Sinusoidal Oscillators

Size: px
Start display at page:

Download "Sinusoidal Oscillators"

Transcription

1 Sinusoidal Oscillatos Signal geneatos: sinusoidal, ectangula, tiangula, TLV, etc. Obtaining a sine wave: tiangle functional tansfome sine sine wave geneation: fequency selective netwok in a feedback loop of a PF amplifie: sinusoidal oscillato -Oscillation fequency: f -Oscillation amplitude: Vˆo - Oscillation citeion - Fequency stability - Amplitude stability - Distotion coefficient

2 Oscillato feedback loop PF amplifie: If x i But if x s x a A a xo Ax s a ; A ; x s xo ; x finite

3 Oscillato feedback loop In the complex domain x s a A a fo a unique f a Fequency dependent components, L Zc Z L L f fl

4 Oscillation citeion Bakhausen s citeion a f fo a unique Signal econstuction on the feedback loop a a e a e a a a e module condition: phase condition: Who sets Vˆ? o a a k Nonlineaity of the gain gives a gives f

5 Oscillatos Basic amplifie fequency independent o inveting a 8 noninveting a Fequency selective feedback netwok To fulfil the phase condition, thee must be a unique fequency, f whee the phase shift is: 8, if a, if a 8

6 v v o v v o v v o Z Z Z Z Z WIEN Bidge Fequency selective netwok out in Tansfe function complex numbe voltage tansfe

7 WIEN Bidge e actg out in module phase

8 WIEN Bidge o The maximum value as a function of ω: asymptote asymptote The module

9 The phase actg WIEN Bidge 9 asymptote 9 asymptote o intemediate value

10 WIEN Bidge Fequency esponse out in Fo only one unique fequency, f we have Fo the phase condition: noninveting amplifie a f

11 v v o f f 3 out in If WIEN Bidge Summay

12 Op amp and WIEN bidge oscillato t f V t v o o sin ˆ f

13 Op amp and WIEN bidge oscillato f Fo a f 3 a Vˆ o? Nonlineaity on the gain, close to satuation

14 Automatic gain contol AG a oscillations ae attenuated - zeo a oscillations ae amplified - satuation a oscillations ae maintained - oscillate Stability of the oscillation amplitude Automatic gain contol - depending on the output voltage magnitude Vˆo ˆ V o v Vˆ sin f o o cst, a, Vˆ t

15 AG fo WIEN bidge oscillato a 4 3 How an AG can be implemented, so that a will depend on v o value? 4 - dependent on v o o 3 - dependent on v o

16 Diode evisited - as vaiable esisto Static esistance of a diode in the opeating point Q 4 D V I D D Q Q Q 3 D D3 V I V I D D D3 D3.495V.79 ma.6v.79ma 4.4k.63k D D4 V I V I D D D4 D4.555V.96 ma.645v 5.64 ma.599k.5k If the voltage dop V D inceases, the equivalent static esistance D deceases

17 AG using Diodes - how? V D I D D If the voltage dop V D inceases, the equivalent static esistance 4 D a deceases dependent on v o o 3 - dependent on v o

18 . AG using diodes 4,ech fo a off a v o t small, D, D off ' 4 4, ech 3 3 '' 4 a off a on ' '' D a on Vˆ o v o t is given by the value of D inceases, D on on the positive half-cycle D on on the negative half-cycle to maintain oscillations

19 . AG using n-channel depletion-type MOSFET 4 a ' DS 3 DS v V GS Th v GS < v, GS DS

20 Poblem a How does the voltages v o t and v + t look like in the steadystate egime? What is the oscillation fequency? b Size 4 so that the cicuit will maintain the oscillation. Fo the maximum value magnitude of the sinusoidal output, conside D = D =.5 kω. Veify if the oscillation can stat. c What is the magnitude of v o t in the conditions of question b, if the voltage dop acoss one diode is v D =.58 V fo the equivalent esistance D =.5 kω d How does the voltage v o t look like in the steady-state egime if D diode is missing?

21 Op amp and ladde netwok oscillato High pass band Low pass band the phase-shift is in the ange of [ o ; -9 o ] inveting basic amplifie how many identical cells ae necessay to build an oscillato?

22 5 6 3 Low pass ladde with 3 cells 6 3 f 6 9

23 The cicuit of ladde netwok oscillato

Discussion #7 Example Problem This problem illustrates how Fourier series are helpful tools for analyzing electronic circuits. Often in electronic

Discussion #7 Example Problem This problem illustrates how Fourier series are helpful tools for analyzing electronic circuits. Often in electronic Discussion #7 Example Poblem This poblem illustates how Fouie seies ae helpful tools fo analyzing electonic cicuits. Often in electonic cicuits we need sinusoids of vaious fequencies But we may aleady

More information

where and are polynomials with real coefficients and of degrees m and n, respectively. Assume that and have no zero on axis.

where and are polynomials with real coefficients and of degrees m and n, respectively. Assume that and have no zero on axis. function whee is an unknown constant epesents fo the un-modeled dynamics The pape investigates the position contol of electical moto dives that can be configued as stuctue of Fig 1 This poblem is fomulated

More information

Real-time Self Compensating AC/DC Digitally Controlled Power Supply

Real-time Self Compensating AC/DC Digitally Controlled Power Supply Real-time Self Compensating AC/DC Digitally Contolled Powe Supply Dave Feeman, Mak Hagen Texas Instuments Digital Powe Goup Digital Contol Poblem: Detemining optimal loop compensation given uncetainties

More information

A New Buck-Boost DC/DC Converter of High Efficiency by Soft Switching Technique

A New Buck-Boost DC/DC Converter of High Efficiency by Soft Switching Technique A New Buck-Boost D/D onvete of High Efficiency by Soft Switching Technique Dong-Kul Kwak, Seung-Ho Lee, and Do-Young Jung Pofessional Gaduate School of Disaste Pevention, Kangwon National Univesity, 45-711,

More information

EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi

EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS. Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi EE301 ELECTRONIC CIRCUITS CHAPTER 2 : OSCILLATORS Lecturer : Engr. Muhammad Muizz Bin Mohd Nawawi 2.1 INTRODUCTION An electronic circuit which is designed to generate a periodic waveform continuously at

More information

6.002 Circuits and Electronics Final Exam Practice Set 1

6.002 Circuits and Electronics Final Exam Practice Set 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE 6.002 Circuits and Electronics Set 1 Problem 1 Figure 1 shows a simplified small-signal model of a certain

More information

Sliding Mode Control for Half-Wave Zero Current Switching Quasi-Resonant Buck Converter

Sliding Mode Control for Half-Wave Zero Current Switching Quasi-Resonant Buck Converter Sliding Mode Contol fo Half-Wave Zeo Cuent Switching Quasi-Resonant Buck Convete M. Ahmed, Student membe, IEEE, M. Kuisma, P. Silventoinen Abstact This pape focuses on the pactical implementation of sliding

More information

Case Study Osc2: Case Study: Osc2. Design of a C-Band VCO. Outline. Reflection oscillator

Case Study Osc2: Case Study: Osc2. Design of a C-Band VCO. Outline. Reflection oscillator MICROWE ND RF DESIN Case Stuy: Osc2 Design of a C-an CO Pesente by Michael Stee 4.4 to 5.5 Hz Oscillato Case Stuy Osc2: Design of a C-an CO tune 3.6nH 0.5pF D1 D2 D3 D4 0.5pF 47.5 Ca 2k 2.2nH out 2.2pF

More information

Test Your Understanding

Test Your Understanding 074 Part 2 Analog Electronics EXEISE POBLEM Ex 5.3: For the switched-capacitor circuit in Figure 5.3b), the parameters are: = 30 pf, 2 = 5pF, and F = 2 pf. The clock frequency is 00 khz. Determine the

More information

Performance Analysis of Z-Source Inverter Considering Inductor Resistance

Performance Analysis of Z-Source Inverter Considering Inductor Resistance Pefomance Analysis of Z-Souce Invete Consideing Inducto Resistance Fatma A. Khea * and Essam Eddin M. Rashad ** Electic Powe and Machines Engineeing Depatment, Faculty of Engineeing, anta Univesity, anta,

More information

HISTORY AND PROGRESS OF THE TOW THOMAS BI-QUADRATIC FILTER. PART I. GENERATION AND OP AMP REALIZATIONS

HISTORY AND PROGRESS OF THE TOW THOMAS BI-QUADRATIC FILTER. PART I. GENERATION AND OP AMP REALIZATIONS Jounal of icuits, Systems, and omputes Vol. 7, No. (2008) 33 54 c Wold Scientific Publishing ompany HISTOY ND POGESS OF THE TOW THOMS BIQUDTI FILTE. PT I. GENETION ND OP MP ELIZTIONS HMED M. SOLIMN Electonics

More information

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook. EE4902 Lab 9 CMOS OP-AMP PURPOSE: The purpose of this lab is to measure the closed-loop performance of an op-amp designed from individual MOSFETs. This op-amp, shown in Fig. 9-1, combines all of the major

More information

Short-Circuit Fault Protection Strategy of Parallel Three-phase Inverters

Short-Circuit Fault Protection Strategy of Parallel Three-phase Inverters Shot-Cicuit Fault Potection Stategy of Paallel Thee-phase Invetes Hongliang Wang, Membe, IEEE, Xuejun Pei, Membe, IEEE, Yu Chen, Membe, IEEE,Yong Kang College of Electical and Electonics Engineeing Huazhong

More information

Statement of Works Data Template Version: 4.0 Date:

Statement of Works Data Template Version: 4.0 Date: Statement of Woks Data Template Vesion: 4.0 Date: 16.08.17 This Statement of Woks (SoW) Data Template is to be completed by Distibution Netwok Opeatos (DNOs) in ode to povide National Gid the equied data

More information

Code No: Y0221/R07 Set No. 1 I B.Tech Supplementary Examinations, Apr/May 2013 BASIC ELECTRONIC DEVICES AND CIRCUITS (Electrical & Electronics Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

More information

PowerAmp Design. PowerAmp Design PAD39 POWER OPERATIONAL AMPLIFIER

PowerAmp Design. PowerAmp Design PAD39 POWER OPERATIONAL AMPLIFIER PowerAmp Design POWE OPEATIONAL AMPLIFIE KEY FEATUES HIGH VOLTAGE 00 VOLTS HIGH CUENT 0 AMPS 25 WATT DISSIPATION CAPABILITY HIGH SLEW ATE- 0V/µS FOU WIE CUENT LIMIT OPTIONAL BOOST VOLTAGE INPUTS APPLICATIONS

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

Matched Monolithic Quad Transistor MAT14

Matched Monolithic Quad Transistor MAT14 Matched Monolithic Quad Transistor MAT4 FEATUES Low offset voltage: 400 µv maximum High current gain: 300 minimum Excellent current gain match: 4% maximum Low voltage noise density at 00 Hz, ma 3 nv/ Hz

More information

In-Class Exercises for Lab 2: Input and Output Impedance

In-Class Exercises for Lab 2: Input and Output Impedance In-Class Exercises for Lab 2: Input and Output Impedance. What is the output resistance of the output device below? Suppose that you want to select an input device with which to measure the voltage produced

More information

ISSN: [Reddy & Rao* et al., 5(12): December, 2016] Impact Factor: 4.116

ISSN: [Reddy & Rao* et al., 5(12): December, 2016] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY SIMULATION COMPARISONS OF INDUCTION MOTOR DRIVE WITH ESTIMATOR AND PLL V. Nasi Reddy *, S. Kishnajuna Rao*, S.Nagenda Kuma * Assistant

More information

CA3094, CA3094A, CA3094B

CA3094, CA3094A, CA3094B CA9, CA9A, CA9B Data Sheet April 999 File Number 9. MHz, High Output Current Operational Transconductance Amplifier (OTA) The CA9 is a differential input power control switch/amplifier with auxiliary circuit

More information

7. Inverter operated induction machines

7. Inverter operated induction machines 7. Invete opeated induction machine Souce: Siemen AG, Gemany Dept. of Electical Enegy Conveion Pof. A. Binde 7/1 Invete-fed induction machine Fequency convete (invete) geneate thee-phae voltage ytem with

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

Design and Control of a Bi-directional Resonant DC-DC Converter for Automotive Engine/Battery Hybrid Power Generators

Design and Control of a Bi-directional Resonant DC-DC Converter for Automotive Engine/Battery Hybrid Power Generators Design and Contol of a Bi-diectional Resonant - Convete fo Automotive Engine/Battey Hybid Powe Geneatos Junsung Pak, Minho Kwon and Sewan Choi, IEEE Senio Membe Depatment of Electical and Infomation Engineeing

More information

BENE 2163 ELECTRONIC SYSTEMS

BENE 2163 ELECTRONIC SYSTEMS UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BENE 263 ELECTRONIC SYSTEMS LAB SESSION 3 WEIN BRIDGE OSCILLATOR Revised: February 20 Lab 3 Wien Bridge Oscillator

More information

Development of Corona Ozonizer Using High Voltage Controlling of Produce Ozone Gas for Cleaning in Cage

Development of Corona Ozonizer Using High Voltage Controlling of Produce Ozone Gas for Cleaning in Cage Moden Envionmental Science and Engineeing (ISSN 333-58) July 07, Volume 3, No. 7, pp. 505-509 Doi: 0.534/mese(333-58)/07.03.07/0 Academic Sta Publishing Company, 07 www.academicsta.us Development of Coona

More information

OCR Electronics for A2 MOSFETs Variable resistors

OCR Electronics for A2 MOSFETs Variable resistors Resistance characteristic You are going to find out how the drain-source resistance R d of a MOSFET depends on its gate-source voltage V gs when the drain-source voltage V ds is very small. 1 Assemble

More information

ONE-WAY RADAR EQUATION / RF PROPAGATION

ONE-WAY RADAR EQUATION / RF PROPAGATION ONE-WAY RADAR EQUATION / RF PROPAGATION The one-way (tansmitte to eceive) ada equation is deived in this section. This equation is most commonly used in RWR o ESM type of applications. The following is

More information

THE UNIVERSITY OF NEW SOUTH WALES. School of Electrical Engineering & Telecommunications

THE UNIVERSITY OF NEW SOUTH WALES. School of Electrical Engineering & Telecommunications THE UNIESITY OF NEW SOUTH WAES School of Electical Engineeing & Telecommunications EE97 POWE EETONIS FO ENEWABE AND DISTIBUTED GENEATION EXAMINATION Session (Supplementay Exam) TIME AOWED: 3 hous TOTA

More information

Analog Circuits and Systems

Analog Circuits and Systems Analog Circuits and Systems Prof. K Radhakrishna Rao Lecture 31: Waveform Generation 1 Review Phase Locked Loop (self tuned filter) 2 nd order High Q low-pass output phase compared with the input 90 phase

More information

Analysis and Design of a 1MHz LLC Resonant Converter with Coreless Transformer Driver

Analysis and Design of a 1MHz LLC Resonant Converter with Coreless Transformer Driver Analysis and Design of a MHz C Resonant Convete with Coeless Tansfome Dive Mingping Mao, Dimita Tchobanov, Dong i 3, Matin Maez.,Tongji Univesity, Siping Rd 39, 9 Shanghai -China., Faunhofe Institute of

More information

Digital Simulation of FM-ZCS-Quasi Resonant Converter Fed DD Servo Drive Using Matlab Simulink

Digital Simulation of FM-ZCS-Quasi Resonant Converter Fed DD Servo Drive Using Matlab Simulink SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 6, No. 2, Novembe 2009, 227-237 UDK: 621.314.1:621.376 Digital Simulation of FM-ZCS-Quasi Resonant Convete Fed DD Sevo Dive Using Matlab Simulink Kattamui

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

The diodes keep the output waveform from getting too large.

The diodes keep the output waveform from getting too large. Wien Bridge Oscillat CIRCUIT: The Wien bridge oscillat, see Fig., consists of two voltage dividers. It oscillates (approximately) sinusoidally at the frequency that produces the same voltage out of both

More information

21/10/58. M2-3 Signal Generators. Bill Hewlett and Dave Packard s 1 st product (1939) US patent No HP 200A s schematic

21/10/58. M2-3 Signal Generators. Bill Hewlett and Dave Packard s 1 st product (1939) US patent No HP 200A s schematic M2-3 Signal Generators Bill Hewlett and Dave Packard s 1 st product (1939) US patent No.2267782 1 HP 200A s schematic 2 1 The basic structure of a sinusoidal oscillator. A positive feedback loop is formed

More information

Precision Rectifier Circuits

Precision Rectifier Circuits Precision Rectifier Circuits Rectifier circuits are used in the design of power supply circuits. In such applications, the voltage being rectified are usually much greater than the diode voltage drop,

More information

ECEN326: Electronic Circuits Fall 2017

ECEN326: Electronic Circuits Fall 2017 ECEN36: Electonic Cicuits Fall 07 Lectue 4: Cascode Stages and Cuent Mios Sam Palemo Analog & Mixed-Signal Cente Texas A&M Univesity Announcements HW3 due 0/4 Exam 0/9 9:0-0:0 (0 exta minutes) Closed book

More information

Applied Electronics II

Applied Electronics II Applied Electronics II Chapter 3: Operational Amplifier Part 1- Op Amp Basics School of Electrical and Computer Engineering Addis Ababa Institute of Technology Addis Ababa University Daniel D./Getachew

More information

(2) The resonant inductor current i Lr can be defined as, II. PROPOSED CONVERTER

(2) The resonant inductor current i Lr can be defined as, II. PROPOSED CONVERTER A High Powe Density Soft Switching Bidiectional Convete Using Unified Resonant Cicuit Ratil H Ashique, Zainal Salam, Mohd Junaidi Abdul Aziz Depatment of Electical Engineeing, Univesity Technology Malaysia,

More information

EMT212 Analog Electronic II. Chapter 4. Oscillator

EMT212 Analog Electronic II. Chapter 4. Oscillator EMT Analog Electronic II Chapter 4 Oscillator Objectives Describe the basic concept of an oscillator Discuss the basic principles of operation of an oscillator Analyze the operation of RC, LC and crystal

More information

11. Chapter: Amplitude stabilization of the harmonic oscillator

11. Chapter: Amplitude stabilization of the harmonic oscillator Punčochář, Mohylová: TELO, Chapter 10 1 11. Chapter: Amplitude stabilization of the harmonic oscillator Time of study: 3 hours Goals: the student should be able to define basic principles of oscillator

More information

N2-1. The Voltage Source. V = ε ri. The Current Source

N2-1. The Voltage Source. V = ε ri. The Current Source DC Cicuit nalysis The simplest cicuits to undestand and analyze ae those that cay diect cuent (DC). n this note we continue ou study of DC cicuits with the topics of DC voltage and cuent souces, the idea

More information

Oscillator Principles

Oscillator Principles Oscillators Introduction Oscillators are circuits that generates a repetitive waveform of fixed amplitude and frequency without any external input signal. The function of an oscillator is to generate alternating

More information

An Efficient Control Approach for DC-DC Buck-Boost Converter

An Efficient Control Approach for DC-DC Buck-Boost Converter 2016 Published in 4th Intenational Symposium on Innovative Technologies in Engineeing and Science 3-5 Novembe 2016 (ISITES2016 Alanya/Antalya - Tukey) An Efficient Contol Appoach fo DC-DC Buck-Boost Convete

More information

Section 6 Chapter 2: Operational Amplifiers

Section 6 Chapter 2: Operational Amplifiers 03 Section 6 Chapter : Operational Amplifiers eference : Microelectronic circuits Sedra sixth edition 4//03 4//03 Contents: - DC imperfections A. Offset voltage B. Solution of offset voltage C. Input bias

More information

Bidirectional Contactless Power Transfer System Expandable from Unidirectional System

Bidirectional Contactless Power Transfer System Expandable from Unidirectional System Bidiectional Contactless Powe Tansfe ystem Epandable fom Unidiectional ystem oichio Naadachi*, higeu Mochizui*, ho aaino*, Yasuyoshi Kaneo*, higeu Abe*, Tomio Yasuda** *aitama Univesity, aitama, Japan

More information

Diode Charge Pump AM-FM Demodulators

Diode Charge Pump AM-FM Demodulators Diode hage Pum AM-FM Demodulatos Fequency-to-voltage convetes fom at of a wide vaiety of instumentation cicuits. hey also find use in adio as FM demodulatos. One inteesting configuation fo this alication

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 303: Electomagnetic Fields and Waves Fall 007 Homewok 1 Due on Nov. 8, 007 by 5:00 PM Reading Assignments: i) Review the lectue notes. ii)

More information

UNIT - IV FEEDBACK AMPLIFIERS & OSCILATTORS

UNIT - IV FEEDBACK AMPLIFIERS & OSCILATTORS UNIT - IV FEEDBAK AMPLIFIES & OSILATTOS OBJETIVES i)the basics of feedback. ii)the properties of negative feedback. iii)the basic feedback topologies. iv)an example of the ideal feedback case. v)some realistic

More information

Homework Assignment 12

Homework Assignment 12 Homework Assignment 12 Question 1 Shown the is Bode plot of the magnitude of the gain transfer function of a constant GBP amplifier. By how much will the amplifier delay a sine wave with the following

More information

A Novel Resonant LLC Soft-Switching Inverting-Buck Converter

A Novel Resonant LLC Soft-Switching Inverting-Buck Converter Novel Resonant LLC Soft-Switching Inveting-Buck Convete Masoud Jabbai, Nahid Hematian Najafabadi, Ghazanfa Shahgholian, Mehdi Mahdavian Electical Engineeing Depatment, Najafabad Banch, Islamic zad Univesity,

More information

ECE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load

ECE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load ECE4902 C2012 - Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load PURPOSE: The primary purpose of this lab is to measure the

More information

Control Limits of Three-Phase AC Voltage Controller under Induction Motor Load A. I. Alolah Ali M. Eltamaly R. M. Hamouda

Control Limits of Three-Phase AC Voltage Controller under Induction Motor Load A. I. Alolah Ali M. Eltamaly R. M. Hamouda Contol Liits of Thee-Phase AC Voltage Contolle unde Induction Moto Load A. I. Alolah Ali M. Eltaaly R. M. Haouda Abstact Thyistos ae now widely used in any powe electonics and otos dives applications.

More information

Final Exam. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.1 μs. Estimate the 3 db bandwidth of the amplifier.

Final Exam. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.1 μs. Estimate the 3 db bandwidth of the amplifier. Final Exam Name: Score /100 Question 1 Short Takes 1 point each unless noted otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.1 μs. Estimate the 3 db bandwidth

More information

Preface... Chapter 1. Nonlinear Two-terminal Devices... 1

Preface... Chapter 1. Nonlinear Two-terminal Devices... 1 Preface........................................... xi Chapter 1. Nonlinear Two-terminal Devices.................... 1 1.1. Introduction..................................... 1 1.2. Example of a nonlinear

More information

Source Transformation

Source Transformation HW Chapter 0: 4, 20, 26, 44, 52, 64, 74, 92. Source Transformation Source transformation in frequency domain involves transforming a voltage source in series with an impedance to a current source in parallel

More information

Design of an LLC Resonant Converter Using Genetic Algorithm

Design of an LLC Resonant Converter Using Genetic Algorithm Design of an LLC Resonant Convete Using Genetic Algoithm H. H. Nien, C. K. Huang, S. K. Changchien, C. H Chan Dept. of Electical Engineeing, Chienkuo Technology Univesity E-mail: nien@ctu.edu.tw Dept,

More information

A Novel Single-Phase Six-Switch AC/AC Converter for UPS Applications

A Novel Single-Phase Six-Switch AC/AC Converter for UPS Applications 011 nd Powe Electonics, Dive Systems and Technologies Confeence A Novel Single-Phase Six-Switch AC/AC Convete fo UPS Applications A. Fatemi 1, Student Membe, IEEE, M. Azizi, Student Membe, IEEE, M. Shahpaasti,

More information

Analysis and Implementation of LLC Burst Mode for Light Load Efficiency Improvement

Analysis and Implementation of LLC Burst Mode for Light Load Efficiency Improvement Analysis and Implementation of LLC Bust Mode fo Light Load Efficiency Impovement Bin Wang, Xiaoni Xin, Stone Wu, Hongyang Wu, Jianping Ying Delta Powe Electonics Cente 238 Minxia Road, Caolu Industy Zone,

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

An Oscillator is a circuit which produces a periodic waveform at its output with only the dc supply voltage at the input. The output voltage can be

An Oscillator is a circuit which produces a periodic waveform at its output with only the dc supply voltage at the input. The output voltage can be An Oscillator is a circuit which produces a periodic waveform at its output with only the dc supply voltage at the input. The output voltage can be either sinusoidal or non sinusoidal depending upon the

More information

R V I P. i 1 = i 2 = I total. Kirchoff s Laws and Their Use for Circuit Analysis. Equations. Kirchoff s Laws. V=IR i

R V I P. i 1 = i 2 = I total. Kirchoff s Laws and Their Use for Circuit Analysis. Equations. Kirchoff s Laws. V=IR i Kirchoff s Laws and Their Use for Circuit Analysis Equations s i V=I i P=IV p i i Kirchoff s Laws Loop Law The total potential change around a closed circuit equals zero. Current Law for a Point For an

More information

CHAPTER 4 STABILITY ANALYSIS OF INDUCTION GENERATORS USING STATCOM

CHAPTER 4 STABILITY ANALYSIS OF INDUCTION GENERATORS USING STATCOM 116 CHAPTER 4 TABILITY ANALYI OF INDUCTION GENERATOR UING TATCOM 4.1 RENEWABLE WIND POWER UPPORT IN THE POWER YTEM Wind enegy is gaining apid momentum in the wold enegy balance. The installation of wind

More information

Optimized Fuzzy Controller Design to Stabilize Voltage and Frequency Amplitude in a Wind Turbine Based on Induction Generator Using Firefly Algorithm

Optimized Fuzzy Controller Design to Stabilize Voltage and Frequency Amplitude in a Wind Turbine Based on Induction Generator Using Firefly Algorithm Intenational Reseach Jounal of Management Sciences. Vol., 3 (3), 12-117, 215 Available online at http://www.ijmsjounal.com ISSN 2147-964x 215 Optimized Fuzzy Contolle Design to Stabilize Voltage and Fequency

More information

Homework Assignment 03 Solution

Homework Assignment 03 Solution Homework Assignment 03 Solution Question 1 Determine the h 11 and h 21 parameters for the circuit. Be sure to supply the units and proper sign for each parameter. (8 points) Solution Setting v 2 = 0 h

More information

Week 5. Lecture Quiz 1. Forces of Friction, cont. Forces of Friction. Forces of Friction, final. Static Friction

Week 5. Lecture Quiz 1. Forces of Friction, cont. Forces of Friction. Forces of Friction, final. Static Friction Lectue Quiz 1 Week 5 Fiction (Chapte 5, section 8) & Cicula Motion (Chapte 6, sections 1-) You hae a machine which can acceleate pucks on fictionless ice. Stating fom est, the puck taels a distance x in

More information

Figure 1: Closed Loop System

Figure 1: Closed Loop System SIGNAL GENERATORS 3. Introduction Signal sources have a variety of applications including checking stage gain, frequency response, and alignment in receivers and in a wide range of other electronics equipment.

More information

M. A. Elgenedy 1, A. M. Massoud 2, D. Holliday 1, S. Ahmed 3 and B.Williams 1 1. University of Strathclyde, Glasgow, UK. 2

M. A. Elgenedy 1, A. M. Massoud 2, D. Holliday 1, S. Ahmed 3 and B.Williams 1 1. University of Strathclyde, Glasgow, UK. 2 owvoltage DC Input, HighVoltage Pulse Geneato Using NanoCystalline Tansfome and Sequentially Chaged MMC Submodules, fo Wate Teatment Applications M. A. Elgenedy 1, A. M. Massoud 2, D. Holliday 1, S. Ahmed

More information

Optimization of the law of variation of shunt regulator impedance for Proximity Contactless Smart Card Applications to reduce the loading effect.

Optimization of the law of variation of shunt regulator impedance for Proximity Contactless Smart Card Applications to reduce the loading effect. Optimization of the law of vaiation of shunt egulato impedance fo Poximity Contactless Smat Cad Applications to educe the loading effect. Catheine Maechal, Dominique Paet. Laboatoie LIT ESIGETEL, ue du

More information

Analysis of the optimized low-nonlinearity lateral effect sensing detector

Analysis of the optimized low-nonlinearity lateral effect sensing detector Jounal of hysics: Confeence Seies Analysis of the optimized low-nonlineaity lateal effect sensing detecto To cite this aticle: Saeed Olyaee et al J. hys.: Conf. Se. 76 4 Related content - Neual netwok

More information

PowerAmp Design. PowerAmp Design PAD138 COMPACT HIGH VOLATGE OP AMP

PowerAmp Design. PowerAmp Design PAD138 COMPACT HIGH VOLATGE OP AMP PowerAmp Design COMPACT HIGH VOLTAGE OP AMP ev C KEY FEATUES LOW COST SMALL SIZE 40mm SQUAE HIGH VOLTAGE 200 VOLTS HIGH OUTPUT CUENT 2A PEAK 75 WATT DISSIPATION - 25 WATT DISSIPATION - 30V/µS SLEW ATE

More information

CURRENT-MODE CCII+ BASED OSCILLATOR CIRCUITS USING A CONVENTIONAL AND MODIFIED WIEN-BRIDGE WITH ALL CAPACITORS GROUNDED

CURRENT-MODE CCII+ BASED OSCILLATOR CIRCUITS USING A CONVENTIONAL AND MODIFIED WIEN-BRIDGE WITH ALL CAPACITORS GROUNDED CUENT-MODE CCII+ BASED OSCILLATO CICUITS USING A CONVENTIONAL AND MODIFIED WIEN-BIDGE WITH ALL CAPACITOS GOUNDED Josef Bajer, Abhirup Lahiri, Dalibor Biolek,3 Department of Electrical Engineering, University

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment 11 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

Code: 9A Answer any FIVE questions All questions carry equal marks *****

Code: 9A Answer any FIVE questions All questions carry equal marks ***** II B. Tech II Semester (R09) Regular & Supplementary Examinations, April/May 2012 ELECTRONIC CIRCUIT ANALYSIS (Common to EIE, E. Con. E & ECE) Time: 3 hours Max Marks: 70 Answer any FIVE questions All

More information

Control of SCIG Based Constant Voltage Generation Scheme for Distributed Power Supply

Control of SCIG Based Constant Voltage Generation Scheme for Distributed Power Supply Intenational Jounal on Electical Engineeing and Infomatics - Volume 10, Numbe 3, Septembe 2018 Contol of SCIG Based Constant Voltage Geneation Scheme fo Distibuted Powe Supply Rupa Misha and Tapas Kuma

More information

Minimizing Ringing and Crosstalk

Minimizing Ringing and Crosstalk Minimizing Ringing and Cosstalk By Glen Dash, Ampyx LLC, GlenDash at alum.mit.edu Copyight 1998, 26 Ampyx LLC When viewed on a schematic, a wie is just a wie. Howeve, when isetimes shink to a few nanoseconds

More information

Electronics & Comm. Lab

Electronics & Comm. Lab Course name Electronics & Comm. Lab Lecture 1 Dr. Bedir B. Yousif E-mail: bedir.yousif@gmail.com Third Year-Comm Eng. Lecture: 1 hr. /week Section : 3 hrs. /week Subject Marks: 100 (50 works term + 50

More information

Voltage Control of a 12/8 Pole Switched Reluctance Generator Using Fuzzy Logic

Voltage Control of a 12/8 Pole Switched Reluctance Generator Using Fuzzy Logic Intenational Jounal of Moden Nonlinea Theoy and Application, 22,, 7-2 http://dx.doi.og/.4236/ijmnta.22.36 Published Online Septembe 22 (http://www.scirp.og/jounal/ijmnta) Voltage ontol of a 2/8 Pole Switched

More information

Analysis, Design, and Performance Evaluation of Asymmetrical Half-Bridge Flyback Converter for Universal-Line-Voltage-Range Applications

Analysis, Design, and Performance Evaluation of Asymmetrical Half-Bridge Flyback Converter for Universal-Line-Voltage-Range Applications Analysis, Design, Pefomance Evaluation of Asymmetical Half-Bidge Flyback Convete fo Univesal-ine-Voltage-Range Applications aszlo Hube Milan M. Jovanović Delta Poducts Copoation P.O. Box 1173 5101 Davis

More information

Assignment 0/0 2 /0 8 /0 16 Version: 3.2a Last Updated: 9/20/ :29 PM Binary Ones Comp Twos Comp

Assignment 0/0 2 /0 8 /0 16 Version: 3.2a Last Updated: 9/20/ :29 PM Binary Ones Comp Twos Comp * Dynamic Memoy *Big O Notation*Stacks *Exteme Pogamming*Selection Sot*Insetion Sot*Watefall Model Sting*Aays*AayList*Client Seve*Atificial Intelligence*Inheitance*Files*Video Games*Shot cicuit evaluation*

More information

Transistor Digital Circuits

Transistor Digital Circuits Recapitulation Transistor Digital Circuits The transistor Operating principle and regions Utilization of the transistor Transfer characteristics, symbols Controlled switch model BJT digital circuits MOSFET

More information

Multi-Channel Power Amplifi ers

Multi-Channel Power Amplifi ers Multi-Channel Powe Amplifi es CX-A450 & CX-A850 482.6mm / 19" 88mm / 3 1 /2" (2U) Clou CX-A450 font view Clou CX-A450 ea view 482.6mm / 19" 88mm / 3 1 /2" (2U) Clou CX-A850 font view Geneal Desciption

More information

Low Cost Analog Multiplier AD633

Low Cost Analog Multiplier AD633 a FATUS Four-Quadrant Multiplication Low Cost -Lead Package Complete No xternal Components equired Laser-Trimmed Accuracy and Stability Total rror ithin % of FS Differential High Impedance X and Y Inputs

More information

Closed Loop Controlled LLC Half Bridge Isolated Series Resonant Converter

Closed Loop Controlled LLC Half Bridge Isolated Series Resonant Converter Closed Loop Contolled LLC Half Bidge Isolated Seies Resonant Convete Sivachidambaanathan.V and S. S. Dash Abstact LLC seies esonant convete is the most suitable convete fo medium powe applications due

More information

UC184xA / 284xA / 384xA

UC184xA / 284xA / 384xA UC14xA / 24xA / 4xA C UENT M ODE PWM C ONTOLLE T HE I NFINITE P OWE OF I NNOVATION P ODUCTION D ATA S HEET DESCIPTION The UC14xA family of control ICs provides all the necessary features to implement off-line

More information

Hall effect sensors integrated in standard technology and optimized with on-chip circuitry

Hall effect sensors integrated in standard technology and optimized with on-chip circuitry Eu. Phys. J. Appl. Phys. 36, 49 64 (006) DOI: 10.1051/epjap:006100 THE EUOPEAN PHYSICAL JOUNAL APPLIED PHYSICS Hall effect sensos integated in standad technology and optimized with on-chip cicuity J.-B.

More information

EE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load

EE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load EE4902 C200 - Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load PURPOSE: The primary purpose of this lab is to measure the

More information

Antenna fundamentals: With answers to questions and problems (See also Chapter 9 in the textbook.)

Antenna fundamentals: With answers to questions and problems (See also Chapter 9 in the textbook.) adio Technology Metopolia/A. Koivumäki Antenna fundamentals: With answes to questions and poblems (See also Chapte 9 in the textbook.) 1. a) Make up a definition fo the tem "antenna". Answe: One definition:

More information

Lecture # 11 Oscillators (RC Circuits)

Lecture # 11 Oscillators (RC Circuits) December 2014 Benha University Faculty of Engineering at Shoubra ECE-312 Electronic Circuits (A) Lecture # 11 Oscillators (RC Circuits) Instructor: Dr. Ahmad El-Banna Agenda Introduction Feedback Oscillators

More information

Application Note AN45

Application Note AN45 Application Note Wien Bridge Oscillators using E 2 POTs by Applications Staff, October 1994 Wien Bridge Oscillators In 1939, William R. Hewlett (later of Hewlett-Packard fame) first combined the network

More information

CMOS 12-Bit Monolithic Multiplying DAC AD7541A

CMOS 12-Bit Monolithic Multiplying DAC AD7541A a FEATUES Improved Version of AD754 Full Four-Quadrant Multiplication 2-Bit Linearity (Endpoint) All Parts Guaranteed Monotonic TTL/CMOS Compatible Low Cost Protection Schottky Diodes Not equired Low Logic

More information

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier.

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier. Oscillators An oscillator may be described as a source of alternating voltage. It is different than amplifier. An amplifier delivers an output signal whose waveform corresponds to the input signal but

More information

REVIEW TRANSISTOR BIAS CIRCUIT

REVIEW TRANSISTOR BIAS CIRCUIT EVIEW TANSISTO BIAS CICUIT OBJECTIVES Discuss the concept of dc biasing of a transistor for linear operation Analyze voltage-divider bias, base bias, and collectorfeedback bias circuits. Basic troubleshooting

More information

Chapter 13 Oscillators and Data Converters

Chapter 13 Oscillators and Data Converters Chapter 13 Oscillators and Data Converters 13.1 General Considerations 13.2 Ring Oscillators 13.3 LC Oscillators 13.4 Phase Shift Oscillator 13.5 Wien-Bridge Oscillator 13.6 Crystal Oscillators 13.7 Chapter

More information

Outline. Noise and Distortion. Noise basics Component and system noise Distortion INF4420. Jørgen Andreas Michaelsen Spring / 45 2 / 45

Outline. Noise and Distortion. Noise basics Component and system noise Distortion INF4420. Jørgen Andreas Michaelsen Spring / 45 2 / 45 INF440 Noise and Distortion Jørgen Andreas Michaelsen Spring 013 1 / 45 Outline Noise basics Component and system noise Distortion Spring 013 Noise and distortion / 45 Introduction We have already considered

More information

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design.

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. ECEN 622 Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. By Edgar Sanchez-Sinencio Thanks to Heng Zhang for part of the material OP AMP MACROMODELS Systems containing a significant

More information

Exercise 1 (MC Question)

Exercise 1 (MC Question) D J Tani -9- Contol Systems II (Sping 8 Solution Execise Set 9 Linea Quadatic Regulato Gioele Zadini, gzadini@ethzch, 7th May 8 Execise (MC Question (I-D, (II-A, (III-C, (IV-B (I-C, (II-A, (III-D, (IV-B

More information

Field Effect Transistors (FET s) University of Connecticut 136

Field Effect Transistors (FET s) University of Connecticut 136 Field Effect Transistors (FET s) University of Connecticut 136 Field Effect Transistors (FET s) FET s are classified three ways: by conduction type n-channel - conduction by electrons p-channel - conduction

More information

Thursday, 1/23/19 Automatic Gain Control As previously shown, 1 0 is a nonlinear system that produces a limit cycle with a distorted sinusoid for

Thursday, 1/23/19 Automatic Gain Control As previously shown, 1 0 is a nonlinear system that produces a limit cycle with a distorted sinusoid for Thursday, 1/23/19 Automatic Gain Control As previously shown, 1 0 is a nonlinear system that produces a limit cycle with a distorted sinusoid for x(t), which is not a very good sinusoidal oscillator. A

More information

ECE 3410 Homework 4 (C) (B) (A) (F) (E) (D) (H) (I) Solution. Utah State University 1 D1 D2. D1 v OUT. v IN D1 D2 D1 (G)

ECE 3410 Homework 4 (C) (B) (A) (F) (E) (D) (H) (I) Solution. Utah State University 1 D1 D2. D1 v OUT. v IN D1 D2 D1 (G) ECE 341 Homework 4 Problem 1. In each of the ideal-diode circuits shown below, is a 1 khz sinusoid with zero-to-peak amplitude 1 V. For each circuit, sketch the output waveform and state the values of

More information