Reza & Vu Trieu Minh

More information

PID, I-PD and PD-PI Controller Design for the Ball and Beam System: A Comparative Study

PID, I-PD and PD-PI Controller Design for the Ball and Beam System: A Comparative Study IJCTA, 9(39), 016, pp. 9-14 International Science Press Closed Loop Control of Soft Switched Forward Converter Using Intelligent Controller 9 PID, I-PD and PD-PI Controller Design for the Ball and Beam

More information

Ball Balancing on a Beam

Ball Balancing on a Beam 1 Ball Balancing on a Beam Muhammad Hasan Jafry, Haseeb Tariq, Abubakr Muhammad Department of Electrical Engineering, LUMS School of Science and Engineering, Pakistan Email: {14100105,14100040}@lums.edu.pk,

More information

SELF TUNING TECHNIQUES ON PLC BACKGROUND AND CONTROL SYSTEMS WITH SELF TUNING METHODS DESIGN

SELF TUNING TECHNIQUES ON PLC BACKGROUND AND CONTROL SYSTEMS WITH SELF TUNING METHODS DESIGN 40 CONTROL ENGINEERING, VOL. 8, NO. 2, JUNE 2010 SELF TUNING TECHNIQUES ON PLC BACKGROUND AND CONTROL SYSTEMS WITH SELF TUNING METHODS DESIGN Jiri KOCIAN 1, Jiri KOZIOREK 1 1 Department of Measurement

More information

Digital Control of MS-150 Modular Position Servo System

Digital Control of MS-150 Modular Position Servo System IEEE NECEC Nov. 8, 2007 St. John's NL 1 Digital Control of MS-150 Modular Position Servo System Farid Arvani, Syeda N. Ferdaus, M. Tariq Iqbal Faculty of Engineering, Memorial University of Newfoundland

More information

Instructor: Prof. Masayuki Fujita (S5-303B)

Instructor: Prof. Masayuki Fujita (S5-303B) Robust Control Instructor: Prof. Masayuki Fujita (S5-303B) 1/4/2016 T: Magnetic Bearing: Robust Performance Reference: M. Fujita, K. Hatake, F. Matsumura and K. Uchida An Experimental Evaluation and Comparison

More information

Implementation of Proportional and Derivative Controller in a Ball and Beam System

Implementation of Proportional and Derivative Controller in a Ball and Beam System Implementation of Proportional and Derivative Controller in a Ball and Beam System Alexander F. Paggi and Tooran Emami United States Coast Guard Academy Abstract This paper presents a design of two cascade

More information

CHASSIS DYNAMOMETER TORQUE CONTROL SYSTEM DESIGN BY DIRECT INVERSE COMPENSATION. C.Matthews, P.Dickinson, A.T.Shenton

CHASSIS DYNAMOMETER TORQUE CONTROL SYSTEM DESIGN BY DIRECT INVERSE COMPENSATION. C.Matthews, P.Dickinson, A.T.Shenton CHASSIS DYNAMOMETER TORQUE CONTROL SYSTEM DESIGN BY DIRECT INVERSE COMPENSATION C.Matthews, P.Dickinson, A.T.Shenton Department of Engineering, The University of Liverpool, Liverpool L69 3GH, UK Abstract:

More information

Position Control of AC Servomotor Using Internal Model Control Strategy

Position Control of AC Servomotor Using Internal Model Control Strategy Position Control of AC Servomotor Using Internal Model Control Strategy Ahmed S. Abd El-hamid and Ahmed H. Eissa Corresponding Author email: Ahmednrc64@gmail.com Abstract: This paper focuses on the design

More information

Lab 2: Quanser Hardware and Proportional Control

Lab 2: Quanser Hardware and Proportional Control I. Objective The goal of this lab is: Lab 2: Quanser Hardware and Proportional Control a. Familiarize students with Quanser's QuaRC tools and the Q4 data acquisition board. b. Derive and understand a model

More information

Position Control of a Hydraulic Servo System using PID Control

Position Control of a Hydraulic Servo System using PID Control Position Control of a Hydraulic Servo System using PID Control ABSTRACT Dechrit Maneetham Mechatronics Engineering Program Rajamangala University of Technology Thanyaburi Pathumthani, THAIAND. (E-mail:Dechrit_m@hotmail.com)

More information

Laboratory of Advanced Simulations

Laboratory of Advanced Simulations XXIX. ASR '2004 Seminar, Instruments and Control, Ostrava, April 30, 2004 333 Laboratory of Advanced Simulations WAGNEROVÁ, Renata Ing., Ph.D., Katedra ATŘ-352, VŠB-TU Ostrava, 17. listopadu, Ostrava -

More information

Tracking Position Control of AC Servo Motor Using Enhanced Iterative Learning Control Strategy

Tracking Position Control of AC Servo Motor Using Enhanced Iterative Learning Control Strategy International Journal of Engineering Research and Development e-issn: 2278-67X, p-issn: 2278-8X, www.ijerd.com Volume 3, Issue 6 (September 212), PP. 26-33 Tracking Position Control of AC Servo Motor Using

More information

The Open Automation and Control Systems Journal, 2015, 7, Application of Fuzzy PID Control in the Level Process Control

The Open Automation and Control Systems Journal, 2015, 7, Application of Fuzzy PID Control in the Level Process Control Send Orders for Reprints to reprints@benthamscience.ae The Open Automation and Control Systems Journal, 205, 7, 38-386 38 Application of Fuzzy PID Control in the Level Process Control Open Access Wang

More information

Robust Control Design for Rotary Inverted Pendulum Balance

Robust Control Design for Rotary Inverted Pendulum Balance Indian Journal of Science and Technology, Vol 9(28), DOI: 1.17485/ijst/216/v9i28/9387, July 216 ISSN (Print) : 974-6846 ISSN (Online) : 974-5645 Robust Control Design for Rotary Inverted Pendulum Balance

More information

MEM01: DC-Motor Servomechanism

MEM01: DC-Motor Servomechanism MEM01: DC-Motor Servomechanism Interdisciplinary Automatic Controls Laboratory - ME/ECE/CHE 389 February 5, 2016 Contents 1 Introduction and Goals 1 2 Description 2 3 Modeling 2 4 Lab Objective 5 5 Model

More information

Structure Specified Robust H Loop Shaping Control of a MIMO Electro-hydraulic Servo System using Particle Swarm Optimization

Structure Specified Robust H Loop Shaping Control of a MIMO Electro-hydraulic Servo System using Particle Swarm Optimization Structure Specified Robust H Loop Shaping Control of a MIMO Electrohydraulic Servo System using Particle Swarm Optimization Piyapong Olranthichachat and Somyot aitwanidvilai Abstract A fixedstructure controller

More information

Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor

Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor Osama Omer Adam Mohammed 1, Dr. Awadalla Taifor Ali 2 P.G. Student, Department of Control Engineering, Faculty of Engineering,

More information

ROBUST SERVO CONTROL DESIGN USING THE H /µ METHOD 1

ROBUST SERVO CONTROL DESIGN USING THE H /µ METHOD 1 PERIODICA POLYTECHNICA SER. TRANSP. ENG. VOL. 27, NO. 1 2, PP. 3 16 (1999) ROBUST SERVO CONTROL DESIGN USING THE H /µ METHOD 1 István SZÁSZI and Péter GÁSPÁR Technical University of Budapest Műegyetem

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 05.11.2015

More information

Experiment Of Speed Control for an Electric Trishaw Based on PID Control Algorithm

Experiment Of Speed Control for an Electric Trishaw Based on PID Control Algorithm International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:17 No:02 38 Experiment Of Speed Control for an Electric Trishaw Based on PID Control Algorithm Shahrizal Saat 1 *, Mohd Nabil

More information

Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller

Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2492-2497 ISSN: 2249-6645 Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller Praveen Kumar 1, Anurag Singh Tomer 2 1 (ME Scholar, Department of Electrical

More information

Motor Modeling and Position Control Lab 3 MAE 334

Motor Modeling and Position Control Lab 3 MAE 334 Motor ing and Position Control Lab 3 MAE 334 Evan Coleman April, 23 Spring 23 Section L9 Executive Summary The purpose of this experiment was to observe and analyze the open loop response of a DC servo

More information

CDS 101/110a: Lecture 8-1 Frequency Domain Design

CDS 101/110a: Lecture 8-1 Frequency Domain Design CDS 11/11a: Lecture 8-1 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve

More information

Vibration Control of Mechanical Suspension System Using Active Force Control

Vibration Control of Mechanical Suspension System Using Active Force Control Vibration Control of Mechanical Suspension System Using Active Force Control Maziah Mohamad, Musa Mailah, Abdul Halim Muhaimin Department of Applied Mechanics Faculty of Mechanical Engineering Universiti

More information

Design of Compensator for Dynamical System

Design of Compensator for Dynamical System Design of Compensator for Dynamical System Ms.Saroja S. Chavan PimpriChinchwad College of Engineering, Pune Prof. A. B. Patil PimpriChinchwad College of Engineering, Pune ABSTRACT New applications of dynamical

More information

EE 482 : CONTROL SYSTEMS Lab Manual

EE 482 : CONTROL SYSTEMS Lab Manual University of Bahrain College of Engineering Dept. of Electrical and Electronics Engineering EE 482 : CONTROL SYSTEMS Lab Manual Dr. Ebrahim Al-Gallaf Assistance Professor of Intelligent Control and Robotics

More information

Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller

Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller 1 Deepa S. Bhandare, 2 N. R.Kulkarni 1,2 Department of Electrical Engineering, Modern College of Engineering,

More information

Modulating control valve

Modulating control valve Modulating control valve Automatic modulating valve Automatic modulating valve Diaphragm Pneumatic Actuator Positioner Pneumatic Actuator Positioner Air filter regulator gauge = AIRSET BALL VALVE GLOBE

More information

Proposal for a Rapid Prototyping Environment for Algorithms Intended for Autonoumus Mobile Robot Control

Proposal for a Rapid Prototyping Environment for Algorithms Intended for Autonoumus Mobile Robot Control Mechanics and Mechanical Engineering Vol. 12, No. 1 (2008) 5 16 c Technical University of Lodz Proposal for a Rapid Prototyping Environment for Algorithms Intended for Autonoumus Mobile Robot Control Andrzej

More information

Design Applications of Synchronized Controller for Micro Precision Servo Press Machine

Design Applications of Synchronized Controller for Micro Precision Servo Press Machine International Journal of Electrical Energy, Vol, No, March Design Applications of Synchronized Controller for Micro Precision Servo Press Machine ShangLiang Chen and HoaiNam Dinh Institute of Manufacturing

More information

Rotary Motion Servo Plant: SRV02. Rotary Experiment #02: Position Control. SRV02 Position Control using QuaRC. Student Manual

Rotary Motion Servo Plant: SRV02. Rotary Experiment #02: Position Control. SRV02 Position Control using QuaRC. Student Manual Rotary Motion Servo Plant: SRV02 Rotary Experiment #02: Position Control SRV02 Position Control using QuaRC Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1 3. OVERVIEW OF FILES...2

More information

Figure 1: Unity Feedback System. The transfer function of the PID controller looks like the following:

Figure 1: Unity Feedback System. The transfer function of the PID controller looks like the following: Islamic University of Gaza Faculty of Engineering Electrical Engineering department Control Systems Design Lab Eng. Mohammed S. Jouda Eng. Ola M. Skeik Experiment 3 PID Controller Overview This experiment

More information

Development of a Ball and Plate System

Development of a Ball and Plate System Paper ID #12313 Development of a Ball and Plate System Dr. Chan Ham, Kennesaw State University He is an Associate Professor in Mechatronics Engineering at the Kennesaw State University. He has over fifteen

More information

A Searching Analyses for Best PID Tuning Method for CNC Servo Drive

A Searching Analyses for Best PID Tuning Method for CNC Servo Drive International Journal of Science and Engineering Investigations vol. 7, issue 76, May 2018 ISSN: 2251-8843 A Searching Analyses for Best PID Tuning Method for CNC Servo Drive Ferit Idrizi FMI-UP Prishtine,

More information

Synchronized Injection Molding Machine with Servomotors

Synchronized Injection Molding Machine with Servomotors Synchronized Injection Molding Machine with Servomotors Sheng-Liang Chen, Hoai-Nam Dinh *, Van-Thanh Nguyen Institute of Manufacturing Information and Systems, National Cheng Kung University, Tainan, Taiwan

More information

Quanser Products and solutions

Quanser Products and solutions Quanser Products and solutions with NI LabVIEW From Classic Control to Complex Mechatronic Systems Design www.quanser.com Your first choice for control systems experiments For twenty five years, institutions

More information

REDUCING THE VIBRATIONS OF AN UNBALANCED ROTARY ENGINE BY ACTIVE FORCE CONTROL. M. Mohebbi 1*, M. Hashemi 1

REDUCING THE VIBRATIONS OF AN UNBALANCED ROTARY ENGINE BY ACTIVE FORCE CONTROL. M. Mohebbi 1*, M. Hashemi 1 International Journal of Technology (2016) 1: 141-148 ISSN 2086-9614 IJTech 2016 REDUCING THE VIBRATIONS OF AN UNBALANCED ROTARY ENGINE BY ACTIVE FORCE CONTROL M. Mohebbi 1*, M. Hashemi 1 1 Faculty of

More information

Modeling and Control of Mold Oscillation

Modeling and Control of Mold Oscillation ANNUAL REPORT UIUC, August 8, Modeling and Control of Mold Oscillation Vivek Natarajan (Ph.D. Student), Joseph Bentsman Department of Mechanical Science and Engineering University of Illinois at UrbanaChampaign

More information

Open Loop Frequency Response

Open Loop Frequency Response TAKE HOME LABS OKLAHOMA STATE UNIVERSITY Open Loop Frequency Response by Carion Pelton 1 OBJECTIVE This experiment will reinforce your understanding of the concept of frequency response. As part of the

More information

Robust Haptic Teleoperation of a Mobile Manipulation Platform

Robust Haptic Teleoperation of a Mobile Manipulation Platform Robust Haptic Teleoperation of a Mobile Manipulation Platform Jaeheung Park and Oussama Khatib Stanford AI Laboratory Stanford University http://robotics.stanford.edu Abstract. This paper presents a new

More information

Resistance Furnace Temperature Control System Based on OPC and MATLAB

Resistance Furnace Temperature Control System Based on OPC and MATLAB 569257MAC0010.1177/0020294015569257Resistance Furnace Temperature Control System Based on and MATLABResistance Furnace Temperature Control System Based on and MATLAB research-article2015 Themed Paper Resistance

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY EEE 402 : CONTROL SYSTEMS SESSIONAL

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY EEE 402 : CONTROL SYSTEMS SESSIONAL DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY EEE 402 : CONTROL SYSTEMS SESSIONAL Experiment No. 1(a) : Modeling of physical systems and study of

More information

Control Design for Servomechanisms July 2005, Glasgow Detailed Training Course Agenda

Control Design for Servomechanisms July 2005, Glasgow Detailed Training Course Agenda Control Design for Servomechanisms 12 14 July 2005, Glasgow Detailed Training Course Agenda DAY 1 INTRODUCTION TO SYSTEMS AND MODELLING 9.00 Introduction The Need For Control - What Is Control? - Feedback

More information

Embedded Control Project -Iterative learning control for

Embedded Control Project -Iterative learning control for Embedded Control Project -Iterative learning control for Author : Axel Andersson Hariprasad Govindharajan Shahrzad Khodayari Project Guide : Alexander Medvedev Program : Embedded Systems and Engineering

More information

The control of the ball juggler

The control of the ball juggler 18th Telecommunications forum TELFOR 010 Serbia, Belgrade, November 3-5, 010. The control of the ball juggler S.Triaška, M.Žalman Abstract The ball juggler is a mechanical machinery designed to demonstrate

More information

Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control of DC Motor

Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control of DC Motor International ournal for Modern Trends in Science and Technology Volume: 02, Issue No: 11, November 2016 http://www.ijmtst.com ISSN: 2455-3778 Comparative Analysis of PID, SMC, SMC with PID Controller

More information

Modeling and simulation of feed system design of CNC machine tool based on. Matlab/simulink

Modeling and simulation of feed system design of CNC machine tool based on. Matlab/simulink Modeling and simulation of feed system design of CNC machine tool based on Matlab/simulink Su-Bom Yun 1, On-Joeng Sim 2 1 2, Facaulty of machine engineering, Huichon industry university, Huichon, Democratic

More information

Design of Self-tuning PID Controller Parameters Using Fuzzy Logic Controller for Quad-rotor Helicopter

Design of Self-tuning PID Controller Parameters Using Fuzzy Logic Controller for Quad-rotor Helicopter Design of Self-tuning PID Controller Parameters Using Fuzzy Logic Controller for Quad-rotor Helicopter Item type Authors Citation Journal Article Bousbaine, Amar; Bamgbose, Abraham; Poyi, Gwangtim Timothy;

More information

Teaching Mechanical Students to Build and Analyze Motor Controllers

Teaching Mechanical Students to Build and Analyze Motor Controllers Teaching Mechanical Students to Build and Analyze Motor Controllers Hugh Jack, Associate Professor Padnos School of Engineering Grand Valley State University Grand Rapids, MI email: jackh@gvsu.edu Session

More information

Study on Repetitive PID Control of Linear Motor in Wafer Stage of Lithography

Study on Repetitive PID Control of Linear Motor in Wafer Stage of Lithography Available online at www.sciencedirect.com Procedia Engineering 9 (01) 3863 3867 01 International Workshop on Information and Electronics Engineering (IWIEE) Study on Repetitive PID Control of Linear Motor

More information

Design and Simulation of a Hybrid Controller for a Multi-Input Multi-Output Magnetic Suspension System

Design and Simulation of a Hybrid Controller for a Multi-Input Multi-Output Magnetic Suspension System Design and Simulation of a Hybrid Controller for a Multi-Input Multi-Output Magnetic Suspension System Sherif M. Abuelenin, Member, IEEE Abstract In this paper we present a Fuzzy Logic control approach

More information

Intelligent Learning Control Strategies for Position Tracking of AC Servomotor

Intelligent Learning Control Strategies for Position Tracking of AC Servomotor Intelligent Learning Control Strategies for Position Tracking of AC Servomotor M.Vijayakarthick 1 1Assistant Professor& Department of Electronics and Instrumentation Engineering, Annamalai University,

More information

Omar E ROOD 1, Han-Sheng CHEN 2, Rodney L LARSON 3 And Richard F NOWAK 4 SUMMARY

Omar E ROOD 1, Han-Sheng CHEN 2, Rodney L LARSON 3 And Richard F NOWAK 4 SUMMARY DEVELOPMENT OF HIGH FLOW, HIGH PERFORMANCE HYDRAULIC SERVO VALVES AND CONTROL METHODOLOGIES IN SUPPORT OF FUTURE SUPER LARGE SCALE SHAKING TABLE FACILITIES Omar E ROOD 1, Han-Sheng CHEN 2, Rodney L LARSON

More information

GE420 Laboratory Assignment 8 Positioning Control of a Motor Using PD, PID, and Hybrid Control

GE420 Laboratory Assignment 8 Positioning Control of a Motor Using PD, PID, and Hybrid Control GE420 Laboratory Assignment 8 Positioning Control of a Motor Using PD, PID, and Hybrid Control Goals for this Lab Assignment: 1. Design a PD discrete control algorithm to allow the closed-loop combination

More information

Magnetic Levitation System

Magnetic Levitation System Magnetic Levitation System Electromagnet Infrared LED Phototransistor Levitated Ball Magnetic Levitation System K. Craig 1 Magnetic Levitation System Electromagnet Emitter Infrared LED i Detector Phototransistor

More information

SELF-BALANCING MOBILE ROBOT TILTER

SELF-BALANCING MOBILE ROBOT TILTER Tomislav Tomašić Andrea Demetlika Prof. dr. sc. Mladen Crneković ISSN xxx-xxxx SELF-BALANCING MOBILE ROBOT TILTER Summary UDC 007.52, 62-523.8 In this project a remote controlled self-balancing mobile

More information

On Observer-based Passive Robust Impedance Control of a Robot Manipulator

On Observer-based Passive Robust Impedance Control of a Robot Manipulator Journal of Mechanics Engineering and Automation 7 (2017) 71-78 doi: 10.17265/2159-5275/2017.02.003 D DAVID PUBLISHING On Observer-based Passive Robust Impedance Control of a Robot Manipulator CAO Sheng,

More information

CDS 101/110a: Lecture 8-1 Frequency Domain Design. Frequency Domain Performance Specifications

CDS 101/110a: Lecture 8-1 Frequency Domain Design. Frequency Domain Performance Specifications CDS /a: Lecture 8- Frequency Domain Design Richard M. Murray 7 November 28 Goals:! Describe canonical control design problem and standard performance measures! Show how to use loop shaping to achieve a

More information

Robot Joint Angle Control Based on Self Resonance Cancellation Using Double Encoders

Robot Joint Angle Control Based on Self Resonance Cancellation Using Double Encoders Robot Joint Angle Control Based on Self Resonance Cancellation Using Double Encoders Akiyuki Hasegawa, Hiroshi Fujimoto and Taro Takahashi 2 Abstract Research on the control using a load-side encoder for

More information

AUTOMATIC VOLTAGE REGULATOR AND AUTOMATIC LOAD FREQUENCY CONTROL IN TWO-AREA POWER SYSTEM

AUTOMATIC VOLTAGE REGULATOR AND AUTOMATIC LOAD FREQUENCY CONTROL IN TWO-AREA POWER SYSTEM AUTOMATIC VOLTAGE REGULATOR AND AUTOMATIC LOAD FREQUENCY CONTROL IN TWO-AREA POWER SYSTEM ABSTRACT [1] Nitesh Thapa, [2] Nilu Murmu, [3] Aditya Narayan, [4] Birju Besra Dept. of Electrical and Electronics

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 13.11.2014

More information

Gold Our Best Ever Motion Solutions

Gold Our Best Ever Motion Solutions Elmo's Line Our Best Ever Motion Solutions The Trombone An Ultra-Compact 400 VDC & 800 VDC "Direct to Mains" Networking Servo Drive Up to 7 kw of Qualitative Power Motion Control Solutions Made Small,

More information

Honeywell Experion System:

Honeywell Experion System: SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY Honeywell Experion System: Configuration, Simulation and Process Control Software Interoperability A thesis submitted to the school of Engineering and Information

More information

Masterthesis. General information. About Schneider Electric

Masterthesis. General information. About Schneider Electric General information Today s packaging machines cover a wide range of products in pharmaceutical, cosmetic, home care, food, beverage, dairy, tissue and paper etc. Their main task is to automate steps that

More information

Cantonment, Dhaka-1216, BANGLADESH

Cantonment, Dhaka-1216, BANGLADESH International Conference on Mechanical, Industrial and Energy Engineering 2014 26-27 December, 2014, Khulna, BANGLADESH ICMIEE-PI-140153 Electro-Mechanical Modeling of Separately Excited DC Motor & Performance

More information

TigreSAT 2010 &2011 June Monthly Report

TigreSAT 2010 &2011 June Monthly Report 2010-2011 TigreSAT Monthly Progress Report EQUIS ADS 2010 PAYLOAD No changes have been done to the payload since it had passed all the tests, requirements and integration that are necessary for LSU HASP

More information

Embedded Robust Control of Self-balancing Two-wheeled Robot

Embedded Robust Control of Self-balancing Two-wheeled Robot Embedded Robust Control of Self-balancing Two-wheeled Robot L. Mollov, P. Petkov Key Words: Robust control; embedded systems; two-wheeled robots; -synthesis; MATLAB. Abstract. This paper presents the design

More information

Internet Based HMI in Low-cost Simulators

Internet Based HMI in Low-cost Simulators XXVIII. ASR '2003 Seminar, Instruments and Control, Ostrava, May 6, 2003 342 Internet Based HMI in Low-cost Simulators TAMÁŠ, Jan 1, KLIMÁNEK, David 2 & ŠULC, Bohumil 3 1 Ing., Ústav přístrojové a řídicí

More information

Slovak University of Technology in Bratislava Institute of Information Engineering, Automation, and Mathematics PROCEEDINGS

Slovak University of Technology in Bratislava Institute of Information Engineering, Automation, and Mathematics PROCEEDINGS Slovak University of Technology in Bratislava Institute of Information Engineering, Automation, and Mathematics PROCEEDINGS 17 th International Conference on Process Control 2009 Hotel Baník, Štrbské Pleso,

More information

Application Note #2442

Application Note #2442 Application Note #2442 Tuning with PL and PID Most closed-loop servo systems are able to achieve satisfactory tuning with the basic Proportional, Integral, and Derivative (PID) tuning parameters. However,

More information

Comparisons of Different Controller for Position Tracking of DC Servo Motor

Comparisons of Different Controller for Position Tracking of DC Servo Motor Comparisons of Different Controller for Position Tracking of DC Servo Motor Shital Javiya 1, Ankit Kumar 2 Assistant Professor, Dept. of IC, Atmiya Institute of Technology & Science, Rajkot, Gujarat, India

More information

The Gold Duo Highly Compact Dual Axis Networking Servo Drive Up to 1.6 kw (3.2 kw Peak) of Qualitative Power Per Drive

The Gold Duo Highly Compact Dual Axis Networking Servo Drive Up to 1.6 kw (3.2 kw Peak) of Qualitative Power Per Drive Elmo's Line Our Best Ever Motion Solutions The Duo Highly Compact Dual Axis Networking Servo Drive Up to 1.6 kw (3.2 kw Peak) of Qualitative Power Per Drive Motion Control Solutions Made Small, Smart &

More information

sin( x m cos( The position of the mass point D is specified by a set of state variables, (θ roll, θ pitch, r) related to the Cartesian coordinates by:

sin( x m cos( The position of the mass point D is specified by a set of state variables, (θ roll, θ pitch, r) related to the Cartesian coordinates by: Research Article International Journal of Current Engineering and Technology ISSN 77-46 3 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Modeling improvement of a Humanoid

More information

Speed control of a DC motor using Controllers

Speed control of a DC motor using Controllers Automation, Control and Intelligent Systems 2014; 2(6-1): 1-9 Published online November 20, 2014 (http://www.sciencepublishinggroup.com/j/acis) doi: 10.11648/j.acis.s.2014020601.11 ISSN: 2328-5583 (Print);

More information

Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller

Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller International Journal of Emerging Trends in Science and Technology Temperature Control in HVAC Application using PID and Self-Tuning Adaptive Controller Authors Swarup D. Ramteke 1, Bhagsen J. Parvat 2

More information

A Comparative Study on Speed Control of D.C. Motor using Intelligence Techniques

A Comparative Study on Speed Control of D.C. Motor using Intelligence Techniques International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 4 (2014), pp. 431-436 International Research Publication House http://www.irphouse.com A Comparative Study

More information

Application Research on BP Neural Network PID Control of the Belt Conveyor

Application Research on BP Neural Network PID Control of the Belt Conveyor Application Research on BP Neural Network PID Control of the Belt Conveyor Pingyuan Xi 1, Yandong Song 2 1 School of Mechanical Engineering Huaihai Institute of Technology Lianyungang 222005, China 2 School

More information

Ball and Beam. Workbook BB01. Student Version

Ball and Beam. Workbook BB01. Student Version Ball and Beam Workbook BB01 Student Version Quanser Inc. 2011 c 2011 Quanser Inc., All rights reserved. Quanser Inc. 119 Spy Court Markham, Ontario L3R 5H6 Canada info@quanser.com Phone: 1-905-940-3575

More information

Hydraulic Actuator Control Using an Multi-Purpose Electronic Interface Card

Hydraulic Actuator Control Using an Multi-Purpose Electronic Interface Card Hydraulic Actuator Control Using an Multi-Purpose Electronic Interface Card N. KORONEOS, G. DIKEAKOS, D. PAPACHRISTOS Department of Automation Technological Educational Institution of Halkida Psaxna 34400,

More information

A K D S E R V O D R I V E

A K D S E R V O D R I V E Our AKD Series is a complete range of Ethernet-based Servo Drives that are fast, feature-rich, flexible and integrate quickly and easily into any application.* AKD ensures plug-and-play commissioning for

More information

The Research on Servo Control System for AC PMSM Based on DSP BaiLei1, a, Wengang Zheng2, b

The Research on Servo Control System for AC PMSM Based on DSP BaiLei1, a, Wengang Zheng2, b 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering (ICMMCCE 015) The Research on Servo Control System for AC PMSM Based on DSP BaiLei1, a, Wengang Zheng, b 1 Engineering

More information

Laboratory Experiences to Hands on

Laboratory Experiences to Hands on Complementary Simulation i and Remote Laboratory Experiences to Hands on Control lsystems Curriculum Dr. Daniel Cox Professor of Mechanical Engineering g University of North Florida Jacksonville Florida

More information

Mathematical Modeling, Simulation and Control of Ball and Beam System

Mathematical Modeling, Simulation and Control of Ball and Beam System Mathematical Modeling, Simulation and Control of Ball and Beam System Mr. Hrishikesh R. Shirke Dept. of electrical Engineering, P.E.S. s Modern college of engineering, Pune-05, Maharashtra, India. Abstract

More information

Ball-and-beam laboratory system controlled by Simulink model through dedicated microcontrolled-matlab data exchange protocol

Ball-and-beam laboratory system controlled by Simulink model through dedicated microcontrolled-matlab data exchange protocol Computer Applications in Electrical Engineering Ball-and-beam laboratory system controlled by Simulink model through dedicated microcontrolled-matlab data exchange protocol Krzysztof Nowopolski Poznań

More information

Rotary Motion Servo Plant: SRV02. Rotary Experiment #03: Speed Control. SRV02 Speed Control using QuaRC. Student Manual

Rotary Motion Servo Plant: SRV02. Rotary Experiment #03: Speed Control. SRV02 Speed Control using QuaRC. Student Manual Rotary Motion Servo Plant: SRV02 Rotary Experiment #03: Speed Control SRV02 Speed Control using QuaRC Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1 3. OVERVIEW OF FILES...2

More information

EVALUATION ALGORITHM- BASED ON PID CONTROLLER DESIGN FOR THE UNSTABLE SYSTEMS

EVALUATION ALGORITHM- BASED ON PID CONTROLLER DESIGN FOR THE UNSTABLE SYSTEMS EVALUATION ALGORITHM- BASED ON PID CONTROLLER DESIGN FOR THE UNSTABLE SYSTEMS Erliza Binti Serri 1, Wan Ismail Ibrahim 1 and Mohd Riduwan Ghazali 2 1 Sustanable Energy & Power Electronics Research, FKEE

More information

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COURSE: MCE 527 DISCLAIMER The contents of this document are intended for practice and leaning purposes at the

More information

Servo Tuning. Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa. Thanks to Dr.

Servo Tuning. Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa. Thanks to Dr. Servo Tuning Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa Thanks to Dr. Jacob Tal Overview Closed Loop Motion Control System Brain Brain Muscle

More information

GE 320: Introduction to Control Systems

GE 320: Introduction to Control Systems GE 320: Introduction to Control Systems Laboratory Section Manual 1 Welcome to GE 320.. 1 www.softbankrobotics.com 1 1 Introduction This section summarizes the course content and outlines the general procedure

More information

Advanced Servo Tuning

Advanced Servo Tuning Advanced Servo Tuning Dr. Rohan Munasinghe Department of Electronic and Telecommunication Engineering University of Moratuwa Servo System Elements position encoder Motion controller (software) Desired

More information

INTERACTION OF INPUT SHAPING AND CASCADE CONTROLLER FOR DC DRIVE CONTROL

INTERACTION OF INPUT SHAPING AND CASCADE CONTROLLER FOR DC DRIVE CONTROL POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 83 Electrical Engineering 215 Maciej GNIADEK* INTERACTION OF INPUT SHAPING AND CASCADE CONTROLLER FOR DC DRIVE CONTROL Various mechanical systems

More information

Product Information. Force/torque sensor FT

Product Information. Force/torque sensor FT Product Information FT Robust. Flexible. Precise. FT 6-axis force/torque sensor Rigid 6-axis force/torque sensor for precision measuring in all six degrees of freedom Field of application Universally applicable

More information

A Feasibility Study of Time-Domain Passivity Approach for Bilateral Teleoperation of Mobile Manipulator

A Feasibility Study of Time-Domain Passivity Approach for Bilateral Teleoperation of Mobile Manipulator International Conference on Control, Automation and Systems 2008 Oct. 14-17, 2008 in COEX, Seoul, Korea A Feasibility Study of Time-Domain Passivity Approach for Bilateral Teleoperation of Mobile Manipulator

More information

Control Systems Overview REV II

Control Systems Overview REV II Control Systems Overview REV II D R. T A R E K A. T U T U N J I M E C H A C T R O N I C S Y S T E M D E S I G N P H I L A D E L P H I A U N I V E R S I T Y 2 0 1 4 Control Systems The control system is

More information

The Discussion of this exercise covers the following points: Angular position control block diagram and fundamentals. Power amplifier 0.

The Discussion of this exercise covers the following points: Angular position control block diagram and fundamentals. Power amplifier 0. Exercise 6 Motor Shaft Angular Position Control EXERCISE OBJECTIVE When you have completed this exercise, you will be able to associate the pulses generated by a position sensing incremental encoder with

More information

Optimal Control System Design

Optimal Control System Design Chapter 6 Optimal Control System Design 6.1 INTRODUCTION The active AFO consists of sensor unit, control system and an actuator. While designing the control system for an AFO, a trade-off between the transient

More information