LECTURE VI: LOSSLESS COMPRESSION ALGORITHMS DR. OUIEM BCHIR

Size: px
Start display at page:

Download "LECTURE VI: LOSSLESS COMPRESSION ALGORITHMS DR. OUIEM BCHIR"

Transcription

1 1 LECTURE VI: LOSSLESS COMPRESSION ALGORITHMS DR. OUIEM BCHIR

2 2 STORAGE SPACE Uncompressed graphics, audio, and video data require substantial storage capacity. Storing uncompressed video is not possible with today s technology (CD & DVD) Data transmission of uncompressed video over digital networks require very high bandwidth. To be cost-effective and feasible, multimedia systems must use compressed video and audio streams.

3 3 INTRODUCTION Compression: the process of coding that will effectively reduce the total number of bits needed to represent certain information General Data Compression Scheme

4 4 INTRODUCTION If the compression and decompression processes induce no information loss, then the compression scheme is lossless, otherwise, it is lossy. Compression ratio:

5 COMPRESSION STEPS 5

6 6 TYPES OF COMPRESSION Symmetric Compression Same time needed for decoding and encoding phases Asymmetric Compression Compression process is performed once and enough time is available, hence compression can take longer. Decompression is performed frequently and must be done fast.

7 STATISTICAL ENCODING (FREQUENCY DEPENDENT) 7 Fixed length coding Use equal number of bits to represent each symbol - message of N symbols requires L >= log_2(n) bits per symbol. Good encoding for symbols with equal probability of occurrence. Not efficient if probability of each symbol is not equal. Variable length encoding frequently occurring characters represented with shorter strings than seldom occurring characters. Statistical encoding is dependant on the frequency of occurrence of a character or a sequence of data bytes. You are given a sequence of symbols: S1, S2, S3 and the probability of occurrence of each symbol P(Si) = Pi.

8 BASICS OF INFORMATION THEORY 8 The entropy η of an information source with alphabet S = {s1,s2, sn} is pi: probability that symbol si will occur in S. Log2(1/pi): amount of information contained in si, which corresponds to the number of bits needed to encode si.

9 9 EXAMPLE Uniform distribution: pi=1/256, hence, the entropy of the image is log2256=8.

10 10 ENTROPY AND CODE LENGTH Entropy and Code Length The entropy η is weighted-sum of terms log2(1/pi) It represents the average amount of information contained per symbol in the source S. The entropy η specifies the lower bound for the average number of bits to code each symbol in S, i.e. The average length (measured in bits) of the codewords produced by the encoder.

11 11 RUN-LENGTH CODING Memoryless Source: An information source that is independently distributed: the value of the current symbol does not depend on the values of the previously appeared symbols. Run-Length Coding (RLC) (not memoryless): exploits memory present in the information source. Rational for RLC: If the information source has the property that symbols tend to form continuous groups, then such symbol and the length of the group can be coded.

12 RUN-LENGTH CODING (RLC) 12 Content dependent coding RLC replaces the sequence of same consecutive bytes with the number of occurrences. The number of occurrences is indicated by a special flag -! RLC Algorithm: If the same byte occurred at least 4 times then count the number of occurrences Write compressed data in the following format: the counted byte!number of occurrences Example Uncompressed sequence - ABCCCCCCCCCDEFFFFGGG Compressed sequence - ABC!4DEF!0GGG (from 20 to 13 bytes)

13 VARIABLE-LENGTH CODING (VLC) 13 Shannon-Fano Algorithm: a top-down approach 1. Sort the symbols according to the frequency count of their occurrences. 2. Recursively divide the symbols into two parts, each with approximately the same number of counts, until all parts contain only one symbol. Example: coding of HELLO

14 14

15 15

16 Another coding tree for HELLO by Shannon-Fano 16

17 17

18 HUFFMAN CODING ALGORITHM 18 Characters are stored with their probabilities Number of bits of the coded characters differs. Shortest code is assigned to most frequently occurring character. To determine Huffman code, we construct a binary tree. Leaves are characters to be encoded Nodes contain occurrence probabilities of the characters belonging to the subtree. 0 and 1 are assigned to the branches of the tree arbitrarily - therefore different Huffman codes are possible for the same data. Huffman table is generated. Huffman tables must be transmitted with compressed data

19 19 EXAMPLE OF HUFFMAN CODING

20 PROPERTIES OF HUFFMAN CODING 20 Unique prefix property: No Huffman code is a prefix of any other Huffman code precludes any ambiguity in decoding. Optimality: Minimum redundancy code proved optimal for a given data model (i.e., a given, accurate, probability distribution) The two least frequent symbols will have the same length for their Huffman codes, differing only at the last bit. Symbols that occur more frequent will have shorter Huffman codes than symbols that occur less frequent. The average code length for an information source S is strictly less than

21 21 ARITHMETIC CODING Each symbol is coded by considering prior data encoded sequence must be read from beginning; no random access possible. Each symbol is a portion of a real number between 0 and 1. When the message becomes longer, the length of the interval shortens and the number of bits needed to represent the interval increases.

22 ARITHMETIC VS. HUFFMAN 22 Arithmetic encoding does not encode each symbol separately; Huffman encoding does. Arithmetic encoding transmits only length of encoded string; Huffman encoding transmits the Huffman table. Compression ratios of both are similar.

23 23

24 24 ARITHMETIC CODING ENCODER

25 25 Example: Encode Symbols CAEE$

26 26

27 27

28 28 The final step in Arithmetic encoding calls for the generation of a number that falls within the rang [low, high). The above algorithm will ensure that the shortest binary codeword is found.

29 29

30 30 ARITHMETIC CODING DECODER

31 Decoding symbols CAEE$ 31

Lecture5: Lossless Compression Techniques

Lecture5: Lossless Compression Techniques Fixed to fixed mapping: we encoded source symbols of fixed length into fixed length code sequences Fixed to variable mapping: we encoded source symbols of fixed length into variable length code sequences

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 13: Information Theory (cont d) Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt March 22 th, 2015 1 o Source Code Generation Lecture Outlines Source Coding

More information

A Brief Introduction to Information Theory and Lossless Coding

A Brief Introduction to Information Theory and Lossless Coding A Brief Introduction to Information Theory and Lossless Coding 1 INTRODUCTION This document is intended as a guide to students studying 4C8 who have had no prior exposure to information theory. All of

More information

Module 8: Video Coding Basics Lecture 40: Need for video coding, Elements of information theory, Lossless coding. The Lecture Contains:

Module 8: Video Coding Basics Lecture 40: Need for video coding, Elements of information theory, Lossless coding. The Lecture Contains: The Lecture Contains: The Need for Video Coding Elements of a Video Coding System Elements of Information Theory Symbol Encoding Run-Length Encoding Entropy Encoding file:///d /...Ganesh%20Rana)/MY%20COURSE_Ganesh%20Rana/Prof.%20Sumana%20Gupta/FINAL%20DVSP/lecture%2040/40_1.htm[12/31/2015

More information

Entropy, Coding and Data Compression

Entropy, Coding and Data Compression Entropy, Coding and Data Compression Data vs. Information yes, not, yes, yes, not not In ASCII, each item is 3 8 = 24 bits of data But if the only possible answers are yes and not, there is only one bit

More information

Introduction to Source Coding

Introduction to Source Coding Comm. 52: Communication Theory Lecture 7 Introduction to Source Coding - Requirements of source codes - Huffman Code Length Fixed Length Variable Length Source Code Properties Uniquely Decodable allow

More information

Multimedia Systems Entropy Coding Mahdi Amiri February 2011 Sharif University of Technology

Multimedia Systems Entropy Coding Mahdi Amiri February 2011 Sharif University of Technology Course Presentation Multimedia Systems Entropy Coding Mahdi Amiri February 2011 Sharif University of Technology Data Compression Motivation Data storage and transmission cost money Use fewest number of

More information

Information Theory and Communication Optimal Codes

Information Theory and Communication Optimal Codes Information Theory and Communication Optimal Codes Ritwik Banerjee rbanerjee@cs.stonybrook.edu c Ritwik Banerjee Information Theory and Communication 1/1 Roadmap Examples and Types of Codes Kraft Inequality

More information

Coding for Efficiency

Coding for Efficiency Let s suppose that, over some channel, we want to transmit text containing only 4 symbols, a, b, c, and d. Further, let s suppose they have a probability of occurrence in any block of text we send as follows

More information

2.1. General Purpose Run Length Encoding Relative Encoding Tokanization or Pattern Substitution

2.1. General Purpose Run Length Encoding Relative Encoding Tokanization or Pattern Substitution 2.1. General Purpose There are many popular general purpose lossless compression techniques, that can be applied to any type of data. 2.1.1. Run Length Encoding Run Length Encoding is a compression technique

More information

# 12 ECE 253a Digital Image Processing Pamela Cosman 11/4/11. Introductory material for image compression

# 12 ECE 253a Digital Image Processing Pamela Cosman 11/4/11. Introductory material for image compression # 2 ECE 253a Digital Image Processing Pamela Cosman /4/ Introductory material for image compression Motivation: Low-resolution color image: 52 52 pixels/color, 24 bits/pixel 3/4 MB 3 2 pixels, 24 bits/pixel

More information

Module 3 Greedy Strategy

Module 3 Greedy Strategy Module 3 Greedy Strategy Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu Introduction to Greedy Technique Main

More information

Comm. 502: Communication Theory. Lecture 6. - Introduction to Source Coding

Comm. 502: Communication Theory. Lecture 6. - Introduction to Source Coding Comm. 50: Communication Theory Lecture 6 - Introduction to Source Coding Digital Communication Systems Source of Information User of Information Source Encoder Source Decoder Channel Encoder Channel Decoder

More information

MAS160: Signals, Systems & Information for Media Technology. Problem Set 4. DUE: October 20, 2003

MAS160: Signals, Systems & Information for Media Technology. Problem Set 4. DUE: October 20, 2003 MAS160: Signals, Systems & Information for Media Technology Problem Set 4 DUE: October 20, 2003 Instructors: V. Michael Bove, Jr. and Rosalind Picard T.A. Jim McBride Problem 1: Simple Psychoacoustic Masking

More information

Module 3 Greedy Strategy

Module 3 Greedy Strategy Module 3 Greedy Strategy Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu Introduction to Greedy Technique Main

More information

Information Theory and Huffman Coding

Information Theory and Huffman Coding Information Theory and Huffman Coding Consider a typical Digital Communication System: A/D Conversion Sampling and Quantization D/A Conversion Source Encoder Source Decoder bit stream bit stream Channel

More information

Lossless Image Compression Techniques Comparative Study

Lossless Image Compression Techniques Comparative Study Lossless Image Compression Techniques Comparative Study Walaa Z. Wahba 1, Ashraf Y. A. Maghari 2 1M.Sc student, Faculty of Information Technology, Islamic university of Gaza, Gaza, Palestine 2Assistant

More information

Images with (a) coding redundancy; (b) spatial redundancy; (c) irrelevant information

Images with (a) coding redundancy; (b) spatial redundancy; (c) irrelevant information Images with (a) coding redundancy; (b) spatial redundancy; (c) irrelevant information 1992 2008 R. C. Gonzalez & R. E. Woods For the image in Fig. 8.1(a): 1992 2008 R. C. Gonzalez & R. E. Woods Measuring

More information

Huffman Coding - A Greedy Algorithm. Slides based on Kevin Wayne / Pearson-Addison Wesley

Huffman Coding - A Greedy Algorithm. Slides based on Kevin Wayne / Pearson-Addison Wesley - A Greedy Algorithm Slides based on Kevin Wayne / Pearson-Addison Wesley Greedy Algorithms Greedy Algorithms Build up solutions in small steps Make local decisions Previous decisions are never reconsidered

More information

A High-Throughput Memory-Based VLC Decoder with Codeword Boundary Prediction

A High-Throughput Memory-Based VLC Decoder with Codeword Boundary Prediction 1514 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000 A High-Throughput Memory-Based VLC Decoder with Codeword Boundary Prediction Bai-Jue Shieh, Yew-San Lee,

More information

Solutions to Assignment-2 MOOC-Information Theory

Solutions to Assignment-2 MOOC-Information Theory Solutions to Assignment-2 MOOC-Information Theory 1. Which of the following is a prefix-free code? a) 01, 10, 101, 00, 11 b) 0, 11, 01 c) 01, 10, 11, 00 Solution:- The codewords of (a) are not prefix-free

More information

Channel Coding/Decoding. Hamming Method

Channel Coding/Decoding. Hamming Method Channel Coding/Decoding Hamming Method INFORMATION TRANSFER ACROSS CHANNELS Sent Received messages symbols messages source encoder Source coding Channel coding Channel Channel Source decoder decoding decoding

More information

MAS.160 / MAS.510 / MAS.511 Signals, Systems and Information for Media Technology Fall 2007

MAS.160 / MAS.510 / MAS.511 Signals, Systems and Information for Media Technology Fall 2007 MIT OpenCourseWare http://ocw.mit.edu MAS.160 / MAS.510 / MAS.511 Signals, Systems and Information for Media Technology Fall 2007 For information about citing these materials or our Terms of Use, visit:

More information

Compression. Encryption. Decryption. Decompression. Presentation of Information to client site

Compression. Encryption. Decryption. Decompression. Presentation of Information to client site DOCUMENT Anup Basu Audio Image Video Data Graphics Objectives Compression Encryption Network Communications Decryption Decompression Client site Presentation of Information to client site Multimedia -

More information

Chapter 1 INTRODUCTION TO SOURCE CODING AND CHANNEL CODING. Whether a source is analog or digital, a digital communication

Chapter 1 INTRODUCTION TO SOURCE CODING AND CHANNEL CODING. Whether a source is analog or digital, a digital communication 1 Chapter 1 INTRODUCTION TO SOURCE CODING AND CHANNEL CODING 1.1 SOURCE CODING Whether a source is analog or digital, a digital communication system is designed to transmit information in digital form.

More information

GENERIC CODE DESIGN ALGORITHMS FOR REVERSIBLE VARIABLE-LENGTH CODES FROM THE HUFFMAN CODE

GENERIC CODE DESIGN ALGORITHMS FOR REVERSIBLE VARIABLE-LENGTH CODES FROM THE HUFFMAN CODE GENERIC CODE DESIGN ALGORITHMS FOR REVERSIBLE VARIABLE-LENGTH CODES FROM THE HUFFMAN CODE Wook-Hyun Jeong and Yo-Sung Ho Kwangju Institute of Science and Technology (K-JIST) Oryong-dong, Buk-gu, Kwangju,

More information

Greedy Algorithms. Kleinberg and Tardos, Chapter 4

Greedy Algorithms. Kleinberg and Tardos, Chapter 4 Greedy Algorithms Kleinberg and Tardos, Chapter 4 1 Selecting gas stations Road trip from Fort Collins to Durango on a given route with length L, and fuel stations at positions b i. Fuel capacity = C miles.

More information

CHAPTER 5 PAPR REDUCTION USING HUFFMAN AND ADAPTIVE HUFFMAN CODES

CHAPTER 5 PAPR REDUCTION USING HUFFMAN AND ADAPTIVE HUFFMAN CODES 119 CHAPTER 5 PAPR REDUCTION USING HUFFMAN AND ADAPTIVE HUFFMAN CODES 5.1 INTRODUCTION In this work the peak powers of the OFDM signal is reduced by applying Adaptive Huffman Codes (AHC). First the encoding

More information

COMM901 Source Coding and Compression Winter Semester 2013/2014. Midterm Exam

COMM901 Source Coding and Compression Winter Semester 2013/2014. Midterm Exam German University in Cairo - GUC Faculty of Information Engineering & Technology - IET Department of Communication Engineering Dr.-Ing. Heiko Schwarz COMM901 Source Coding and Compression Winter Semester

More information

Monday, February 2, Is assigned today. Answers due by noon on Monday, February 9, 2015.

Monday, February 2, Is assigned today. Answers due by noon on Monday, February 9, 2015. Monday, February 2, 2015 Topics for today Homework #1 Encoding checkers and chess positions Constructing variable-length codes Huffman codes Homework #1 Is assigned today. Answers due by noon on Monday,

More information

MULTIMEDIA SYSTEMS

MULTIMEDIA SYSTEMS 1 Department of Computer Engineering, Faculty of Engineering King Mongkut s Institute of Technology Ladkrabang 01076531 MULTIMEDIA SYSTEMS Pk Pakorn Watanachaturaporn, Wt ht Ph.D. PhD pakorn@live.kmitl.ac.th,

More information

Pooja Rani(M.tech) *, Sonal ** * M.Tech Student, ** Assistant Professor

Pooja Rani(M.tech) *, Sonal ** * M.Tech Student, ** Assistant Professor A Study of Image Compression Techniques Pooja Rani(M.tech) *, Sonal ** * M.Tech Student, ** Assistant Professor Department of Computer Science & Engineering, BPS Mahila Vishvavidyalya, Sonipat kulriapooja@gmail.com,

More information

COPYRIGHTED MATERIAL. Introduction. 1.1 Communication Systems

COPYRIGHTED MATERIAL. Introduction. 1.1 Communication Systems 1 Introduction The reliable transmission of information over noisy channels is one of the basic requirements of digital information and communication systems. Here, transmission is understood both as transmission

More information

A SURVEY ON DICOM IMAGE COMPRESSION AND DECOMPRESSION TECHNIQUES

A SURVEY ON DICOM IMAGE COMPRESSION AND DECOMPRESSION TECHNIQUES A SURVEY ON DICOM IMAGE COMPRESSION AND DECOMPRESSION TECHNIQUES Shreya A 1, Ajay B.N 2 M.Tech Scholar Department of Computer Science and Engineering 2 Assitant Professor, Department of Computer Science

More information

The Need for Data Compression. Data Compression (for Images) -Compressing Graphical Data. Lossy vs Lossless compression

The Need for Data Compression. Data Compression (for Images) -Compressing Graphical Data. Lossy vs Lossless compression The Need for Data Compression Data Compression (for Images) -Compressing Graphical Data Graphical images in bitmap format take a lot of memory e.g. 1024 x 768 pixels x 24 bits-per-pixel = 2.4Mbyte =18,874,368

More information

SOME EXAMPLES FROM INFORMATION THEORY (AFTER C. SHANNON).

SOME EXAMPLES FROM INFORMATION THEORY (AFTER C. SHANNON). SOME EXAMPLES FROM INFORMATION THEORY (AFTER C. SHANNON). 1. Some easy problems. 1.1. Guessing a number. Someone chose a number x between 1 and N. You are allowed to ask questions: Is this number larger

More information

Digital Communication Systems ECS 452

Digital Communication Systems ECS 452 Digital Communication Systems ECS 452 Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 2. Source Coding 1 Office Hours: BKD, 6th floor of Sirindhralai building Monday 10:00-10:40 Tuesday 12:00-12:40

More information

Chapter 6: Memory: Information and Secret Codes. CS105: Great Insights in Computer Science

Chapter 6: Memory: Information and Secret Codes. CS105: Great Insights in Computer Science Chapter 6: Memory: Information and Secret Codes CS105: Great Insights in Computer Science Overview When we decide how to represent something in bits, there are some competing interests: easily manipulated/processed

More information

Digital Audio. Lecture-6

Digital Audio. Lecture-6 Digital Audio Lecture-6 Topics today Digitization of sound PCM Lossless predictive coding 2 Sound Sound is a pressure wave, taking continuous values Increase / decrease in pressure can be measured in amplitude,

More information

FAST LEMPEL-ZIV (LZ 78) COMPLEXITY ESTIMATION USING CODEBOOK HASHING

FAST LEMPEL-ZIV (LZ 78) COMPLEXITY ESTIMATION USING CODEBOOK HASHING FAST LEMPEL-ZIV (LZ 78) COMPLEXITY ESTIMATION USING CODEBOOK HASHING Harman Jot, Rupinder Kaur M.Tech, Department of Electronics and Communication, Punjabi University, Patiala, Punjab, India I. INTRODUCTION

More information

Wednesday, February 1, 2017

Wednesday, February 1, 2017 Wednesday, February 1, 2017 Topics for today Encoding game positions Constructing variable-length codes Huffman codes Encoding Game positions Some programs that play two-player games (e.g., tic-tac-toe,

More information

1 This work was partially supported by NSF Grant No. CCR , and by the URI International Engineering Program.

1 This work was partially supported by NSF Grant No. CCR , and by the URI International Engineering Program. Combined Error Correcting and Compressing Codes Extended Summary Thomas Wenisch Peter F. Swaszek Augustus K. Uht 1 University of Rhode Island, Kingston RI Submitted to International Symposium on Information

More information

Introduction to Error Control Coding

Introduction to Error Control Coding Introduction to Error Control Coding 1 Content 1. What Error Control Coding Is For 2. How Coding Can Be Achieved 3. Types of Coding 4. Types of Errors & Channels 5. Types of Codes 6. Types of Error Control

More information

Arithmetic Compression on SPIHT Encoded Images

Arithmetic Compression on SPIHT Encoded Images Arithmetic Compression on SPIHT Encoded Images Todd Owen, Scott Hauck {towen, hauck}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 UWEE Technical Report Number UWEETR-2002-0007

More information

Computing and Communications 2. Information Theory -Channel Capacity

Computing and Communications 2. Information Theory -Channel Capacity 1896 1920 1987 2006 Computing and Communications 2. Information Theory -Channel Capacity Ying Cui Department of Electronic Engineering Shanghai Jiao Tong University, China 2017, Autumn 1 Outline Communication

More information

UCSD ECE154C Handout #21 Prof. Young-Han Kim Thursday, April 28, Midterm Solutions (Prepared by TA Shouvik Ganguly)

UCSD ECE154C Handout #21 Prof. Young-Han Kim Thursday, April 28, Midterm Solutions (Prepared by TA Shouvik Ganguly) UCSD ECE54C Handout #2 Prof. Young-Han Kim Thursday, April 28, 26 Midterm Solutions (Prepared by TA Shouvik Ganguly) There are 3 problems, each problem with multiple parts, each part worth points. Your

More information

A Hybrid Technique for Image Compression

A Hybrid Technique for Image Compression Australian Journal of Basic and Applied Sciences, 5(7): 32-44, 2011 ISSN 1991-8178 A Hybrid Technique for Image Compression Hazem (Moh'd Said) Abdel Majid Hatamleh Computer DepartmentUniversity of Al-Balqa

More information

ECE Advanced Communication Theory, Spring 2007 Midterm Exam Monday, April 23rd, 6:00-9:00pm, ELAB 325

ECE Advanced Communication Theory, Spring 2007 Midterm Exam Monday, April 23rd, 6:00-9:00pm, ELAB 325 C 745 - Advanced Communication Theory, Spring 2007 Midterm xam Monday, April 23rd, 600-900pm, LAB 325 Overview The exam consists of five problems for 150 points. The points for each part of each problem

More information

CSE 100: BST AVERAGE CASE AND HUFFMAN CODES

CSE 100: BST AVERAGE CASE AND HUFFMAN CODES CSE 100: BST AVERAGE CASE AND HUFFMAN CODES Recap: Average Case Analysis of successful find in a BST N nodes Expected total depth of all BSTs with N nodes Recap: Probability of having i nodes in the left

More information

HUFFMAN CODING. Catherine Bénéteau and Patrick J. Van Fleet. SACNAS 2009 Mini Course. University of South Florida and University of St.

HUFFMAN CODING. Catherine Bénéteau and Patrick J. Van Fleet. SACNAS 2009 Mini Course. University of South Florida and University of St. Catherine Bénéteau and Patrick J. Van Fleet University of South Florida and University of St. Thomas SACNAS 2009 Mini Course WEDNESDAY, 14 OCTOBER, 2009 (1:40-3:00) LECTURE 2 SACNAS 2009 1 / 10 All lecture

More information

DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK. Subject Name: Information Coding Techniques UNIT I INFORMATION ENTROPY FUNDAMENTALS

DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK. Subject Name: Information Coding Techniques UNIT I INFORMATION ENTROPY FUNDAMENTALS DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK Subject Name: Year /Sem: II / IV UNIT I INFORMATION ENTROPY FUNDAMENTALS PART A (2 MARKS) 1. What is uncertainty? 2. What is prefix coding? 3. State the

More information

Keywords Audio Steganography, Compressive Algorithms, SNR, Capacity, Robustness. (Figure 1: The Steganographic operation) [10]

Keywords Audio Steganography, Compressive Algorithms, SNR, Capacity, Robustness. (Figure 1: The Steganographic operation) [10] Volume 4, Issue 5, May 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Audio Steganography

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 14: Information Theory (cont d) Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt March 25 th, 2015 1 Previous Lecture: Source Code Generation: Lossless

More information

6.004 Computation Structures Spring 2009

6.004 Computation Structures Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 6.004 Computation Structures Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Welcome to 6.004! Course

More information

Comparative Analysis of Lossless Image Compression techniques SPHIT, JPEG-LS and Data Folding

Comparative Analysis of Lossless Image Compression techniques SPHIT, JPEG-LS and Data Folding Comparative Analysis of Lossless Compression techniques SPHIT, JPEG-LS and Data Folding Mohd imran, Tasleem Jamal, Misbahul Haque, Mohd Shoaib,,, Department of Computer Engineering, Aligarh Muslim University,

More information

Run-Length Based Huffman Coding

Run-Length Based Huffman Coding Chapter 5 Run-Length Based Huffman Coding This chapter presents a multistage encoding technique to reduce the test data volume and test power in scan-based test applications. We have proposed a statistical

More information

Outline. Communications Engineering 1

Outline. Communications Engineering 1 Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

What You ll Learn Today

What You ll Learn Today CS101 Lecture 18: Image Compression Aaron Stevens 21 October 2010 Some material form Wikimedia Commons Special thanks to John Magee and his dog 1 What You ll Learn Today Review: how big are image files?

More information

Multimedia Communications. Lossless Image Compression

Multimedia Communications. Lossless Image Compression Multimedia Communications Lossless Image Compression Old JPEG-LS JPEG, to meet its requirement for a lossless mode of operation, has chosen a simple predictive method which is wholly independent of the

More information

REVIEW OF IMAGE COMPRESSION TECHNIQUES FOR MULTIMEDIA IMAGES

REVIEW OF IMAGE COMPRESSION TECHNIQUES FOR MULTIMEDIA IMAGES REVIEW OF IMAGE COMPRESSION TECHNIQUES FOR MULTIMEDIA IMAGES 1 Tamanna, 2 Neha Bassan 1 Student- Department of Computer science, Lovely Professional University Phagwara 2 Assistant Professor, Department

More information

Huffman Coding For Digital Photography

Huffman Coding For Digital Photography Huffman Coding For Digital Photography Raydhitya Yoseph 13509092 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

More information

Lossless Grayscale Image Compression using Blockwise Entropy Shannon (LBES)

Lossless Grayscale Image Compression using Blockwise Entropy Shannon (LBES) Volume No., July Lossless Grayscale Image Compression using Blockwise ntropy Shannon (LBS) S. Anantha Babu Ph.D. (Research Scholar) & Assistant Professor Department of Computer Science and ngineering V

More information

Indian Institute of Technology, Roorkee, India

Indian Institute of Technology, Roorkee, India Volume-, Issue-, Feb.-7 A COMPARATIVE STUDY OF LOSSLESS COMPRESSION TECHNIQUES J P SATI, M J NIGAM, Indian Institute of Technology, Roorkee, India E-mail: jypsati@gmail.com, mkndnfec@gmail.com Abstract-

More information

Course Developer: Ranjan Bose, IIT Delhi

Course Developer: Ranjan Bose, IIT Delhi Course Title: Coding Theory Course Developer: Ranjan Bose, IIT Delhi Part I Information Theory and Source Coding 1. Source Coding 1.1. Introduction to Information Theory 1.2. Uncertainty and Information

More information

Hamming net based Low Complexity Successive Cancellation Polar Decoder

Hamming net based Low Complexity Successive Cancellation Polar Decoder Hamming net based Low Complexity Successive Cancellation Polar Decoder [1] Makarand Jadhav, [2] Dr. Ashok Sapkal, [3] Prof. Ram Patterkine [1] Ph.D. Student, [2] Professor, Government COE, Pune, [3] Ex-Head

More information

2. REVIEW OF LITERATURE

2. REVIEW OF LITERATURE 2. REVIEW OF LITERATURE Digital image processing is the use of the algorithms and procedures for operations such as image enhancement, image compression, image analysis, mapping. Transmission of information

More information

4. Which of the following channel matrices respresent a symmetric channel? [01M02] 5. The capacity of the channel with the channel Matrix

4. Which of the following channel matrices respresent a symmetric channel? [01M02] 5. The capacity of the channel with the channel Matrix Send SMS s : ONJntuSpeed To 9870807070 To Recieve Jntu Updates Daily On Your Mobile For Free www.strikingsoon.comjntu ONLINE EXMINTIONS [Mid 2 - dc] http://jntuk.strikingsoon.com 1. Two binary random

More information

Chapter 8. Representing Multimedia Digitally

Chapter 8. Representing Multimedia Digitally Chapter 8 Representing Multimedia Digitally Learning Objectives Explain how RGB color is represented in bytes Explain the difference between bits and binary numbers Change an RGB color by binary addition

More information

Rab Nawaz. Prof. Zhang Wenyi

Rab Nawaz. Prof. Zhang Wenyi Rab Nawaz PhD Scholar (BL16006002) School of Information Science and Technology University of Science and Technology of China, Hefei Email: rabnawaz@mail.ustc.edu.cn Submitted to Prof. Zhang Wenyi wenyizha@ustc.edu.cn

More information

CHAPTER 6: REGION OF INTEREST (ROI) BASED IMAGE COMPRESSION FOR RADIOGRAPHIC WELD IMAGES. Every image has a background and foreground detail.

CHAPTER 6: REGION OF INTEREST (ROI) BASED IMAGE COMPRESSION FOR RADIOGRAPHIC WELD IMAGES. Every image has a background and foreground detail. 69 CHAPTER 6: REGION OF INTEREST (ROI) BASED IMAGE COMPRESSION FOR RADIOGRAPHIC WELD IMAGES 6.0 INTRODUCTION Every image has a background and foreground detail. The background region contains details which

More information

Approximate Compression Enhancing compressibility through data approximation

Approximate Compression Enhancing compressibility through data approximation Approximate Compression Enhancing compressibility through data approximation A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Harini Suresh IN PARTIAL FULFILLMENT

More information

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP ( 1

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (  1 VHDL design of lossy DWT based image compression technique for video conferencing Anitha Mary. M 1 and Dr.N.M. Nandhitha 2 1 VLSI Design, Sathyabama University Chennai, Tamilnadu 600119, India 2 ECE, Sathyabama

More information

Unit 1.1: Information representation

Unit 1.1: Information representation Unit 1.1: Information representation 1.1.1 Different number system A number system is a writing system for expressing numbers, that is, a mathematical notation for representing numbers of a given set,

More information

Chapter 9 Image Compression Standards

Chapter 9 Image Compression Standards Chapter 9 Image Compression Standards 9.1 The JPEG Standard 9.2 The JPEG2000 Standard 9.3 The JPEG-LS Standard 1IT342 Image Compression Standards The image standard specifies the codec, which defines how

More information

[Srivastava* et al., 5(8): August, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Srivastava* et al., 5(8): August, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY COMPRESSING BIOMEDICAL IMAGE BY USING INTEGER WAVELET TRANSFORM AND PREDICTIVE ENCODER Anushree Srivastava*, Narendra Kumar Chaurasia

More information

MATHEMATICS IN COMMUNICATIONS: INTRODUCTION TO CODING. A Public Lecture to the Uganda Mathematics Society

MATHEMATICS IN COMMUNICATIONS: INTRODUCTION TO CODING. A Public Lecture to the Uganda Mathematics Society Abstract MATHEMATICS IN COMMUNICATIONS: INTRODUCTION TO CODING A Public Lecture to the Uganda Mathematics Society F F Tusubira, PhD, MUIPE, MIEE, REng, CEng Mathematical theory and techniques play a vital

More information

SHANNON S source channel separation theorem states

SHANNON S source channel separation theorem states IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 9, SEPTEMBER 2009 3927 Source Channel Coding for Correlated Sources Over Multiuser Channels Deniz Gündüz, Member, IEEE, Elza Erkip, Senior Member,

More information

Basics of Error Correcting Codes

Basics of Error Correcting Codes Basics of Error Correcting Codes Drawing from the book Information Theory, Inference, and Learning Algorithms Downloadable or purchasable: http://www.inference.phy.cam.ac.uk/mackay/itila/book.html CSE

More information

[Manisha*, 4.(10): October, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Manisha*, 4.(10): October, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY A SURVEY OF DATA COMPRESSION TECHNIQUES Ms.Anjikhane Manisha*, Ms.Hannure Asma * M.Tech-CSE Department of Computer Science,Maharashtra.

More information

Speech Coding in the Frequency Domain

Speech Coding in the Frequency Domain Speech Coding in the Frequency Domain Speech Processing Advanced Topics Tom Bäckström Aalto University October 215 Introduction The speech production model can be used to efficiently encode speech signals.

More information

Digital Communication Systems ECS 452

Digital Communication Systems ECS 452 Digital Communication Systems ECS 452 Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th Source Coding 1 Office Hours: BKD 3601-7 Monday 14:00-16:00 Wednesday 14:40-16:00 Noise & Interference Elements

More information

COURSE MATERIAL Subject Name: Communication Theory UNIT V

COURSE MATERIAL Subject Name: Communication Theory UNIT V NH-67, TRICHY MAIN ROAD, PULIYUR, C.F. - 639114, KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL Subject Name: Communication Theory Subject Code: 080290020 Class/Sem:

More information

Huffman-Compressed Wavelet Trees for Large Alphabets

Huffman-Compressed Wavelet Trees for Large Alphabets Laboratorio de Bases de Datos Facultade de Informática Universidade da Coruña Departamento de Ciencias de la Computación Universidad de Chile Huffman-Compressed Wavelet Trees for Large Alphabets Gonzalo

More information

6. FUNDAMENTALS OF CHANNEL CODER

6. FUNDAMENTALS OF CHANNEL CODER 82 6. FUNDAMENTALS OF CHANNEL CODER 6.1 INTRODUCTION The digital information can be transmitted over the channel using different signaling schemes. The type of the signal scheme chosen mainly depends on

More information

The Strengths and Weaknesses of Different Image Compression Methods. Samuel Teare and Brady Jacobson

The Strengths and Weaknesses of Different Image Compression Methods. Samuel Teare and Brady Jacobson The Strengths and Weaknesses of Different Image Compression Methods Samuel Teare and Brady Jacobson Lossy vs Lossless Lossy compression reduces a file size by permanently removing parts of the data that

More information

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates Objectives In this chapter, you will learn about The binary numbering system Boolean logic and gates Building computer circuits

More information

ECE 8771, Information Theory & Coding for Digital Communications Summer 2010 Syllabus & Outline (Draft 1 - May 12, 2010)

ECE 8771, Information Theory & Coding for Digital Communications Summer 2010 Syllabus & Outline (Draft 1 - May 12, 2010) ECE 8771, Information Theory & Coding for Digital Communications Summer 2010 Syllabus & Outline (Draft 1 - May 12, 2010) Instructor: Kevin Buckley, Tolentine 433a, 610-519-5658 (W), 610-519-4436 (F), buckley@ece.vill.edu,

More information

Ch. 3: Image Compression Multimedia Systems

Ch. 3: Image Compression Multimedia Systems 4/24/213 Ch. 3: Image Compression Multimedia Systems Prof. Ben Lee (modified by Prof. Nguyen) Oregon State University School of Electrical Engineering and Computer Science Outline Introduction JPEG Standard

More information

The idea of similarity is through the Hamming

The idea of similarity is through the Hamming Hamming distance A good channel code is designed so that, if a few bit errors occur in transmission, the output can still be identified as the correct input. This is possible because although incorrect,

More information

Comparison of Data Compression in Text Using Huffman, Shannon-Fano, Run Length Encoding, and Tunstall Method

Comparison of Data Compression in Text Using Huffman, Shannon-Fano, Run Length Encoding, and Tunstall Method Comparison of Data Compression in Text Using Huffman, Shannon-Fano, Run Length Encoding, and Tunstall Method Dea Ayu Rachesti College Student, Faculty of Electrical Engineering, Telkom University, Bandung,

More information

SCHEME OF COURSE WORK. Course Code : 13EC1114 L T P C : ELECTRONICS AND COMMUNICATION ENGINEERING

SCHEME OF COURSE WORK. Course Code : 13EC1114 L T P C : ELECTRONICS AND COMMUNICATION ENGINEERING SCHEME OF COURSE WORK Course Details: Course Title : DIGITAL COMMUNICATIONS Course Code : 13EC1114 L T P C 4 0 0 3 Program Specialization Semester Prerequisites Courses to which it is a prerequisite :

More information

Problem Sheet 1 Probability, random processes, and noise

Problem Sheet 1 Probability, random processes, and noise Problem Sheet 1 Probability, random processes, and noise 1. If F X (x) is the distribution function of a random variable X and x 1 x 2, show that F X (x 1 ) F X (x 2 ). 2. Use the definition of the cumulative

More information

Digital Communications I: Modulation and Coding Course. Term Catharina Logothetis Lecture 12

Digital Communications I: Modulation and Coding Course. Term Catharina Logothetis Lecture 12 Digital Communications I: Modulation and Coding Course Term 3-8 Catharina Logothetis Lecture Last time, we talked about: How decoding is performed for Convolutional codes? What is a Maximum likelihood

More information

Lab/Project Error Control Coding using LDPC Codes and HARQ

Lab/Project Error Control Coding using LDPC Codes and HARQ Linköping University Campus Norrköping Department of Science and Technology Erik Bergfeldt TNE066 Telecommunications Lab/Project Error Control Coding using LDPC Codes and HARQ Error control coding is an

More information

DCSP-3: Minimal Length Coding. Jianfeng Feng

DCSP-3: Minimal Length Coding. Jianfeng Feng DCSP-3: Minimal Length Coding Jianfeng Feng Department of Computer Science Warwick Univ., UK Jianfeng.feng@warwick.ac.uk http://www.dcs.warwick.ac.uk/~feng/dcsp.html Automatic Image Caption (better than

More information

Lecture 4: Wireless Physical Layer: Channel Coding. Mythili Vutukuru CS 653 Spring 2014 Jan 16, Thursday

Lecture 4: Wireless Physical Layer: Channel Coding. Mythili Vutukuru CS 653 Spring 2014 Jan 16, Thursday Lecture 4: Wireless Physical Layer: Channel Coding Mythili Vutukuru CS 653 Spring 2014 Jan 16, Thursday Channel Coding Modulated waveforms disrupted by signal propagation through wireless channel leads

More information

Tarek M. Sobh and Tarek Alameldin

Tarek M. Sobh and Tarek Alameldin Operator/System Communication : An Optimizing Decision Tool Tarek M. Sobh and Tarek Alameldin Department of Computer and Information Science School of Engineering and Applied Science University of Pennsylvania,

More information

UNIT-1. Basic signal processing operations in digital communication

UNIT-1. Basic signal processing operations in digital communication UNIT-1 Lecture-1 Basic signal processing operations in digital communication The three basic elements of every communication systems are Transmitter, Receiver and Channel. The Overall purpose of this system

More information

FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY

FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY 1 Information Transmission Chapter 5, Block codes FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY 2 Methods of channel coding For channel coding (error correction) we have two main classes of codes,

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : COMMUNICATION THEORY SUB.CODE: EC1252 YEAR : II SEMESTER : IV UNIT I AMPLITUDE MODULATION SYSTEMS

More information