A photonic analog-to-digital converter based on an unbalanced Mach-Zehnder quantizer

Size: px
Start display at page:

Download "A photonic analog-to-digital converter based on an unbalanced Mach-Zehnder quantizer"

Transcription

1 A photonic analog-to-digital converter based on an unbalanced Mach-Zehnder quantizer Chris H. Sarantos and Nadir Dagli* Department of Electrical Engineering, University of California Santa Barbara, CA, 936, USA Abstract: A Mach-Zehnder modulator (MZM) based analog to digital converter (ADC) is described. The signal to be digitized is applied to a single electrode of a high speed unbalanced modulator that acts as a quantizer. The rest of the system consists of commercially available wavelength division multipling (WDM) components. Analysis indicates that 6 bit operation at 4 Giga Samples per second (GS/s) is possible with moderate optical carrier power. 2 Optical Society of America OCIS codes: (3.3) Integrated optics; (3.32 Integrated optics devices; (23.4) Modulators; (6.233) Fiber optics communications. References and links. F. Coppinger, A. Bhushan, and B. Jalali, Photonic time stretch and its application to analog-to-digital conversion, IEEE Trans. Microw. Theory Tech. 47(7), (999). 2. C. Xu, and X. Liu, Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters, Opt. Lett. 28(2), (23). 3. S. Oda, and A. Maruta, A Novel Quantization Scheme by Slicing Supercontinuum Spectrum for All-Optical Analog-to-Digital Conversion, IEEE Photon. Technol. Lett. 7(2), (25). 4. T. Nishitani, T. Konishi, and K. Itoh, Resolution Improvement of All-Optical Analog-to-Digital Conversion Employing Self-frequency Shift and Self-Phase-Modulation-Induced Spectral Compression, IEEE J. Sel. Top. Quantum Electron. 4(3), (28). 5. R. Pant, C. Xiong, S. Madden, B. L. Davies, and B. J. Eggleton, Investigation of all-optical analog-to-digital quantization using a chalcogenide waveguide: A step towards on-chip analog-to-digital conversion, Opt. Commun. 283(), (2). 6. Y. Miyoshi, S. Takagi, S. Namiki, and K. Kitayama, Multiperiod PM-NOLM With Dynamic Counter- Propagating Effects Compensation for 5-Bit All-Optical Analog-to-Digital Conversion and Its Performance Evaluations, J. Lightwave Technol. 28(4), (2). 7. B. Shoop, Photonic analog-to-digital conversion, (Springer-Verlag, 2). 8. C. Sarantos and N. Dagli, An Unbalanced MZM based Photonic Analog-to-Digital Converter, Proceedings of IEEE/LEOS 27 Annual Meeting, pp. -, Q. Wu, H. Zhang, Y. Peng, X. Fu, and M. Yao, 4GS/s Optical analog-to-digital conversion system and its improvement, Opt. Express 7(), (29).. E. A. J. Marcatili, Optical subpicosecond gate, Appl. Opt. 9(9), (98).. J. J. Veselka, and S. K. Korotky, Pulse Generation for Soliton Systems Using Lithium Niobate Modulators, IEEE J. Sel. Top. Quantum Electron. 2(2), 3 3 (996). 2. H. A. Haus, S. T. Kirsch, K. Mathyssek, and F. J. Leonberger, Picosecond optical sampling, IEEE J. Quantum Electron. 6(8), (98). 3. D. J. Bachmann, N. Dagli, J. Calusdian, P. E. Pace, and J. P. Powers, Optical Pulse Train Generation Using Modulator Cascades, Proceedings of IEEE/LEOS 28 Annual Meeting, Paper TuF-4, pp. 9 9, Newport Beach, CA, November 9 3, N. Dagli, Wide Bandwidth Lasers and Modulators for RF Photonics, IEEE Trans. Microw. Theory Tech. 47(7), 5 7 (999). 5. K. M. Noguchi, and H. Miyazawa, Design of Ultra Broad Band LiNbO 3 Optical Modulators with Ridge Structure, IEEE Trans. Microw. Theory Tech. MTT-43, (995). 6. J. H. Shin, S. Wu, and N. Dagli, 35 GHz Bandwidth, 5 V-cm Drive Voltage, Bulk GaAs Substrate Removed Electro Optic Modulators, IEEE Photon. Technol. Lett. 9(8), (27). 7. Y. Miyamoto, M. Yoneyama, Y. Imai, K. Kato, and H. Tsunetsugu, 4 Gbit/s optical receiver module using a flip-chip bonding technique for device interconnection, Electron. Lett. 34(5), (998). 8. G. Agrawal, Fiber Optic Communications Systems, Section 4.6., (Wiley, 997). # $5. USD Received 2 Apr 2; revised 2 Jun 2; accepted 2 Jun 2; published 23 Jun 2 (C) 2 OSA 5 July 2 / Vol. 8, No. 4 / OPTICS EXPRESS 4598

2 . Introduction Digital signal processing in applications such as radar, telecommunications and high speed instrumentation requires digitization of analog signals with both high sampling rate and high resolution. Photonic ADCs have been proposed to achieve high sampling rates. One approach uses a photonic time stretch preprocessor followed by an electronic ADC []. Other approaches use all optical techniques [2 6]. There are other approaches using optical modulators, but require either one modulator per bit or electronic signal distribution to many electrodes [7], offering limited ability to scale to high bandwidth, high resolution systems. Here, we describe a high bandwidth, high resolution ADC design based on a single wide bandwidth Mach-Zehnder modulator (MZM) [8,9] and commercially available components. 2. Device description Figure shows the schematic of the proposed ADC. The system consists of a multi wavelength continuous wave (CW) source, a quantizer, a demultipler, sampler(s) and receivers. Diode lasers operating at different wavelengths are multipled into a waveguide using an arrayed waveguide grating (AWG). The waveguide feeds into a high speed unbalanced MZM acting as a quantizer. The spectral channels are then demultipled and each is temporally sampled. Alternatively, all channels could be sampled with a single device before demultipling. There are several different sampling technologies in integrated optics suitable for sampling needed. They can be directional coupler or Mach-Zehnder based [ 3]. All these technologies enable sub picosecond sampling at very high repetition rates. The sampled outputs are detected and compared to a binary threshold. The outputs of the receivers form a digital code corresponding to the analog signal applied to the MZM electrode. The system is similar to a wavelength division multipled (WDM) transmission system without the transmission fiber. All components are either commercially available or require only slight modifications to commercial designs. λ λ λ 2 λ 2 λ 4 MUX V s ~ Z L DE MUX λ 4 λ 5 λ 5 Quantizer (Unbalanced high speed modulator) High speed samplers λ N λ N CW Sources Receivers Fig.. Schematic of the proposed ADC. CW sources are multipled and fed into an unbalanced MZM, where an analog input voltage modulates the spectral channels simultaneously. The channels are then demultipled, temporally sampled and thresholded. The combined binary outputs of the thresholded channels form a digital representation of the applied voltage. An unbalanced MZM can quantize an applied voltage when its transfer function is applied to multiple wavelengths. The normalized output power as a function of drive voltage and wavelength is: P P out max cos πv π n L 2 s = + 2V π λ () where V S is the analog voltage to be quantized, V π is the voltage required to shift the relative phase of the interferometer arms by π, n the refractive ind, L the length difference between the interferometer arms and λ the free-space wavelength of the optical input. P max is the output power in the fully on state of the MZM. The output power varies sinusoidally with # $5. USD Received 2 Apr 2; revised 2 Jun 2; accepted 2 Jun 2; published 23 Jun 2 (C) 2 OSA 5 July 2 / Vol. 8, No. 4 / OPTICS EXPRESS 4599

3 applied voltage. The voltage independent term in the cosine argument depends plicitly on λ, shifting the sinusoid along the voltage axis as λ changes. Figure 2 shows the MZM output at four equally-spaced wavelengths as a function of input voltage. When the modulated channels are spectrally demultipled and detected using the same threshold level, a digital code differentiating the analog input voltage levels is generated as shown in Fig. 2. This code is known as a cyclic thermometer code. As the coded value increases, only one digit changes at a time, facilitating error correction [7]. The number of resolved values over a voltage range of 2V π is given by twice the number of input wavelengths ( 2N λ ). The minimum resolvable voltage is V Eq. (2) as π N. The code repeats for voltages over 2V λ π. The bits of resolution b is given ( ) b= + log 2 N λ (2) The electro-optic modulators used in this design allow for sampling rates beyond the capabilities of conventional electronics. MZMs with bandwidths ceeding 4 GHz and approaching GHz have been realized using several technologies [4 6]. Therefore this approach could be used to digitize signals with bandwidths in cess of 4 GHz. Transmission λ. Code.9 λ λ λ λ λ Normalized voltage V/V π Fig. 2. Transfer function of the unbalanced MZ modulator at different wavelengths as a function of normalized voltage. The thermometer-coded values at the top result from thresholding each channel at half the maximum power. 3. Results and discussion This section investigates the required power levels out of the sources. The analysis is very similar to the analysis of a high speed fiber optic system. We assume that the samplers provide a Gaussian shaped time-gate with full width at half maximum (FWHM) of τ seconds at a sampling rate of B= / T samples per second. Figure 3(a) shows the received pulses at a certain wavelength. The detection threshold level is P. Because of noise and other impairments there is a certain region between P and P around P th that cannot be clearly described as either above or below the threshold. Pulses with amplitudes higher than P or lower than P are definitively labeled as a or, respectively. Using the transfer function of the quantizer at the specific wavelength one can convert the range from P to P to a voltage range Vmin as shown in Fig. 3(c). This will be the minimum voltage resolution that can be achieved. Any voltage swing less than Vmin will not generate enough power swing that will give a transition from a to a or vice versa, hence cannot be resolved. Furthermore the phase shift of the transfer function for adjacent wavelengths should be such that as one wavelength makes a transition from to adjacent wavelengths should definitely be or as illustrated in Fig. 3(c). This condition determines the minimum phase shift between transfer function at different wavelengths or λ. This in turn determines L for a given λ as th Threshold level # $5. USD Received 2 Apr 2; revised 2 Jun 2; accepted 2 Jun 2; published 23 Jun 2 (C) 2 OSA 5 July 2 / Vol. 8, No. 4 / OPTICS EXPRESS 46

4 described earlier. The calculation of P and P can be done using fiber optic communication system analysis. For this purpose the model shown in Fig. 3(b) is used. We assume that input pulses will be received as either a or a. Our pulse train is equivalent to a return to zero (RZ) transmission with low tinction ratio and low duty cycle. The minimum P and maximum P levels that allow error-free operation of this transmission system will also allow error-free operation of the ADC. The least resolvable voltage, Vmin, can be calculated once these limits are found. Then, the maximum number of bits or resolution can be determined using the formula in Eq. (3) VFS b Vπ b Vπ = 2 = 2 b= log2 + (3) Vmin Vmin Vmin Fig. 3. (a) Schematic illustration of the pulses of certain wavelength before the receiver, (b) received pulses of a digital communication link having the same detection levels as the proposed ADC, (c) panded unbalanced MZM transfer function around P th for three different wavelengths. In this formulation it is assumed that V = 2. In a fiber optic transmission system error FS free operation is defined as operation with a bit error rate (BER) of 9 or less. For 4 Gb/s operation the average received power in a back to back RZ system with good tinction ratio τ / T = / 5 for 9 BER is about 23.5 dbm [7]. In such a RZ system and duty cycle of ( ) RZ the average power in terms of peak power is ( τ ) Pav = Ppeak / T = Ppeak / 5. P RZ peak is the unmodulated CW power output in the fully-on state of the MZM. It is usually assumed that the tinction ratio is really high so that P Ppeak and P. In the digital communication system that represents the ADC the average received power to a good approximation is P = P τ / T. Therefore to get the same average power for a good BER the peak ( ) av peak ADC power should be increased by a factor of P ( T / τ) /( T / τ) V π =. This is the power penalty av RZ ADC # $5. USD Received 2 Apr 2; revised 2 Jun 2; accepted 2 Jun 2; published 23 Jun 2 (C) 2 OSA 5 July 2 / Vol. 8, No. 4 / OPTICS EXPRESS 46

5 due to low duty cycle. Typical ( T / τ ) values are at the order of 25 and the corresponding ADC power penalty is about 7 db. In addition for good resolution P and P should be close to one another, i.e., tinction ratio should be low. Low tinction ratio introduces another power penalty, δ given in Eq. (4) as [8]. ( ) /( ) δ = P + P P P (4) The average power must be increased by this factor to match the BER of the system with P = P V and high tinction ratio. Using the transfer function of the quantizer out ( ) P = P ( V ), where V V = V = V π. Letting n L / ( m / 2) out Eq. (), we can press δ as: min / 2 b π λ = + π in 2 π V π 2 π V cos + cos b + 2 Vπ Vπ δ = (5) 2 π V π 2 π V cos + cos b 2 Vπ Vπ Using this formula and V = V π / 2 we estimate a power penalty of 3.5 db for 6 bit operation. Combining this penalty with the penalty of 7 db for low duty cycle we get a total penalty of 2.5 db. This is about the loss of 7 km of fiber. The ADC is therefore similar to a typical WDM communications link as far as power budgets are concerned. Error free operation requires a received peak power of about 3 dbm or.5 mw. Assuming a db insertion loss for the quantizer, sampler and two AWGs, the required input power per channel is about 5 mw. This power is readily achievable using conventional laser diodes. The temporal sampling method and parameters also affect ADC performance. According to a previous analysis of the proposed ADC based on signal-to-noise ratio calculations [8], the resolution and input power reported here are obtainable when sampling with a Gaussian aperture 5 ps wide (FWHM) and an rms jitter of.2 ps. The spectral spacing and MZM length offset are also feasible. The spectral spacing must be large enough to avoid spectral overlap, and small enough to avoid significant dispersion in V π that would lead to code nonlinearity. For a 2 GHz signal, the standard GHz ITU spacing should be sufficient. Sampling before demultipling increases each channel s bandwidth, requiring increased channel spacing This spectral spacing determines the required length offset L. For a given spectral grid, L determines the spacing between transfer functions at different wavelengths along the voltage axis. Equal spacing is achieved if the ϕ = 2m+ π 2 between two adjacent phase of the transfer function changes by ( ) channels separated in frequency by to Eq. (): ν, where m is an integer. Applying this condition ( 2 ) /( 2 ) L= c m+ nn λ ν (6) The voltage spacing between transfer functions must also be large enough to insure that only one channel at a time lies in the uncertain power region, as shown in Fig. 3. Choosing m to satisfy this condition leads to a L ~2 µm. This offset is readily achieved by varying the half angles of the y-branch splitters of the MZM, as shown in Fig.. Additionally, a DC biased section in one arm could fine-tune the phase offset and stabilize the MZM during operation. The source wavelengths may also drift. This increases N λ δ by shifting transfer functions δ increases with respect to each other. For a typical wavelength-locked diode drift of 5 pm, by less than db based on Eq. (5). Therefore the ADC is robust to wavelength drift. # $5. USD Received 2 Apr 2; revised 2 Jun 2; accepted 2 Jun 2; published 23 Jun 2 (C) 2 OSA 5 July 2 / Vol. 8, No. 4 / OPTICS EXPRESS 462

6 4. Conclusion We introduce a novel photonic ADC design that resembles a WDM digital link with an unbalanced MZM between the transmitters and receivers. We show that the required MZM fabrication and WDM spectral grid are well within the capabilities of isting technology. A reasonable optical source power is predicted to deliver 6 bits of resolution at 4 GS/s. Higher sampling rates ~ GS/s are possible due to the high bandwidth of MZMs. Acknowledgements This work was supported by National Science Foundation (NSF) Grant ECCS # $5. USD Received 2 Apr 2; revised 2 Jun 2; accepted 2 Jun 2; published 23 Jun 2 (C) 2 OSA 5 July 2 / Vol. 8, No. 4 / OPTICS EXPRESS 463

Below 100-fs Timing Jitter Seamless Operations in 10-GSample/s 3-bit Photonic Analog-to-Digital Conversion

Below 100-fs Timing Jitter Seamless Operations in 10-GSample/s 3-bit Photonic Analog-to-Digital Conversion Below 100-fs Timing Jitter Seamless Operations in 10-GSample/s 3-bit Photonic Analog-to-Digital Conversion Volume 7, Number 3, June 2015 M. Hasegawa T. Satoh T. Nagashima M. Mendez T. Konishi, Member,

More information

Module 16 : Integrated Optics I

Module 16 : Integrated Optics I Module 16 : Integrated Optics I Lecture : Integrated Optics I Objectives In this lecture you will learn the following Introduction Electro-Optic Effect Optical Phase Modulator Optical Amplitude Modulator

More information

All-Optical Signal Processing and Optical Regeneration

All-Optical Signal Processing and Optical Regeneration 1/36 All-Optical Signal Processing and Optical Regeneration Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Introduction Major Nonlinear Effects

More information

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016 ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 016 Lecture 7: Transmitter Analysis Sam Palermo Analog & Mixed-Signal Center Texas A&M University Optical Modulation Techniques

More information

A continuously tunable and filterless optical millimeter-wave generation via frequency octupling

A continuously tunable and filterless optical millimeter-wave generation via frequency octupling A continuously tunable and filterless optical millimeter-wave generation via frequency octupling Chun-Ting Lin, 1 * Po-Tsung Shih, 2 Wen-Jr Jiang, 2 Jason (Jyehong) Chen, 2 Peng-Chun Peng, 3 and Sien Chi

More information

Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation

Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation Zhe Kang, 1 Xianting Zhang, 1 Jinhui Yuan, 1,,* Xinzhu Sang, 1 Qiang Wu, 3 Gerald Farrell, 3

More information

THE INTEGRATION OF THE ALL-OPTICAL ANALOG-TO-DIGITAL CONVERTER BY USE OF SELF-FREQUENCY SHIFTING IN FIBER AND A PULSE-SHAPING TECHNIQUE

THE INTEGRATION OF THE ALL-OPTICAL ANALOG-TO-DIGITAL CONVERTER BY USE OF SELF-FREQUENCY SHIFTING IN FIBER AND A PULSE-SHAPING TECHNIQUE THE INTEGRATION OF THE ALL-OPTICAL ANALOG-TO-DIGITAL CONVERTER BY USE OF SELF-FREQUENCY SHIFTING IN FIBER AND A PULSE-SHAPING TECHNIQUE Takashi NISHITANI, Tsuyoshi KONISHI, and Kazuyoshi ITOH Graduate

More information

40Gb/s Optical Transmission System Testbed

40Gb/s Optical Transmission System Testbed The University of Kansas Technical Report 40Gb/s Optical Transmission System Testbed Ron Hui, Sen Zhang, Ashvini Ganesh, Chris Allen and Ken Demarest ITTC-FY2004-TR-22738-01 January 2004 Sponsor: Sprint

More information

SHF Communication Technologies AG

SHF Communication Technologies AG SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23 Aufgang D 12277 Berlin Marienfelde Germany Phone ++49 30 / 772 05 10 Fax ++49 30 / 753 10 78 E-Mail: sales@shf.biz Web: http://www.shf.biz

More information

High-Speed Optical Modulators and Photonic Sideband Management

High-Speed Optical Modulators and Photonic Sideband Management 114 High-Speed Optical Modulators and Photonic Sideband Management Tetsuya Kawanishi National Institute of Information and Communications Technology 4-2-1 Nukui-Kita, Koganei, Tokyo, Japan Tel: 81-42-327-7490;

More information

A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM

A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM Poomari S. and Arvind Chakrapani Department of Electronics and Communication Engineering, Karpagam College of Engineering, Coimbatore, Tamil

More information

Spectrally Compact Optical Subcarrier Multiplexing with 42.6 Gbit/s AM-PSK Payload and 2.5Gbit/s NRZ Labels

Spectrally Compact Optical Subcarrier Multiplexing with 42.6 Gbit/s AM-PSK Payload and 2.5Gbit/s NRZ Labels Spectrally Compact Optical Subcarrier Multiplexing with 42.6 Gbit/s AM-PSK Payload and 2.5Gbit/s NRZ Labels A.K. Mishra (1), A.D. Ellis (1), D. Cotter (1),F. Smyth (2), E. Connolly (2), L.P. Barry (2)

More information

A WDM passive optical network enabling multicasting with color-free ONUs

A WDM passive optical network enabling multicasting with color-free ONUs A WDM passive optical network enabling multicasting with color-free ONUs Yue Tian, Qingjiang Chang, and Yikai Su * State Key Laboratory of Advanced Optical Communication Systems and Networks, Department

More information

Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform

Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell Microelectronics and Material Technology Center School

More information

Reduction of Fiber Chromatic Dispersion Effects in Fiber-Wireless and Photonic Time-Stretching System Using Polymer Modulators

Reduction of Fiber Chromatic Dispersion Effects in Fiber-Wireless and Photonic Time-Stretching System Using Polymer Modulators 1504 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 6, JUNE 2003 Reduction of Fiber Chromatic Dispersion Effects in Fiber-Wireless and Photonic Time-Stretching System Using Polymer Modulators Jeehoon Han,

More information

Integrated-optical modulators

Integrated-optical modulators LASERS & MATERIAL PROCESSING I OPTICAL SYSTEMS I INDUSTRIAL METROLOGY I TRAFFIC SOLUTIONS I DEFENSE & CIVIL SYSTEMS Integrated-optical modulators Technical information and instructions for use Optoelectronic

More information

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise Ben Wu, * Zhenxing Wang, Bhavin J. Shastri, Matthew P. Chang, Nicholas A. Frost, and Paul R. Prucnal

More information

Optical Fiber Technology

Optical Fiber Technology Optical Fiber Technology 18 (2012) 29 33 Contents lists available at SciVerse ScienceDirect Optical Fiber Technology www.elsevier.com/locate/yofte A novel WDM passive optical network architecture supporting

More information

SHF Communication Technologies AG

SHF Communication Technologies AG SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23 Aufgang D 12277 Berlin Marienfelde Germany Phone ++49 30 / 772 05 10 Fax ++49 30 / 753 10 78 E-Mail: sales@shf.biz Web: http://www.shf.biz

More information

Experimental demonstration of both inverted and non-inverted wavelength conversion based on transient cross phase modulation of SOA

Experimental demonstration of both inverted and non-inverted wavelength conversion based on transient cross phase modulation of SOA Experimental demonstration of both inverted and non-inverted wavelength conversion based on transient cross phase modulation of SOA Songnian Fu, Jianji Dong *, P. Shum, and Liren Zhang (1) Network Technology

More information

A NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR DWDM OPTICAL NETWORKS

A NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR DWDM OPTICAL NETWORKS Progress In Electromagnetics Research M, Vol. 11, 213 223, 2010 A NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR DWDM OPTICAL NETWORKS A. Banerjee Department of Electronics and Communication

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING. FINAL EXAMINATION, April 2017 DURATION: 2.5 hours

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING. FINAL EXAMINATION, April 2017 DURATION: 2.5 hours UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING ECE4691-111 S - FINAL EXAMINATION, April 2017 DURATION: 2.5 hours Optical Communication and Networks Calculator Type: 2 Exam Type: X Examiner:

More information

All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier

All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier L. Q. Guo, and M. J. Connelly Optical Communications Research Group, Department

More information

A review on optical time division multiplexing (OTDM)

A review on optical time division multiplexing (OTDM) International Journal of Academic Research and Development ISSN: 2455-4197 Impact Factor: RJIF 5.22 www.academicsjournal.com Volume 3; Issue 1; January 2018; Page No. 520-524 A review on optical time division

More information

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration 22 Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration Jun-Hyuk Seo, and Woo-Young Choi Department of Electrical and

More information

WDM Concept and Components. EE 8114 Course Notes

WDM Concept and Components. EE 8114 Course Notes WDM Concept and Components EE 8114 Course Notes Part 1: WDM Concept Evolution of the Technology Why WDM? Capacity upgrade of existing fiber networks (without adding fibers) Transparency:Each optical channel

More information

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1 Lecture 8 Bit error rate The Q value Receiver sensitivity Sensitivity degradation Extinction ratio RIN Timing jitter Chirp Forward error correction Fiber Optical Communication Lecture 8, Slide Bit error

More information

Simultaneous chromatic dispersion, polarizationmode-dispersion. 40Gbit/s

Simultaneous chromatic dispersion, polarizationmode-dispersion. 40Gbit/s Simultaneous chromatic dispersion, polarizationmode-dispersion and OSNR monitoring at 40Gbit/s Lamia Baker-Meflah, Benn Thomsen, John Mitchell, Polina Bayvel Dept. of Electronic & Electrical Engineering,

More information

NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR WAVELENGTH SELEC- TIVE SWITCHING BASED OPTICAL NETWORKS

NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR WAVELENGTH SELEC- TIVE SWITCHING BASED OPTICAL NETWORKS Progress In Electromagnetics Research Letters, Vol. 9, 93 100, 2009 NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR WAVELENGTH SELEC- TIVE SWITCHING BASED OPTICAL NETWORKS A. Banerjee

More information

Photonic Generation of Millimeter-Wave Signals With Tunable Phase Shift

Photonic Generation of Millimeter-Wave Signals With Tunable Phase Shift Photonic Generation of Millimeter-Wave Signals With Tunable Phase Shift Volume 4, Number 3, June 2012 Weifeng Zhang, Student Member, IEEE Jianping Yao, Fellow, IEEE DOI: 10.1109/JPHOT.2012.2199481 1943-0655/$31.00

More information

Testing with Femtosecond Pulses

Testing with Femtosecond Pulses Testing with Femtosecond Pulses White Paper PN 200-0200-00 Revision 1.3 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

The Reduction of FWM effects using Duobinary Modulation in a Two-Channel D-WDM System

The Reduction of FWM effects using Duobinary Modulation in a Two-Channel D-WDM System The Reduction of FWM effects using Duobinary Modulation in a Two-Channel D-WDM System Laxman Tawade 1, Balasaheb Deokate 2 Department of Electronic and Telecommunication Vidya Pratishthan s College of

More information

Photonic time-stretching of 102 GHz millimeter waves using 1.55 µm nonlinear optic polymer EO modulators

Photonic time-stretching of 102 GHz millimeter waves using 1.55 µm nonlinear optic polymer EO modulators Photonic time-stretching of 10 GHz millimeter waves using 1.55 µm nonlinear optic polymer EO modulators H. Erlig Pacific Wave Industries H. R. Fetterman and D. Chang University of California Los Angeles

More information

Background-free millimeter-wave ultrawideband. Mach-Zehnder modulator

Background-free millimeter-wave ultrawideband. Mach-Zehnder modulator Background-free millimeter-wave ultrawideband signal generation based on a dualparallel Mach-Zehnder modulator Fangzheng Zhang and Shilong Pan * Key Laboratory of Radar Imaging and Microwave Photonics,

More information

E LECTROOPTICAL(EO)modulatorsarekeydevicesinoptical

E LECTROOPTICAL(EO)modulatorsarekeydevicesinoptical 286 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 26, NO. 2, JANUARY 15, 2008 Design and Fabrication of Sidewalls-Extended Electrode Configuration for Ridged Lithium Niobate Electrooptical Modulator Yi-Kuei Wu,

More information

Theoretical study of all-optical RZ-OOK to NRZ-OOK format conversion in uniform FBG for mixed line-rate DWDM systems

Theoretical study of all-optical RZ-OOK to NRZ-OOK format conversion in uniform FBG for mixed line-rate DWDM systems COL 13(6), 663(15) CHINESE OPTICS LETTERS June 1, 15 Theoretical study of all-optical RZ-OOK to NRZ-OOK format conversion in uniform FBG for mixed line-rate DWDM systems Oskars Ozolins* and Vjaceslavs

More information

Extending the Offset Frequency Range of the D2-135 Offset Phase Lock Servo by Indirect Locking

Extending the Offset Frequency Range of the D2-135 Offset Phase Lock Servo by Indirect Locking Extending the Offset Frequency Range of the D2-135 Offset Phase Lock Servo by Indirect Locking Introduction The Vescent Photonics D2-135 Offset Phase Lock Servo is normally used to phase lock a pair of

More information

Provision of IR-UWB wireless and baseband wired services over a WDM-PON

Provision of IR-UWB wireless and baseband wired services over a WDM-PON Provision of IR-UWB wireless and baseband wired services over a WDM-PON Shilong Pan and Jianping Yao* Microwave Photonics Research Laboratory, School of Electrical Engineering and Computer Science, University

More information

20-Gb/s Transmission Over 25-km in Wavelength Division Multiplexing Passive Optical Network with Centralized Light Source

20-Gb/s Transmission Over 25-km in Wavelength Division Multiplexing Passive Optical Network with Centralized Light Source Copyright 2017 by American Scientific Publishers All rights reserved. Printed in the United States of America Journal of Nanoelectronics and Optoelectronics Vol. 12, pp. 1 5, 2017 www.aspbs.com/jno ARTICLE

More information

Directly Chirped Laser Source for Chirped Pulse Amplification

Directly Chirped Laser Source for Chirped Pulse Amplification Directly Chirped Laser Source for Chirped Pulse Amplification Input pulse (single frequency) AWG RF amp Output pulse (chirped) Phase modulator Normalized spectral intensity (db) 64 65 66 67 68 69 1052.4

More information

Optical phase-coherent link between an optical atomic clock. and 1550 nm mode-locked lasers

Optical phase-coherent link between an optical atomic clock. and 1550 nm mode-locked lasers Optical phase-coherent link between an optical atomic clock and 1550 nm mode-locked lasers Kevin W. Holman, David J. Jones, Steven T. Cundiff, and Jun Ye* JILA, National Institute of Standards and Technology

More information

Development of LiNbO 3 for CATV Transmission Systems

Development of LiNbO 3 for CATV Transmission Systems Development of LiNbO 3 Modulators for CATV Transmission Systems Norikazu Miyazaki, Takashi Noguchi, and Toshio Sakane (Optoelectronics Research Div., New Technology Research Laboratory) ABSTRACT We have

More information

Vol. 6, No. 9 / September 2007 / JOURNAL OF OPTICAL NETWORKING 1105

Vol. 6, No. 9 / September 2007 / JOURNAL OF OPTICAL NETWORKING 1105 Vol. 6, No. 9 / September 2007 / JOURNAL OF OPTICAL NETWORKING 1105 Electronic equalization of 10 Gbit/ s upstream signals for asynchronous-modulation and chromatic-dispersion compensation in a high-speed

More information

ModBox-OBand-56GBaud-PAM4 O-Band, 56 Gbaud PAM-4 Reference Transmitter

ModBox-OBand-56GBaud-PAM4 O-Band, 56 Gbaud PAM-4 Reference Transmitter -OBand-5GBaud-PAM4 O-Band, 5 Gbaud PAM-4 Reference Transmitter The -OBand-5Gbaud-PAM4 is a 4-level Pulse Amplitude Modulation (PAM-4) Optical Reference Transmitter that generates in the O-band excellent

More information

Picosecond Pulses for Test & Measurement

Picosecond Pulses for Test & Measurement Picosecond Pulses for Test & Measurement White Paper PN 200-0100-00 Revision 1.1 September 2003 Calmar Optcom, Inc www.calamropt.com Overview Calmar s picosecond laser sources are actively mode-locked

More information

PHOTLINE. Technologies. LiNbO3 Modulators MMIC Amplifiers Instrumentations. Hervé Gouraud November 2009

PHOTLINE. Technologies. LiNbO3 Modulators MMIC Amplifiers Instrumentations. Hervé Gouraud November 2009 PHOTLINE Technologies LiNbO3 Modulators MMIC Amplifiers Instrumentations Hervé Gouraud November 2009 Pulsed modulation Fiber Lasers Pulse generation Pulse picking Pulse shaping Extinction Ratio (ER) /

More information

Special Issue Review. 1. Introduction

Special Issue Review. 1. Introduction Special Issue Review In recently years, we have introduced a new concept of photonic antennas for wireless communication system using radio-over-fiber technology. The photonic antenna is a functional device

More information

ARTICLE IN PRESS. Optik 119 (2008)

ARTICLE IN PRESS. Optik 119 (2008) Optik 119 (28) 39 314 Optik Optics www.elsevier.de/ijleo Timing jitter dependence on data format for ideal dispersion compensated 1 Gbps optical communication systems Manjit Singh a, Ajay K. Sharma b,,

More information

Performance Analysis of Chromatic Dispersion Compensation of a Chirped Fiber Grating on a Differential Phase-shift-keyed Transmission

Performance Analysis of Chromatic Dispersion Compensation of a Chirped Fiber Grating on a Differential Phase-shift-keyed Transmission Journal of the Optical Society of Korea Vol. 13, No. 1, March 2009, pp. 107-111 DOI: 10.3807/JOSK.2009.13.1.107 Performance Analysis of Chromatic Dispersion Compensation of a Chirped Fiber Grating on a

More information

FWM Suppression in WDM Systems Using Advanced Modulation Formats

FWM Suppression in WDM Systems Using Advanced Modulation Formats FWM Suppression in WDM Systems Using Advanced Modulation Formats M.M. Ibrahim (eng.mohamed.ibrahim@gmail.com) and Moustafa H. Aly (drmosaly@gmail.com) OSA Member Arab Academy for Science, Technology and

More information

Compact, flexible and versatile photonic differentiator using silicon Mach-Zehnder interferometers

Compact, flexible and versatile photonic differentiator using silicon Mach-Zehnder interferometers Compact, flexible and versatile photonic differentiator using silicon Mach-Zehnder interferometers Jianji Dong, Aoling Zheng, Dingshan Gao,,* Lei Lei, Dexiu Huang, and Xinliang Zhang Wuhan National Laboratory

More information

Semiconductor Optical Communication Components and Devices Lecture 39: Optical Modulators

Semiconductor Optical Communication Components and Devices Lecture 39: Optical Modulators Semiconductor Optical Communication Components and Devices Lecture 39: Optical Modulators Prof. Utpal Das Professor, Department of Electrical Engineering, Laser Technology Program, Indian Institute of

More information

Application Note for LN Modulators

Application Note for LN Modulators Application Note for LN Modulators 1.Structure LN Intensity Modulator LN Phase Modulator LN Polarization Scrambler LN Dual Electrode Modulator 2.Parameters Parameters Sample Spec. Modulation speed 10 Gbit/s

More information

Testing with 40 GHz Laser Sources

Testing with 40 GHz Laser Sources Testing with 40 GHz Laser Sources White Paper PN 200-0500-00 Revision 1.1 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s 40 GHz fiber lasers are actively mode-locked fiber lasers.

More information

ModBox Pulse Generation Unit

ModBox Pulse Generation Unit ModBox Pulse Generation Unit The ModBox Family The ModBox systems are a family of turnkey optical transmitters and external modulation benchtop units for digital and analog transmission, pulsed and other

More information

CHAPTER 4 RESULTS. 4.1 Introduction

CHAPTER 4 RESULTS. 4.1 Introduction CHAPTER 4 RESULTS 4.1 Introduction In this chapter focus are given more on WDM system. The results which are obtained mainly from the simulation work are presented. In simulation analysis, the study will

More information

Packet clock recovery using a bismuth oxide fiber-based optical power limiter

Packet clock recovery using a bismuth oxide fiber-based optical power limiter Packet clock recovery using a bismuth oxide fiber-based optical power limiter Ch. Kouloumentas 1*, N. Pleros 1, P. Zakynthinos 1, D. Petrantonakis 1, D. Apostolopoulos 1, O. Zouraraki 1, A. Tzanakaki,

More information

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion M. A. Khayer Azad and M. S. Islam Institute of Information and Communication

More information

Chapter 3 Metro Network Simulation

Chapter 3 Metro Network Simulation Chapter 3 Metro Network Simulation 3.1 Photonic Simulation Tools Simulation of photonic system has become a necessity due to the complex interactions within and between components. Tools have evolved from

More information

Sensors & Transducers 2014 by IFSA Publishing, S. L.

Sensors & Transducers 2014 by IFSA Publishing, S. L. Sensors & Transducers 04 by IFSA Publishing, S. L. http://www.sensorsportal.com Dense Wavelength Division (De) Multiplexers Based on Fiber Bragg Gratings S. BENAMEUR, M. KANDOUCI, C. AUPETIT-THELEMOT,

More information

π code 0 Changchun,130000,China Key Laboratory of National Defense.Changchun,130000,China Keywords:DPSK; CSRZ; atmospheric channel

π code 0 Changchun,130000,China Key Laboratory of National Defense.Changchun,130000,China Keywords:DPSK; CSRZ; atmospheric channel 4th International Conference on Computer, Mechatronics, Control and Electronic Engineering (ICCMCEE 2015) Differential phase shift keying in the research on the effects of type pattern of space optical

More information

Mach Zehnder Interferometer for Wavelength Division Multiplexing

Mach Zehnder Interferometer for Wavelength Division Multiplexing Mach Zehnder Interferometer for Wavelength Division Multiplexing Ary Syahriar Pusat Pengkajian dan Penerapan Teknologi Informasi dan Elektronika Badan Pengkajian dan Penerapan Teknologi e-mail : ary@inn.bppt.go.id

More information

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE Progress In Electromagnetics Research Letters, Vol. 7, 25 33, 2009 RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE H.-H. Lu, C.-Y. Li, C.-H. Lee,

More information

Chapter 10 WDM concepts and components

Chapter 10 WDM concepts and components Chapter 10 WDM concepts and components - Outline 10.1 Operational principle of WDM 10. Passive Components - The x Fiber Coupler - Scattering Matrix Representation - The x Waveguide Coupler - Mach-Zehnder

More information

System Optimization to Eliminate Chirping in Dual Drive LiNbO 3 MZM at 40 Gb/s

System Optimization to Eliminate Chirping in Dual Drive LiNbO 3 MZM at 40 Gb/s System Optimization to Eliminate Chirping in Dual Drive LiNbO 3 MZM at 40 Gb/s Nazmi A. Mohammed*, Yasmine El-Guindy**, Moustafa H. Aly***(OSA Member) * Research Centre, Smart Village, College of Engineering

More information

Time-stretched sampling of a fast microwave waveform based on the repetitive use of a linearly chirped fiber Bragg grating in a dispersive loop

Time-stretched sampling of a fast microwave waveform based on the repetitive use of a linearly chirped fiber Bragg grating in a dispersive loop Research Article Vol. 1, No. 2 / August 2014 / Optica 64 Time-stretched sampling of a fast microwave waveform based on the repetitive use of a linearly chirped fiber Bragg grating in a dispersive loop

More information

RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM

RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM Prof. Muthumani 1, Mr. Ayyanar 2 1 Professor and HOD, 2 UG Student, Department of Electronics and Communication Engineering,

More information

A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY

A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY 1 AAMIR KHAN, 2 ANITA CHOPRA 1 Department of Information Technology, Suresh Gyan Vihar University,

More information

Implementation and analysis of 2 Tbps MDRZ DWDM system at ultra narrow channel spacing

Implementation and analysis of 2 Tbps MDRZ DWDM system at ultra narrow channel spacing Implementation and analysis of 2 Tbps MDRZ DWDM system at ultra narrow channel spacing 1 Ragini Sharma, 2 Kamaldeep Kaur 1 Student, 2 Assistant Professor Department of Electrical Engineering BBSBEC, Fatehgarh

More information

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links Bruno Romeira* a, José M. L Figueiredo a, Kris Seunarine b, Charles N. Ironside b, a Department of Physics, CEOT,

More information

Novel High-Q Spectrum Sliced Photonic Microwave Transversal Filter Using Cascaded Fabry-Pérot Filters

Novel High-Q Spectrum Sliced Photonic Microwave Transversal Filter Using Cascaded Fabry-Pérot Filters 229 Novel High-Q Spectrum Sliced Photonic Microwave Transversal Filter Using Cascaded Fabry-Pérot Filters R. K. Jeyachitra 1**, Dr. (Mrs.) R. Sukanesh 2 1 Assistant Professor, Department of ECE, National

More information

A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection

A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection Jianji Dong,,* Xinliang Zhang, and Dexiu Huang Wuhan National Laboratory

More information

200-GHz 8-µs LFM Optical Waveform Generation for High- Resolution Coherent Imaging

200-GHz 8-µs LFM Optical Waveform Generation for High- Resolution Coherent Imaging Th7 Holman, K.W. 200-GHz 8-µs LFM Optical Waveform Generation for High- Resolution Coherent Imaging Kevin W. Holman MIT Lincoln Laboratory 244 Wood Street, Lexington, MA 02420 USA kholman@ll.mit.edu Abstract:

More information

Performance Analysis of SOA-MZI based All-Optical AND & XOR Gate

Performance Analysis of SOA-MZI based All-Optical AND & XOR Gate International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Utkarsh

More information

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion 36 Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion Supreet Singh 1, Kulwinder Singh 2 1 Department of Electronics and Communication Engineering, Punjabi

More information

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor P. S. Chan, C. Y. Chow, and H. K. Tsang Department of Electronic Engineering, The

More information

Differential measurement scheme for Brillouin Optical Correlation Domain Analysis

Differential measurement scheme for Brillouin Optical Correlation Domain Analysis Differential measurement scheme for Brillouin Optical Correlation Domain Analysis Ji Ho Jeong, 1,2 Kwanil Lee, 1,4 Kwang Yong Song, 3,* Je-Myung Jeong, 2 and Sang Bae Lee 1 1 Center for Opto-Electronic

More information

Fiber-Optic Communication Systems

Fiber-Optic Communication Systems Fiber-Optic Communication Systems Second Edition GOVIND P. AGRAWAL The Institute of Optics University of Rochester Rochester, NY A WILEY-iNTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

More information

WDM Transmitter Based on Spectral Slicing of Similariton Spectrum

WDM Transmitter Based on Spectral Slicing of Similariton Spectrum WDM Transmitter Based on Spectral Slicing of Similariton Spectrum Leila Graini and Kaddour Saouchi Laboratory of Study and Research in Instrumentation and Communication of Annaba (LERICA), Department of

More information

Multi-format all-optical-3r-regeneration technology

Multi-format all-optical-3r-regeneration technology Multi-format all-optical-3r-regeneration technology Masatoshi Kagawa Hitoshi Murai Amount of information flowing through the Internet is growing by about 40% per year. In Japan, the monthly average has

More information

Wavelength switching using multicavity semiconductor laser diodes

Wavelength switching using multicavity semiconductor laser diodes Wavelength switching using multicavity semiconductor laser diodes A. P. Kanjamala and A. F. J. Levi Department of Electrical Engineering University of Southern California Los Angeles, California 989-1111

More information

Compensation of Dispersion in 10 Gbps WDM System by Using Fiber Bragg Grating

Compensation of Dispersion in 10 Gbps WDM System by Using Fiber Bragg Grating International Journal of Computational Engineering & Management, Vol. 15 Issue 5, September 2012 www..org 16 Compensation of Dispersion in 10 Gbps WDM System by Using Fiber Bragg Grating P. K. Raghav 1,

More information

PERFORMANCE EVALUATION OF GB/S BIDIRECTIONAL DWDM PASSIVE OPTICAL NETWORK BASED ON CYCLIC AWG

PERFORMANCE EVALUATION OF GB/S BIDIRECTIONAL DWDM PASSIVE OPTICAL NETWORK BASED ON CYCLIC AWG http:// PERFORMANCE EVALUATION OF 1.25 16 GB/S BIDIRECTIONAL DWDM PASSIVE OPTICAL NETWORK BASED ON CYCLIC AWG Arashdeep Kaur 1, Ramandeep Kaur 2 1 Student, M.Tech, Department of Electronics and Communication

More information

ModBox-CBand-10Gb/s-MultiFormats C-Band, Multi-formats 10 Gb/s Optical Reference Transmitter

ModBox-CBand-10Gb/s-MultiFormats C-Band, Multi-formats 10 Gb/s Optical Reference Transmitter The is an Optical Reference Transmitter that generates excellent quality optical data streams up to 10 Gb/s in the C & L Bands. The equipment incorporates two LiNbO 3 modulators (a pulse carver combined

More information

ModBox-CBand-DPSK series C-Band, 12 Gb/s Reference Transmitters

ModBox-CBand-DPSK series C-Band, 12 Gb/s Reference Transmitters -CBand-DPSK series C-Band, 12 Gb/s Reference Transmitters The -CBand-DPSK is an optical modulation unit that generates high performance DPSK optical data streams up to 12.5 Gb/s. The equipment incorporates

More information

SCIENCE CHINA Technological Sciences. A flexible multi-16qam transmitter based on cascaded dual-parallel Mach-Zehnder modulator and phase modulator

SCIENCE CHINA Technological Sciences. A flexible multi-16qam transmitter based on cascaded dual-parallel Mach-Zehnder modulator and phase modulator SCIENCE CHINA Technological Sciences RESEARCH PAPER March 2013 Vol.56 No.3: 598 602 doi: 10.1007/s11431-012-5115-z A flexible multi-16qam transmitter based on cascaded dual-parallel Mach-Zehnder modulator

More information

Optical Complex Spectrum Analyzer (OCSA)

Optical Complex Spectrum Analyzer (OCSA) Optical Complex Spectrum Analyzer (OCSA) First version 24/11/2005 Last Update 05/06/2013 Distribution in the UK & Ireland Characterisation, Measurement & Analysis Lambda Photometrics Limited Lambda House

More information

A bidirectional radio over fiber system with multiband-signal generation using one singledrive

A bidirectional radio over fiber system with multiband-signal generation using one singledrive A bidirectional radio over fiber system with multiband-signal generation using one singledrive Liang Zhang, Xiaofeng Hu, Pan Cao, Tao Wang, and Yikai Su* State Key Lab of Advanced Optical Communication

More information

Department of Electrical and Computer Systems Engineering

Department of Electrical and Computer Systems Engineering Department of Electrical and Computer Systems Engineering Technical Report MECSE-5-2005 SIMULINK Models for Advanced Optical Communications: Part IV- DQPSK Modulation Format L.N. Binh and B. Laville SIMULINK

More information

Planar lightwave circuit dispersion compensator using a compact arrowhead arrayed-waveguide grating

Planar lightwave circuit dispersion compensator using a compact arrowhead arrayed-waveguide grating Planar lightwave circuit dispersion compensator using a compact arrowhead arrayed-waveguide grating Takanori Suzuki 1a), Kenichi Masuda 1, Hiroshi Ishikawa 2, Yukio Abe 2, Seiichi Kashimura 2, Hisato Uetsuka

More information

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides Yaming Li, Chong Li, Chuanbo Li, Buwen Cheng, * and Chunlai Xue State Key Laboratory on Integrated Optoelectronics,

More information

Performance Analysis of Dwdm System With Different Modulation Techique And Photodiode

Performance Analysis of Dwdm System With Different Modulation Techique And Photodiode The International Journal Of Engineering And Science (IJES) Volume 2 Issue 7 Pages 07-11 2013 ISSN(e): 2319 1813 ISSN(p): 2319 1805 Performance Analysis of Dwdm System With Different Modulation Techique

More information

Performance of Optical Encoder and Optical Multiplexer Using Mach-Zehnder Switching

Performance of Optical Encoder and Optical Multiplexer Using Mach-Zehnder Switching RESEARCH ARTICLE OPEN ACCESS Performance of Optical Encoder and Optical Multiplexer Using Mach-Zehnder Switching Abhishek Raj 1, A.K. Jaiswal 2, Mukesh Kumar 3, Rohini Saxena 4, Neelesh Agrawal 5 1 PG

More information

Broadband photonic microwave phase shifter based on controlling two RF modulation sidebands via a Fourier-domain optical processor

Broadband photonic microwave phase shifter based on controlling two RF modulation sidebands via a Fourier-domain optical processor Broadband photonic microwave phase shifter based on controlling two RF modulation sidebands via a Fourier-domain optical processor J. Yang, 1 E. H. W. Chan, 2 X. Wang, 1 X. Feng, 1* and B. Guan 1 1 Institute

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: Performance Analysis of WDM/SCM System Using EDFA Mukesh Kumar

More information

Mach Zehnder Interferometer True Time Delay Line

Mach Zehnder Interferometer True Time Delay Line Mach Zehnder Interferometer True Time Delay Line Terna Engineering College Nerul, Navi Mumbai ABSTRACT In this paper we propose an optical true time delay (TTD) line for Phased array antenna beam forming,

More information

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. Preface p. xiii Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. 6 Plastic Optical Fibers p. 9 Microstructure Optical

More information

Novel cascaded injection-locked 1.55-µm VCSELs with 66 GHz modulation bandwidth

Novel cascaded injection-locked 1.55-µm VCSELs with 66 GHz modulation bandwidth Novel cascaded injection-locked 1.55-µm VCSELs with 66 GHz modulation bandwidth Xiaoxue Zhao, 1 * Devang Parekh, 1 Erwin K. Lau, 1 Hyuk-Kee Sung, 1, 3 Ming C. Wu, 1 Werner Hofmann, 2 Markus C. Amann, 2

More information

Phasor monitoring of DxPSK signals using software-based synchronization technique

Phasor monitoring of DxPSK signals using software-based synchronization technique Phasor monitoring of DxPSK signals using software-based synchronization technique H. G. Choi, Y. Takushima, and Y. C. Chung* Department of Electrical Engineering, Korea Advanced Institute of Science and

More information

DWDM millimeter-wave radio-on-fiber systems

DWDM millimeter-wave radio-on-fiber systems DWDM millimeter-wave radio-on-fiber systems Hiroyuki Toda a, Toshiaki Kuri b, and Ken-ichi Kitayama c a Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto, Japan 610-0321; b National Institute

More information