Exercise 12. Semiconductors EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Introduction to semiconductors. The diode

Size: px
Start display at page:

Download "Exercise 12. Semiconductors EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Introduction to semiconductors. The diode"

Transcription

1 Exercise 12 Semiconductors EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of a diode. You will learn how to use a diode to rectify ac voltage to produce dc voltage. You will also be introduced to the light-emitting diode. DISCUSSION OUTLINE The Discussion of this exercise covers the following points: Introduction to semiconductors The diode Operating principles of a diode. Characteristic voltage-current curve of a diode. Diode types. Procedure to test a diode using a multimeter. Single-phase half-wave rectifier The light-emitting diode (LED) DISCUSSION Introduction to semiconductors Diodes, transistors, integrated circuits, and other so-called "solid state" devices are made from crystals of a semiconductor material, usually silicon or germanium. At room temperature, the crystals of pure silicon and germanium are neither good insulators nor good conductors. This is why they are called semiconductors. The diode A diode is a semiconductor device that acts like a conductor while directly biased and like an insulator while inversly biased. Figure 198 shows a typical low-power diode. The diode has two terminals, called the anode and the cathode. A ring mark on the diode case identifies the terminal corresponding to the cathode. The other terminal corresponds to the anode. Ring mark Anode Cathode Figure 198. The diode. Festo Didactic

2 Exercise 12 Semiconductors Discussion Figure 199 shows the construction and schematic symbol for a diode. P layer N layer The arrowhead points toward the cathode, i.e., in the direction of conventional current. A Anode Cathode K A K Construction Symbol Figure 199. Construction and schematic symbol for a diode. As the figure shows, the diode consists of two layers of semiconducting material (semiconductors): A P-type semiconductor layer containing positive charge carriers (holes). The P-type layer corresponds to the anode (A) terminal of the diode. An N-type semiconductor layer containing negative charge carriers (electrons). The N-type layer corresponds to the cathode (K) terminal of the diode. Operating principles of a diode The diode is an essential component of rectifier circuits. When used in a rectifier, the diode operates as a high-speed switch which has no movable parts. When no voltage is present across the diode terminals, the diode is in the off (blocked) state. No current flows through the diode, and the diode acts like an open switch, as Figure 200 shows. No voltage Switch open A K Figure 200. When no voltage is present across the diode terminals, the diode acts as an open switch. Therefore, no current flows through the diode. 250 Festo Didactic

3 Exercise 12 Semiconductors Discussion The + and signs next to voltage in the figure indicate the convention of measurement of this voltage. These signs indicate that the voltage at point A () in the figure is higher than the voltage at point K () when voltage is positive (e.g., when ). Conversely, the value of is negative when the voltage at point A () is lower than the voltage at point K () (e.g., when ). When a voltage is present across the diode terminals, and the voltage at the anode is lower than the voltage at the cathode, the diode acts as an open switch. Therefore, no current flows through the diode. In this condition, the diode is said to be reverse biased (see Figure 201). A Reverse voltage K Switch open Figure 201. When the voltage at the anode is lower than the voltage at the cathode (i.e., when voltage is negative), the diode acts as an open switch: no current flows through the diode. When a voltage is applied across the diode terminals and the voltage at the anode is higher than the voltage at the cathode, the diode passes from the off (blocked) state to the on (conducting) state. In this case, the diode is said to be forward biased: it acts as a closed switch, allowing the current to flow from the anode to the cathode (see Figure 202). Forward voltage A K Switch closed Figure 202. When the voltage at the anode is higher than the voltage at the cathode (i.e., when voltage is positive), the diode acts as a closed switch and the current flows through the diode in the direction indicated. As long as current flows through the diode, the diode remains forward biased and acts like a closed switch. When the current stops flowing through the diode (even for a very brief lapse of time), the diode becomes like an open switch and the voltage across the diode terminals drops to 0 V, as Figure 203 shows. 0 V Switch opens A K 0 A Figure 203. When the current stops flowing through the diode, the diode becomes like an open switch and the voltage across the diode terminals drops to 0 V. Festo Didactic

4 Exercise 12 Semiconductors Discussion Characteristic voltage-current curve of a diode The characteristic curve of a diode represents the current flowing through the diode as a function of the voltage across its terminals. Figure 204 shows the characteristic curve of an ideal diode and that of a real diode. Ideal diode: when the diode is reverse biased, it acts like a perfect insulator. Therefore, no current flows through the diode. When the diode is forward biased, it acts like a perfect conductor. Therefore, current flows through the diode without a voltage drop across the diode. Real diode: when the diode is reverse biased, a small leakage current flows through it. When the diode is forward biased, the current flowing through it increases very rapidly as the voltage increases until the diode becomes fully conducting. Note that the diode conducts little when the forward voltage is below the minimum value, called the knee voltage. The knee voltage is the voltage drop across the diode (typically 0.7 V in the case of a silicon diode) when the current starts to increase very rapidly. Ideal diode Real diode 0.7 V Knee voltage across a silicon diode Figure 204. Characteristic voltage-current curves of an ideal diode and a real diode. Diodes have many applications. For example, diodes are used in alternators to change alternating current into direct current. Changing alternating current into direct current is called rectification. That is why diodes are also known as rectifiers. 252 Festo Didactic

5 Exercise 12 Semiconductors Discussion Diode types There are many types of diodes. Some of the common types are small signal diodes, power rectifier diodes, zener diodes, light-emitting diodes, and photo diodes. Small signal diodes are used to change low alternating current into direct current and to absorb voltage spikes. They are a common component on printed circuit boards. Power rectifier diodes are used in alternators and other applications to rectify ac current into dc current. Zener diodes can operate in reverse bias within a specified range without being damaged. A zener diode will block reverse bias current up to a predetermined level. When that level is surpassed, a zener diode will allow current to flow in reverse direction. Light-emitting diodes, commonly known as LEDs, convert electrical current directly into light, or photons. LEDs can be manufactured to display different colors. They are commonly used for digital data displays. They are also used on heavy equipment for such things as clearance lights. LEDs are much more efficient than light bulbs, consuming a fraction of the electricity and lasting much longer. Photo diodes conduct current when subjected to light. The photosensitive material in photo diodes increases its resistance as light decreases, and it decreases its resistance as light increases. They are often used to turn outdoor lights on and off. Procedure to test a diode using a multimeter This procedure is a typical procedure; it may slightly differ from one manufacturer to another. Refer to the user guide of your multimeter for more information. Set the multimeter function to the diode function. Insert the black test lead banana plug into the negative COM jack and the red test lead banana plug into the positive jack. Use the MODE button to view the diode icon on the display. Touch the test probes to the diode under test. If one reading shows a value near 0 V and the other reading shows OL, the diode is good. Reverse voltage will indicate OL. Shorted devices will indicate near 0 V in both polarities and an open device will indicate OL in both polarities. The value indicated in the display is the forward voltage. Festo Didactic

6 Exercise 12 Semiconductors Discussion Single-phase half-wave rectifier A single-phase half-wave rectifier converts an ac output to a pulsating dc output. The circuit simply consists of a diode connected between an ac source voltage and a load (resistor ) as shown in Figure 205a. Load (a) During the positive half of source voltage, the diode is forward biased. Source voltage Time Load current (rectifier output current) Time Load voltage (rectifier output voltage) Time (b) WavefoRMS of the circuit voltages and current Figure 205. Single-phase half-wave rectifier. 254 Festo Didactic

7 Exercise 12 Semiconductors Discussion The diode operates as a high-speed switch, allowing the current to flow only during the positive half-wave of the source voltage. At instant, the source voltage is zero. Therefore, the voltage across the diode is zero and the diode acts as an open switch, preventing current from flowing through the circuit. The voltage across the load (the rectifier output voltage ) is null. During the positive half of the source voltage waveform (i.e., between instants and ), the diode is forward biased, allowing current to flow through the circuit. Therefore, the waveforms of the rectifier output current and voltage have the same shape as the source voltage waveform. The voltage drop across the diode is very low: it is equal to the knee voltage. At instant, the load current (diode current) becomes 0 and the diode stops conducting current (i.e., the diode turns off). During the negative half of the source voltage waveform (i.e., between instants and ), the diode is reverse biased, preventing current from flowing through the circuit. Therefore, the rectifier output current and voltage are null. Meanwhile, all the voltage applied by the source (negative half of the source voltage) is present across the diode. The maximum value of this voltage is called the peak reverse voltage (PRV), or sometimes the peak inverse voltage (PIV). It corresponds to the maximum voltage the diode must withstand when it is reverse biased. The load voltage (rectifier output voltage) is, therefore, a pulsating voltage that is positive during half of the source voltage cycle, and null during the other half of this cycle. The rectifier output voltage is unipolar because it keeps the same polarity (positive) during the whole cycle. This occurs because the current can flow in one direction only. Neglecting the voltage drop across the diode, the amplitude of the rectifier output voltage is equal to the amplitude of the source voltage. As shown in Figure 205, the average value of the dc voltage at the output of a single-phase half-wave rectifier is equal to, or. Since single-phase half-wave rectifiers provide power to the load during half of the ac power source cycle only, they lack the efficiency required by most applications. The variations in the pulsating dc output of a half-wave rectifier are referred to as dc output ripple. In order to reduce (smooth) this ripple, a capacitor can be added across the output of the rectifier. The ability of the capacitor to charge up quickly and discharge slowly improves the waveform of the voltage at the output of the single-phase half-wave rectifier and thus increases the dc voltage. See Figure 206. Festo Didactic

8 Exercise 12 Semiconductors Discussion (a) Circuit showing the location of the filtering capacitor Capacitor charge Capacitor discharge Rectifier output voltage with filtering capacitor Rectifier output voltage without filtering capacitor Load voltage (rectifier output voltage) Time (b) WavefoRMS of the rectifier output voltage with and without filtering capacitor Figure 206. Using a filtering capacitor across the output of a half-wave rectifier reduces the dc output ripple. The light-emitting diode (LED) A light-emitting diode (LED), like the one shown in Table 24, is an electrical component with two terminals that conduct the electricity only in one direction like a standard diode but which emits light when current flows. LEDs require dc voltage to operate. Table 24. Typical light-emitting diode (LED) and associated symbol. Component Symbol The current flowing through the LED excites the electrons in the diode, releasing energy in the form of photons. This effect is called electroluminescence. The materials used in the construction of an LED determine the color and brightness of the light. Figure 207 shows the mains parts of a typical LED. 256 Festo Didactic

9 Exercise 12 Semiconductors Discussion Epoxy case Wire bond Post Reflective cavity Semiconductor die Anvil Flat spot (cathode side) Anode (+) Cathode (-) Figure 207. Construction of a typical LED. To emit light, an LED must be forward biased and the current flowing through it must be limited to prevent damage. Connecting an LED without protection will destroy the LED almost instantly. Usually, the current is limited using a resistor connected in series with the diode. The current-limiter resistance is determined using Ohm's law and using the forward current and voltage given in the datasheet of the LED, and the supply voltage. See Equation (31). (31) where is the current-limiter resistance in ohms () is the supply voltage in volts (V) is the forward voltage in volts (V) is the forward current in amperes (A) LEDs have many advantages over incandescent light sources: they are smaller in size, they last longer, they consume less energy, they have improved physical robustness, and they can be mounted to a printed circuit board. LEDs are now used in applications as diverse as aviation lighting, automotive headlamps, advertising, general lighting, traffic signals, and camera flashes. Festo Didactic

10 Exercise 12 Semiconductors Procedure Outline PROCEDURE OUTLINE The Procedure is divided into the following sections: Setup Testing a diode using a multimeter Single-phase half-wave rectifier Operation without rectification. Operation with rectification. Operation with rectification and filtering. Light-emitting diode PROCEDURE High voltages are present in this laboratory exercise. Do not make or modify any banana jack connections with the power on unless otherwise specified. Setup In this section, you will install the training system modules in the workstation. 1. Refer to the Equipment Utilization Chart in Appendix A to obtain the list of equipment required to perform this exercise. Install the equipment required in the workstation. Make sure that all fault switches are set to the O (off) position. Testing a diode using a multimeter In this section, you will use a multimeter to test the status of the diode on the Printed Circuit Board module. 2. Locate the diode on the PCB of the Printed Circuit Board module. Does the extremity of the diode near the test point N correspond to the anode or the cathode? 258 Festo Didactic

11 Exercise 12 Semiconductors Procedure 3. Select the Diode function on the multimeter. On the multimeter, insert the black test lead banana plug into the negative COM jack and the red test lead banana plug into the positive jack. On the PCB of the Printed Circuit Board module, connect the black probe to the test point near the anode of the diode, and the red probe to the test point near the cathode of the diode. Measure the voltage and record the voltage. Voltage = V 4. Reverse the connections to measure the voltage. Record the voltage. Voltage V 5. Do the voltages measured in the previous steps correspond to a good diode or a damaged diode? Briefly explain. Festo Didactic

12 Exercise 12 Semiconductors Procedure Single-phase half-wave rectifier In this section, you will observe that a diode can be used to rectify an ac voltage to produce a dc voltage. You will apply an ac voltage to a circuit having a resistive load, and observe that without rectification, there is no dc voltage at the output of the circuit. Then, you will add a diode (rectifier) in the same circuit, and observe that a dc voltage is present at the output of the circuit. You will also observe that adding a capacitor across the load of the circuit increases the dc voltage produced by the rectifier. Operation without rectification 6. Make sure that the main power switch on the Power Source module is set to the O (off) position, then connect it to an ac power outlet. Set up the circuit shown in Figure 208. Use resistors and in the lower section of the PCB to implement the load of the circuit. Lower section of the PCB Network voltage L N Figure 208. Circuit without rectification. 7. Turn the power source on. The ac source voltage ( applied to the load ( connected in parallel with ) corresponds to the output voltage of the control transformer. Measure the ac source voltage applied to the load through terminals S and M. Record the value below. AC source voltage ( applied to the load V 260 Festo Didactic

13 Exercise 12 Semiconductors Procedure 8. Measure the dc voltage ( at the output of the circuit (across terminals U and P). DC voltage ( at the output of the circuit = V 9. Does the voltage you measured in the previous step confirm that, without rectification, there is no dc voltage at the output of the circuit? Yes No 10. Turn the power source off. Operation with rectification 11. Insert diode between the source voltage ( ) and the resistive load ( connected in parallel with ), as shown in Figure 209. Lower section of the PCB Network voltage L N Figure 209. Circuit with rectification (without filtering capacitors). 12. Calculate the average value of the dc voltage at the output of the singlephase half-wave rectifier using the ac source voltage measured in step 7 and the following equation: = (neglect the voltage drop across the diode). Record the value below. Average value of the dc voltage at the output of the single-phase halfwave rectifier, = V 13. Turn the power source on. Festo Didactic

14 Exercise 12 Semiconductors Procedure 14. Measure the average value of the dc voltage at the output of the singlephase half-wave rectifier (in this circuit, the output voltage of the single-phase half-wave rectifier corresponds to the output voltage of the circuit as measured across terminals V and P). Average value of the dc voltage at the output of the single-phase halfwave rectifier = V 15. Does your result in the previous step confirm the presence of dc voltage at the output of the single-phase half-wave rectifier? Yes No 16. Is the average value of the dc voltage measured at the output of the singlephase half-wave rectifier approximately equal to the value calculated using the equation =? Yes No 17. Turn the power source off. Operation with rectification and filtering 18. Insert the filtering capacitor in parallel with the load as shown in Figure 210. Lower section of the PCB Network voltage L N Figure 210. Circuit with rectification and filter capacitor. 19. Turn the power source on. 262 Festo Didactic

15 Exercise 12 Semiconductors Procedure 20. Measure the average value of the dc voltage at the output of the singlephase half-wave rectifier (across terminals V and P). Average value of the dc voltage at the output of the single-phase halfwave rectifier = V 21. Does the average value of the dc voltage measured in the previous step confirm that adding a filtering capacitor in parallel with the load improves the waveform of the voltage at the output of the single-phase half-wave rectifier and thus increases the dc voltage? Yes No 22. Turn the power source off. 23. Add a second filter capacitor ( ) in parallel with the load as shown in Figure 211. The addition of capacitor (in parallel with capacitor ) increases the capacitance of the filter (this is equivalent to using a larger capacitor ). Lower section of the PCB Network voltage L N Figure 211. Circuit with rectification and filtering capacitor. 24. Turn the power source on. 25. Measure the average value of the dc voltage at the output of the singlephase half-wave rectifier (across terminals V and P). Average value of the dc voltage at the output of the single-phase halfwave rectifier = V Festo Didactic

16 Exercise 12 Semiconductors Procedure 26. What is the effect of increasing the capacitance of the filter on the average value of the dc voltage at the output of the single-phase half-wave rectifier? Briefly explain. 27. Turn the power source off. Light-emitting diode In this section, you will use the rectified and filtered voltage produced by the previous circuit to operate the light-emitting diode on the PCB. You will calculate the current-limiter resistance required by the light-emitting diode and then connect the circuit. 28. Calculate the current-limiter resistance required by the LED on the PCB by considering a forward current rated at 0.02 A (20 ma) and a forward voltage rated at 2 V. Use the average value of the dc voltage at the output of the single-phase half-wave rectifier measured in step 25 for your calculation. a To prevent damage to the LED on the printed circuit board due to a bad connection, the current-limiter resistor is permanently connected on the printed circuit board, and the resistor is numbered. Also for safety purposes, the value of the current-limiter resistor on the printed circuit board has been increased to 1.6 k. 29. Connect the branch containing the light-emitting diode to the current circuit as shown in Figure 212. In this branch, resistor is used as a currentlimiter resistor. 264 Festo Didactic

17 Exercise 12 Semiconductors Procedure Lower section of the PCB Network voltage L N Figure 212. Circuit used to learn the operation of a light-emitting diode. 30. Set the multimeter to measure dc current. Note that the ammeter symbol in Figure 212 includes a polarity sign to indicate the instrument polarity. 31. Turn the power source on. 32. Is the light-emitting diode turned on? Yes No 33. Measure the forward current flowing through the light-emitting diode indicated by ammeter A. Forward current = A 34. Does the measured forward current, flowing through the light-emitting diode, confirm that the LED operates safely? Briefly explain why. Festo Didactic

18 Exercise 12 Semiconductors Conclusion 35. Turn the power source off. Disconnect your circuit. Return the leads and the multimeter(s) to their storage location. CONCLUSION In this exercise, you were introduced to the operation of a diode. You learned that when a diode is forward biased, it acts as a closed switch and when it is reverse biased, it acts as an open switch. You learned how to use a rectifying diode. You also learned how to use an LED, and how to calculate the currentlimiter resistance. REVIEW QUESTIONS 1. How are the anode and cathode of a diode physically differentiated? 2. Is a diode forward biased or reverse biased when a voltage is present across its terminals, and the voltage at the anode is lower than the voltage at the cathode? 3. Does a diode act as an open switch or a closed switch when voltage is present across its terminals, and the voltage at the anode is higher than the voltage at the cathode? 4. How will the light emitted by an LED be affected if it is reverse biased instead of forward biased? 266 Festo Didactic

19 Exercise 12 Semiconductors Review Questions 5. What can be done to reduce the ripple at the output of a half-wave rectifier? Festo Didactic

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 1 Power Diode Single-Phase Rectifiers EXERCISE OBJECTIVE When you have completed this exercise, you will know what a diode is, and how it operates. You will be familiar with two types of circuits

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 1 The Diode EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of a diode. DISCUSSION OUTLINE The Discussion of this exercise covers the following

More information

Diode Characteristics and Applications

Diode Characteristics and Applications Diode Characteristics and Applications Topics covered in this presentation: Diode Characteristics Diode Clamp Protecting Against Back-EMF Half-Wave Rectifier The Zener Diode 1 of 18 Diode Characteristics

More information

Solving Parallel and Mixed Circuits, and Kirchhoff s Current Law

Solving Parallel and Mixed Circuits, and Kirchhoff s Current Law Exercise 7 Solving Parallel and Mixed Circuits, and Kirchhoff s Current Law EXERCISE OBJECTIVE When you have completed this exercise, you will be able to calculate the equivalent resistance of multiple

More information

Exercise 10. Transformers EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Introduction to transformers

Exercise 10. Transformers EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Introduction to transformers Exercise 10 Transformers EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the basic operating principles of transformers, as well as with the different ratios of transformers:

More information

DISCUSSION The best way to test a transistor is to connect it in a circuit that uses the transistor.

DISCUSSION The best way to test a transistor is to connect it in a circuit that uses the transistor. Exercise 1: EXERCISE OBJECTIVE When you have completed this exercise, you will be able to test a transistor by forward biasing and reverse biasing the junctions. You will verify your results with an ohmmeter.

More information

Semiconductors, ICs and Digital Fundamentals

Semiconductors, ICs and Digital Fundamentals Semiconductors, ICs and Digital Fundamentals The Diode The semiconductor phenomena. Diode performance with ac and dc currents. Diode types: General purpose LED Zener The Diode The semiconductor phenomena

More information

Solving Series Circuits and Kirchhoff s Voltage Law

Solving Series Circuits and Kirchhoff s Voltage Law Exercise 6 Solving Series Circuits and Kirchhoff s Voltage Law EXERCISE OBJECTIVE When you have completed this exercise, you will be able to calculate the equivalent resistance of multiple resistors in

More information

Circuit operation Let s look at the operation of this single diode rectifier when connected across an alternating voltage source v s.

Circuit operation Let s look at the operation of this single diode rectifier when connected across an alternating voltage source v s. Diode Rectifier Circuits One of the important applications of a semiconductor diode is in rectification of AC signals to DC. Diodes are very commonly used for obtaining DC voltage supplies from the readily

More information

Introduction to High-Speed Power Switching

Introduction to High-Speed Power Switching Exercise 3 Introduction to High-Speed Power Switching EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the concept of voltage-type and current-type circuits. You will

More information

Exercise 6. The Boost Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The boost chopper

Exercise 6. The Boost Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The boost chopper Exercise 6 The Boost Chopper EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of the boost chopper. DISCUSSION OUTLINE The Discussion of this exercise covers

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 5 Resistance and Ohm s Law EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the notion of resistance, and know how to measure this parameter using an ohmmeter.

More information

The Single-Phase PWM Inverter with Dual-Polarity DC Bus

The Single-Phase PWM Inverter with Dual-Polarity DC Bus Exercise 2 The Single-Phase PWM Inverter with Dual-Polarity DC Bus EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the singlephase PWM inverter with dual-polarity dc

More information

Exercise 2. The Buck Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE. The buck chopper DISCUSSION

Exercise 2. The Buck Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE. The buck chopper DISCUSSION Exercise 2 The Buck Chopper EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of the buck chopper. DISCUSSION OUTLINE The Discussion of this exercise covers

More information

CHAPTER 1 DIODE CIRCUITS. Semiconductor act differently to DC and AC currents

CHAPTER 1 DIODE CIRCUITS. Semiconductor act differently to DC and AC currents CHAPTER 1 DIODE CIRCUITS Resistance levels Semiconductor act differently to DC and AC currents There are three types of resistances 1. DC or static resistance The application of DC voltage to a circuit

More information

Diodes and Applications

Diodes and Applications Diodes and Applications Diodes and Applications 2 1 Diode Operation 2 2 Voltage-Current (V-I) Characteristics 2 3 Diode Models 2 4 Half-Wave Rectifiers 2 5 Full-Wave Rectifiers 2 6 Power Supply Filters

More information

Chapter 1: Semiconductor Diodes

Chapter 1: Semiconductor Diodes Chapter 1: Semiconductor Diodes Diodes The diode is a 2-terminal device. A diode ideally conducts in only one direction. 2 Diode Characteristics Conduction Region Non-Conduction Region The voltage across

More information

3. Diode, Rectifiers, and Power Supplies

3. Diode, Rectifiers, and Power Supplies 3. Diode, Rectifiers, and Power Supplies Semiconductor diodes are active devices which are extremely important for various electrical and electronic circuits. Diodes are active non-linear circuit elements

More information

Electronic Circuits I - Tutorial 03 Diode Applications I

Electronic Circuits I - Tutorial 03 Diode Applications I Electronic Circuits I - Tutorial 03 Diode Applications I -1 / 13 - T & F # Question 1 A diode can conduct current in two directions with equal ease. F 2 When reverse-biased, a diode ideally appears as

More information

Exercise 3: EXERCISE OBJECTIVE

Exercise 3: EXERCISE OBJECTIVE Exercise 3: EXERCISE OBJECTIVE voltage equal to double the peak ac input voltage by using a voltage doubler circuit. You will verify your results with a multimeter and an oscilloscope. DISCUSSION times

More information

UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING. Electrical Engineering Science. Laboratory Manual

UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING. Electrical Engineering Science. Laboratory Manual UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING Electrical Engineering Science Laboratory Manual Table of Contents Experiment #1 OHM S LAW... 3 Experiment # 2 SERIES AND PARALLEL CIRCUITS... 8

More information

Figure 1: Diode Measuring Circuit

Figure 1: Diode Measuring Circuit Diodes, Page 1 Diodes V-I Characteristics signal diode Measure the voltage-current characteristic of a standard signal diode, the 1N914, using the circuit shown in Figure 1 below. The purpose of the back-to-back

More information

FINALTERM EXAMINATION Fall 2009 PHY301- Circuit Theory (Session - 2) Time: 120 min Marks: 70 Question No: 1 ( Marks: 1 ) - Please choose one Charge of 2c and 5c will attract each other repel each other

More information

The preferred Exercise is shown in Exercises 5B or 5C.

The preferred Exercise is shown in Exercises 5B or 5C. ECE 231 Laboratory Exercise 5A The preferred Exercise is shown in Exercises 5B or 5C. Laboratory Group (Names) OBJECTIVES Validate the Schottky diode equation. Calculate the dc and dynamic (ac) resistance

More information

Diodes. Analog Electronics Lesson 4. Objectives and Overview:

Diodes. Analog Electronics Lesson 4. Objectives and Overview: Analog Electronics Lesson 4 Diodes Objectives and Overview: This lesson will introduce p- and n-type material, how they form a junction that rectifies current, and familiarize you with basic p-n junction

More information

Analog Electronic Circuits

Analog Electronic Circuits Analog Electronic Circuits Chapter 1: Semiconductor Diodes Objectives: To become familiar with the working principles of semiconductor diode To become familiar with the design and analysis of diode circuits

More information

Exercise 9. Electromagnetism and Inductors EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Magnetism, magnets, and magnetic field

Exercise 9. Electromagnetism and Inductors EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Magnetism, magnets, and magnetic field Exercise 9 Electromagnetism and Inductors EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the concepts of magnetism, magnets, and magnetic field, as well as electromagnetism

More information

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan SECOND SEMESTER ELECTRONICS - I

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan SECOND SEMESTER ELECTRONICS - I SECOND SEMESTER ELECTRONICS - I BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Yousaf Hameed Engr. M.Nasim Khan Dr.Noman Jafri Lecturer

More information

Exercise 8. The Four-Quadrant Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The Four-Quadrant Chopper

Exercise 8. The Four-Quadrant Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The Four-Quadrant Chopper Exercise 8 The Four-Quadrant Chopper EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of the four-quadrant chopper. DISCUSSION OUTLINE The Discussion of

More information

Figure 1: Diode Measuring Circuit

Figure 1: Diode Measuring Circuit Diodes, Page 1 Diodes V-I Characteristics signal diode Measure the voltage-current characteristic of a standard signal diode, the 1N914, using the circuit shown in Figure 1 below. The purpose of the back-to-back

More information

Applications of diodes

Applications of diodes Applications of diodes Learners should be able to: (a) describe the I V characteristics of a silicon diode (b) describe the use of diodes for component protection in DC circuits and half-wave rectification

More information

Single-Phase Grid-Tied Inverter (PWM Rectifier/Inverter)

Single-Phase Grid-Tied Inverter (PWM Rectifier/Inverter) Exercise 2 Single-Phase Grid-Tied Inverter (PWM Rectifier/Inverter) EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the singlephase grid-tied inverter. DISCUSSION OUTLINE

More information

Electronic Circuits I Laboratory 03 Rectifiers

Electronic Circuits I Laboratory 03 Rectifiers Electronic Circuits I Laboratory 03 Rectifiers # Student ID Student Name Grade (10) 1 Instructor signature 2 3 4 5 Delivery Date -1 / 18 - Objectives In this experiment, you will get to know a group of

More information

Table of Contents. iii

Table of Contents. iii Table of Contents Subject Page Experiment 1: Diode Characteristics... 1 Experiment 2: Rectifier Circuits... 7 Experiment 3: Clipping and Clamping Circuits 17 Experiment 4: The Zener Diode 25 Experiment

More information

UNIT IX ELECTRONIC DEVICES

UNIT IX ELECTRONIC DEVICES UNT X ELECTRONC DECES Weightage Marks : 07 Semiconductors Semiconductors diode-- characteristics in forward and reverse bias, diode as rectifier. - characteristics of LED, Photodiodes, solarcell and Zener

More information

Lecture (04) PN Diode applications II

Lecture (04) PN Diode applications II Lecture (04) PN Diode applications II By: Dr. Ahmed ElShafee ١ Agenda Full wave rectifier, cont.,.. Filters Voltage Regulators ٢ RMS The RMS value of a set of values (or a continuous time waveform) is

More information

EXPERIMENTS USING SEMICONDUCTOR DIODES

EXPERIMENTS USING SEMICONDUCTOR DIODES EXPERIMENT 9 EXPERIMENTS USING SEMICONDUCTOR DIODES Semiconductor Diodes Structure 91 Introduction Objectives 92 Basics of Semiconductors Revisited 93 A p-n Junction Operation of a p-n Junction A Forward

More information

EC6202- ELECTRONIC DEVICES AND CIRCUITS UNIT TEST-1 EXPECTED QUESTIONS

EC6202- ELECTRONIC DEVICES AND CIRCUITS UNIT TEST-1 EXPECTED QUESTIONS EC6202- ELECTRONIC DEVICES AND CIRCUITS UNIT TEST-1 EXPECTED QUESTIONS 1. List the PN diode parameters. 1. Bulk Resistance. 2. Static Resistance/Junction Resistance (or) DC Forward Resistance 3. Dynamic

More information

FINALTERM EXAMINATION. Spring PHY301- Circuit Theory

FINALTERM EXAMINATION. Spring PHY301- Circuit Theory Date 14/2/2013 Eini FINALTERM EXAMINATION Spring 2010 PHY301- Circuit Theory Time: 90 min Marks: 60 Question No: 1 If we connect 3 capacitors in parallel, the combined effect of all these capacitors will

More information

Diode Limiters or Clipper Circuits

Diode Limiters or Clipper Circuits Diode Limiters or Clipper Circuits Circuits which are used to clip off portions of signal voltages above or below certain levels are called limiters or clippers. Types of Clippers Positive Clipper Negative

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #4. Diode Rectifiers and Power Supply Circuits. Angsuman Roy

EE320L Electronics I. Laboratory. Laboratory Exercise #4. Diode Rectifiers and Power Supply Circuits. Angsuman Roy EE320L Electronics I Laboratory Laboratory Exercise #4 Diode Rectifiers and Power Supply Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective:

More information

Exercise 1: EXERCISE OBJECTIVE DISCUSSION. a. circuit A. b. circuit B. Festo Didactic P0 75

Exercise 1: EXERCISE OBJECTIVE DISCUSSION. a. circuit A. b. circuit B. Festo Didactic P0 75 Exercise 1: EXERCISE OBJECTIVE DISCUSSION a. circuit A. b. circuit B. Festo Didactic 91564-P0 75 individual diodes are designated D instead of CR, with the diode circle symbol omitted.) The input terminals

More information

Pre-certification Electronics Questions. Answer the following with the MOST CORRECT answer.

Pre-certification Electronics Questions. Answer the following with the MOST CORRECT answer. Electronics Questions Answer the following with the MOST CORRECT answer. 1. The cathode end terminal of a semiconductor diode can be identified by: a. the negative sign marked on the case b. a circular

More information

Solving Simple AC Circuits Using Circuit Impedance Calculation

Solving Simple AC Circuits Using Circuit Impedance Calculation Exercise 4-1 Solving Simple AC Circuits Using Circuit Impedance Calculation EXERCISE OBJECTIVE When you have completed this exercise, you will be able to resolve simple parallel and series ac circuits

More information

Electric Circuit Fall 2017 Lab3 LABORATORY 3. Diode. Guide

Electric Circuit Fall 2017 Lab3 LABORATORY 3. Diode. Guide LABORATORY 3 Diode Guide Diodes Overview Diodes are mostly used in practice for emitting light (as Light Emitting Diodes, LEDs) or controlling voltages in various circuits. Typical diode packages in same

More information

EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 6 Diodes: Half-Wave and Full-Wave Rectifiers Converting AC to DC

EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 6 Diodes: Half-Wave and Full-Wave Rectifiers Converting AC to DC EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 6 Diodes: Half-Wave and Full-Wave Rectifiers Converting C to DC The process of converting a sinusoidal C voltage to a

More information

ENG2210 Electronic Circuits. Chapter 3 Diodes

ENG2210 Electronic Circuits. Chapter 3 Diodes ENG2210 Electronic Circuits Mokhtar A. Aboelaze York University Chapter 3 Diodes Objectives Learn the characteristics of ideal diode and how to analyze and design circuits containing multiple diodes Learn

More information

Energy band diagrams Metals: 9. ELECTRONIC DEVICES GIST ρ= 10-2 to 10-8 Ω m Insulators: ρ> 10 8 Ω m Semiconductors ρ= 1 to 10 5 Ω m 109 A. Intrinsic semiconductors At T=0k it acts as insulator At room

More information

Light Emitting Diodes

Light Emitting Diodes Light Emitting Diodes Topics covered in this presentation: LED operation LED Characteristics Display devices Protection and limiting 1 of 9 Light Emitting Diode - LED A special type of diode is the Light

More information

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3.

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3. Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3. What is difference between electron and hole? 4. Why electrons have

More information

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 2. Diode Rectifier Circuits

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 2. Diode Rectifier Circuits Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 2 Diode Rectifier Circuits Aim: The purpose of this experiment is to become familiar with the use

More information

Diode Bridges. Book page

Diode Bridges. Book page Diode Bridges Book page 450-454 Rectification The process of converting an ac supply into dc is called rectification The device that carries this out is called a rectifier Half wave rectifier only half

More information

Diodes. Diodes, Page 1

Diodes. Diodes, Page 1 Diodes, Page 1 Diodes V-I Characteristics signal diode Measure the voltage-current characteristic of a standard signal diode, the 1N914, using the circuit shown in Figure 1 below. The purpose of the back-to-back

More information

Chapter 2. Diodes & Applications

Chapter 2. Diodes & Applications Chapter 2 Diodes & Applications The Diode A diode is made from a small piece of semiconductor material, usually silicon, in which half is doped as a p region and half is doped as an n region with a pn

More information

Electronic Circuits I. Instructor: Dr. Alaa Mahmoud

Electronic Circuits I. Instructor: Dr. Alaa Mahmoud Electronic Circuits I Instructor: Dr. Alaa Mahmoud alaa_y_emam@hotmail.com Chapter 27 Diode and diode application Outline: Semiconductor Materials The P-N Junction Diode Biasing P-N Junction Volt-Ampere

More information

Electron Devices and Circuits (EC 8353)

Electron Devices and Circuits (EC 8353) Electron Devices and Circuits (EC 8353) Prepared by Ms.S.KARKUZHALI, A.P/EEE Diodes The diode is a 2-terminal device. A diode ideally conducts in only one direction. Diode Characteristics Conduction Region

More information

2 MARKS EE2203 ELECTRONIC DEVICES AND CIRCUITS UNIT 1

2 MARKS EE2203 ELECTRONIC DEVICES AND CIRCUITS UNIT 1 2 MARKS EE2203 ELECTRONIC DEVICES AND CIRCUITS UNIT 1 1. Define PN junction. When a p type semiconductor is joined to a N type semiconductor the contact surface is called PN junction. 2. What is an ideal

More information

Exercise 4. Ripple in Choppers EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Ripple

Exercise 4. Ripple in Choppers EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Ripple Exercise 4 Ripple in Choppers EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with ripple in choppers. DISCUSSION OUTLINE The Discussion of this exercise covers the following

More information

Lecture (03) Diodes and Diode Applications I

Lecture (03) Diodes and Diode Applications I Lecture (03) Diodes and Diode Applications I By: Dr. Ahmed ElShafee ١ Agenda VOLTAGE CURRENT CHARACTERISTIC OF A DIODE Forward bias Reverse Bias V I Characteristic for Forward Bias V I Characteristic for

More information

Electro - Principles I

Electro - Principles I The PN Junction Diode Introduction to the PN Junction Diode Note: In this chapter we consider conventional current flow. Page 11-1 The schematic symbol for the pn junction diode the shown in Figure 1.

More information

EXPERIMENT 3 Half-Wave and Full-Wave Rectification

EXPERIMENT 3 Half-Wave and Full-Wave Rectification Name & Surname: ID: Date: EXPERIMENT 3 Half-Wave and Full-Wave Rectification Objective To calculate, compare, draw, and measure the DC output voltages of half-wave and full-wave rectifier circuits. Tools

More information

UNIT V - RECTIFIERS AND POWER SUPPLIES

UNIT V - RECTIFIERS AND POWER SUPPLIES UNIT V - RECTIFIERS AND POWER SUPPLIES OBJECTIVE On the completion of this unit the student will understand CLASSIFICATION OF POWER SUPPLY HALF WAVE, FULL WAVE, BRIDGE RECTIFER AND ITS RIPPLE FACTOR C,

More information

The Discussion of this exercise covers the following points: Phasor diagrams related to active and reactive power

The Discussion of this exercise covers the following points: Phasor diagrams related to active and reactive power Exercise 3-2 Apparent Power and the Power Triangle EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with phasor diagrams showing the active power, reactive power, and apparent

More information

Module 04.(B1) Electronic Fundamentals

Module 04.(B1) Electronic Fundamentals 1.1a. Semiconductors - Diodes. Module 04.(B1) Electronic Fundamentals Question Number. 1. What gives the colour of an LED?. Option A. The active element. Option B. The plastic it is encased in. Option

More information

Electronic I Lecture 3 Diode Rectifiers. By Asst. Prof Dr. Jassim K. Hmood

Electronic I Lecture 3 Diode Rectifiers. By Asst. Prof Dr. Jassim K. Hmood Electronic I Lecture 3 Diode Rectifiers By Asst. Prof Dr. Jassim K. Hmood Diode Approximations 1- The Ideal Model When forward biased, act as a closed (on) switch When reverse biased, act as open (off)

More information

After performing this experiment, you should be able to:

After performing this experiment, you should be able to: Objectives: After performing this experiment, you should be able to: Demonstrate the strengths and weaknesses of the two basic rectifier circuits. Draw the output waveforms for the two basic rectifier

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 2 - Semiconductor Diodes Overview: In this lab session students will investigate I-V characteristics

More information

LABORATORY MODULE. Analog Electronics. Semester 2 (2005/2006)

LABORATORY MODULE. Analog Electronics. Semester 2 (2005/2006) LABORATORY MODULE ENT 162 Analog Electronics Semester 2 (2005/2006) EXPERIMENT 1 : Introduction to Diode Name Matric No. : : PUSAT PENGAJIAN KEJURUTERAAN MEKATRONIK KOLEJ UNIVERSITI KEJURUTERAAN UTARA

More information

Exercise 7. The Buck/Boost Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The Buck/Boost Chopper

Exercise 7. The Buck/Boost Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The Buck/Boost Chopper Exercise 7 The Buck/Boost Chopper EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of the buck/boost chopper. DISCUSSION OUTLINE The Discussion of this

More information

Lecture -1: p-n Junction Diode

Lecture -1: p-n Junction Diode Lecture -1: p-n Junction Diode Diode: A pure silicon crystal or germanium crystal is known as an intrinsic semiconductor. There are not enough free electrons and holes in an intrinsic semi-conductor to

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab University of Jordan School of Engineering Electrical Engineering Department EE 204 Electrical Engineering Lab EXPERIMENT 1 MEASUREMENT DEVICES Prepared by: Prof. Mohammed Hawa EXPERIMENT 1 MEASUREMENT

More information

UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering -

UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering - UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering - Electrical Engineering Science Laboratory Manual Table of Contents Safety Rules and Operating Procedures... 3 Troubleshooting Hints... 4 Experiment

More information

Lab 2: Linear and Nonlinear Circuit Elements and Networks

Lab 2: Linear and Nonlinear Circuit Elements and Networks OPTI 380B Intermediate Optics Laboratory Lab 2: Linear and Nonlinear Circuit Elements and Networks Objectives: Lean how to use: Function of an oscilloscope probe. Characterization of capacitors and inductors

More information

Physics 15b, Lab 3: The Capacitor... and a glimpse of Diodes

Physics 15b, Lab 3: The Capacitor... and a glimpse of Diodes Phys 15b: Lab 3, Sprng 2007 1 Due Friday, March 23, 2007. Physics 15b, Lab 3: The Capacitor... and a glimpse of Diodes REV0 1 ; March 14, 2007 NOTE that this is the first of the labs that you are invited

More information

EDC Lecture Notes UNIT-1

EDC Lecture Notes UNIT-1 P-N Junction Diode EDC Lecture Notes Diode: A pure silicon crystal or germanium crystal is known as an intrinsic semiconductor. There are not enough free electrons and holes in an intrinsic semi-conductor

More information

BASIC ELECTRONICS ENGINEERING

BASIC ELECTRONICS ENGINEERING BASIC ELECTRONICS ENGINEERING Objective Questions UNIT 1: DIODES AND CIRCUITS 1 2 3 4 5 6 7 8 9 10 11 12 The process by which impurities are added to a pure semiconductor is A. Diffusing B. Drift C. Doping

More information

Brown University PHYS 0060 Physics Department LAB B Circuits with Resistors and Diodes

Brown University PHYS 0060 Physics Department LAB B Circuits with Resistors and Diodes References: Circuits with Resistors and Diodes Edward M. Purcell, Electricity and Magnetism 2 nd ed, Ch. 4, (McGraw Hill, 1985) R.P. Feynman, Lectures on Physics, Vol. 2, Ch. 22, (Addison Wesley, 1963).

More information

Lecture (04) Diode applications, cont.

Lecture (04) Diode applications, cont. Lecture (04) Diode applications, cont. By: Dr. Ahmed ElShafee Agenda Full wave rectifier, cont.,.. Filters Voltage Regulators Diode limiters Diode Clampers ١ ٢ Bridge Full Wave Rectifier Operation uses

More information

ITT Technical Institute. ET215 Devices I Chapter 2 Sections

ITT Technical Institute. ET215 Devices I Chapter 2 Sections ITT Technical Institute ET215 Devices I Chapter 2 Sections 2.8-2.10 Chapter 2 Section 2.8 Special-Purpose Diodes The preceding discussions of diodes has focused on applications that exploit the fact that

More information

1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is

1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is 1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is A [ ]) the diode is open. B [ ]) the diode is shorted to ground. C [v]) the diode is

More information

EXPERIMENT 5 : DIODES AND RECTIFICATION

EXPERIMENT 5 : DIODES AND RECTIFICATION EXPERIMENT 5 : DIODES AND RECTIFICATION Component List Resistors, one of each o 2 1010W o 1 1k o 1 10k 4 1N4004 (Imax = 1A, PIV = 400V) Diodes Center tap transformer (35.6Vpp, 12.6 VRMS) 100 F Electrolytic

More information

Introduction to Solid State Electronics

Introduction to Solid State Electronics Introduction to Solid State Electronics Semiconductors: These are the materials, which do not have free electrons to support the flow of electrical current through them at room temperature. However, valence

More information

Diodes Rectifiers, Zener diodes light emitting diodes, laser diodes photodiodes, optocouplers

Diodes Rectifiers, Zener diodes light emitting diodes, laser diodes photodiodes, optocouplers Diodes Rectifiers, Zener diodes light emitting diodes, laser diodes photodiodes, optocouplers Prepared by Scott Robertson Fall 2007 Physics 3330 1 Impurity-doped semiconductors Semiconductors (Ge, Si)

More information

Sheet 2 Diodes. ECE335: Electronic Engineering Fall Ain Shams University Faculty of Engineering. Problem (1) Draw the

Sheet 2 Diodes. ECE335: Electronic Engineering Fall Ain Shams University Faculty of Engineering. Problem (1) Draw the Ain Shams University Faculty of Engineering ECE335: Electronic Engineering Fall 2014 Sheet 2 Diodes Problem (1) Draw the i) Charge density distribution, ii) Electric field distribution iii) Potential distribution,

More information

Module 1, Lesson 2 Introduction to electricity. Student. 45 minutes

Module 1, Lesson 2 Introduction to electricity. Student. 45 minutes Module 1, Lesson 2 Introduction to electricity 45 minutes Student Purpose of this lesson Explanations of fundamental quantities of electrical circuits, including voltage, current and resistance. Use a

More information

EECE 2413 Electronics Laboratory

EECE 2413 Electronics Laboratory EECE 2413 Electronics Laboratory Lab #2: Diode Circuits Goals In this lab you will become familiar with several different types of pn-junction diodes. These include silicon and germanium junction diodes,

More information

Chapter 1 Introduction to Electronics

Chapter 1 Introduction to Electronics Chapter 1 Introduction to Electronics Section 1-1 Atomic Structure 1. An atom with an atomic number of 6 has 6 electrons and 6 protons.. The third shell of an atom can have n = (3) = 18 electrons. Section

More information

1 Diodes. 1.1 Diode Models Ideal Diode. ELEN 236 Diodes

1 Diodes. 1.1 Diode Models Ideal Diode. ELEN 236 Diodes ELEN 236 Diodes 1 Diodes 1.1 Diode Models 1.1.1 Ideal Diode Current through diode is zero for any voltage less than zero i.e. reverse biased case Current through diode is not limited by diode if voltage

More information

1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier. (2 points)

1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier. (2 points) Exam 1 Name: Score /60 Question 1 Short Takes 1 point each unless noted otherwise. 1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier.

More information

NEW HORIZON PRE UNIVERSITY COLLEGE LESSON PLAN FOR THE ACADEMIC YEAR Department of ELECTRONICS

NEW HORIZON PRE UNIVERSITY COLLEGE LESSON PLAN FOR THE ACADEMIC YEAR Department of ELECTRONICS NEW HORIZON PRE UNIVERSITY COLLEGE LESSON PLAN FOR THE ACADEMIC YEAR 2017 2018 Department of ELECTRONICS I PUC Month: JUNE I 1. INTRODUCTION TO ELECTRONICS Electronics and its scope: Development of vacuum

More information

3.4. Operation in the Reverse Breakdown

3.4. Operation in the Reverse Breakdown 3.4. peration in the Reverse Breakdown Under certain circumstances, diodes may be intentionally used in the reverse breakdown region These are referred to as Zener Diode or Breakdown Diode Voltage regulator

More information

Experiments in Analog Electronics

Experiments in Analog Electronics Ministry of Higher Education and Scientific Research University of Technology Department of Electrical Engineering Analog Electronics Laboratory Experiments in Analog Electronics By Firas Mohammed Ali

More information

Exercise 1. Basic PWM DC Motor Drive EXERCISE OBJECTIVE DISCUSSION OUTLINE. Block diagram of a basic PWM dc motor drive DISCUSSION

Exercise 1. Basic PWM DC Motor Drive EXERCISE OBJECTIVE DISCUSSION OUTLINE. Block diagram of a basic PWM dc motor drive DISCUSSION Exercise 1 Basic PWM DC Motor Drive EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the most basic type of PWM dc motor drive: the buck chopper dc motor drive. You will

More information

Electrical and Electronic Laboratory Faculty of Engineering Chulalongkorn University. Semiconductor Diode (SD)

Electrical and Electronic Laboratory Faculty of Engineering Chulalongkorn University. Semiconductor Diode (SD) 2141274 Electrical and Electronic Laboratory Faculty of Engineering Chulalongkorn University Semiconductor Diode (SD) Contents A. Introduction 1. History 2. Thermionic or gaseous state diodes 3. Semiconductor

More information

3.4. Reverse Breakdown Region Zener Diodes In the breakdown region Very steep i-v curve Almost constant voltage drop Used for voltage regulator

3.4. Reverse Breakdown Region Zener Diodes In the breakdown region Very steep i-v curve Almost constant voltage drop Used for voltage regulator 3.4. Reverse Breakdown Region Zener Diodes In the breakdown region Very steep i-v curve Almost constant voltage drop Used for voltage regulator Voltage regulator Provide a constant dc output voltage If

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 12 121004 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review More Diodes Lab Kits 3 Diode Voltage/Current Characteristics Forward

More information

Laboratory No. 01: Small & Large Signal Diode Circuits. Electrical Enginnering Departement. By: Dr. Awad Al-Zaben. Instructor: Eng.

Laboratory No. 01: Small & Large Signal Diode Circuits. Electrical Enginnering Departement. By: Dr. Awad Al-Zaben. Instructor: Eng. Laboratory No. 01: Small & Large Signal Diode Circuits Electrical Enginnering Departement By: Dr. Awad Al-Zaben Instructor: Eng. Tamer Shahta Electronics Laboratory EE 3191 February 23, 2014 I. OBJECTIVES

More information

Application of diode as Clippers

Application of diode as Clippers Application of diode as Clippers Clippers have ability to clip/remove off a portion of the input signal without distorting the remaining part of the alternating waveform. HWR is simplest form of clippers.

More information

DE52/DC52 FUNDAMENTALS OF ELECTRICAL & ELECT ENGG DEC 2014

DE52/DC52 FUNDAMENTALS OF ELECTRICAL & ELECT ENGG DEC 2014 Q.2 a. Derive an expression for the current flowing at any instant during the discharge of a capacitor C across a resistor R. b. The coil of a moving coil instrument is wound with 50 turns of wire. The

More information

Page 1. Date 15/02/2013

Page 1. Date 15/02/2013 Page 1 Date 15/02/2013 Final Term Examination Fall 2012 Phy301-Circuit Theory 1. State kirchhoff s current law (KCL) Marks: 2: Answer: (PAGE 42) KIRCHHOF S CURRENT LAW Sum of all the currents entering

More information