Characterization and Modeling of Underwater Acoustic Communications Channels for Frequency-Shift-Keying Signals

Size: px
Start display at page:

Download "Characterization and Modeling of Underwater Acoustic Communications Channels for Frequency-Shift-Keying Signals"

Transcription

1 Characterization and Modeling of Underwater Acoustic Counications Channels for Frequency-Shift-Keying Signals Wen-Bin Yang and T.C. Yang Naval Research Laboratory Washington, DC 375 USA Abstract In a fading channel, bit error rate for frequencyshift-keying signals is deterined predoinantly by the envelope aplitude fading statistics of the signal. The narrowband envelope aplitude distributions are easured fro the TREX4 data (as a function of frequency) using M-sequence signals centered at 7 khz with a 5 khz bandwidth. The results do not fit the Rayleigh, Rician, Nakagai -distributions. In contrast, we find that the data are fitted well by a K-distribution. We also analyze the data in ters of long-ter and short-ter statistics. The long-ter and short-ter fading statistics are well fitted by the lognoral distribution and Rayleigh distribution respectively, choosing the average tie scale to be ~. sec. The joint probability distribution function of a lognoral and the Rayleigh distribution is approxiately the K-distribution. I. INTRODUCTION For underwater acoustic counications, the channel is characterized by (i) a long ultipath delay, which extends over any sybols causing inter-sybol interference (ISI), (ii) a high Doppler spread which iplies short channel coherence tie, and (iii) a tie-varying Doppler shift due to the relative platfor speed copared with the sound speed. This paper addresses channel characterization in the frequency doain, specifically the signal envelope aplitude statistics, which fors the basis of bit error rate predictions for MFSK signals. For M-ary frequency-shift-keying (MFSK) signals, the sybols are spread over the frequency band and odulated in both frequency and tie. To avoid ISI interference, the sybol duration (including the guard tie if appropriate) should be longer than the ultipath spread, but in practice this is often not the case. This ethod is referred to as incoherent counication, since each sybol is detected by an energy detector (for each tie-frequency grid). It is less sensitive to the channel teporal fluctuations and does not require a channel equalizer. The frequency coponents (bins) in the MFSK signaling are, in theory, orthogonal to each other, iplying that there is no leakage of the sybol energy fro one frequency channel to the other. In practice, this is not the case due to tievariant nature of the channel. Inter-frequency bin leakage can be substantial if there is significant error in the Doppler shift estiation. To iniize this effect, the frequency bin width f is often chosen to be uch larger than the uncertainty in the Doppler shift estiation. Channel characterization for MFSK odulation requires estiation of the channel spectru (the channel transfer function) as a function of frequency and tie. The bit error rate results not only fro the noise but also fro the ISI and inter- (frequency) channel interference (ICI). For bit error rate odeling/prediction in a realistic channel, the appropriate channel transfer function needs to include the effects of ISI and ICI. Bit error rate (BER) for MFSK signals depends on the envelope aplitude fading statistics as a function of frequency. Rayleigh and Rician aplitude probability distributions are two coonly assued odels for signal fading in radio frequency (RF) counications [-3]. For low frequency (e.g., < khz) sound propagation, Rayleigh and Rician statistics are associated with saturated and partially saturated schees in which the ultipaths are totally rando or partially rando. A discussion of the statistics for a narrowband signal can be found [4]. We find that neither of the above distributions holds for high frequency underwater acoustic counication signals. We deduce the channel spectru level fluctuation statistics fro data collected at sea, and provide a physics-based interpretation. Section II describes characteristics of aplitude fluctuations. Narrowband envelope aplitude distribution statistics are deduced fro data covering a wide band (4 khz) of frequencies. Section III reviews candidate fading statistical odels. Section IV deterines an appropriate odel for underwater acoustic channel. Section V provides conclusions. II. CHARACTERISTICS OF AMPLITUDE FLUCTUATIONS A. MFSK Modulation For a narrowband signal in a linear tie-variant channel, the channel transfer function can be defined by R(, t f) = H(, t f) S( f ), () where H is the tie-variant channel transfer function at frequency f, R is the received signal and S is the source aplitude. MFSK signals consist of any narrowband signals at frequencies f k, separated by f, where k =,,K, Rt (, fk) = H(, t fk) St (, fk), () where S(t,f k ) is the transitted sybol sequence in frequency bin f k at tie t, S(t,f k ) = or. Each sybol has a tie duration t = / f. Detection of sybols at the receiver is based on the sybol intensity R(t,f k ) which is heavily influenced by the channel spectral level H(t,f k ). Hence, BER /6/$. 6 IEEE

2 Report Docuentation Page For Approved OMB No Public reporting burden for the collection of inforation is estiated to average hour per response, including the tie for reviewing instructions, searching existing data sources, gathering and aintaining the data needed, and copleting and reviewing the collection of inforation. Send coents regarding this burden estiate or any other aspect of this collection of inforation, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Inforation Operations and Reports, 5 Jefferson Davis Highway, Suite 4, Arlington VA -43. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to coply with a collection of inforation if it does not display a currently valid OMB control nuber.. REPORT DATE SEP 6. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Characterization and Modeling of Underwater Acoustic Counications Channels for Frequency-Shift-Keying Signals 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory Washington, DC 375 USA 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES). SPONSOR/MONITOR S ACRONYM(S). DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unliited. SPONSOR/MONITOR S REPORT NUMBER(S) 3. SUPPLEMENTARY NOTES See also ADM6. Proceedings of the MTS/IEEE OCEANS 6 Boston Conference and Exhibition Held in Boston, Massachusetts on Septeber 5-, 6, The original docuent contains color iages. 4. ABSTRACT 5. SUBJECT TERMS 6. SECURITY CLASSIFICATION OF: 7. LIMITATION OF ABSTRACT UU a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified 8. NUMBER OF PAGES 6 9a. NAME OF RESPONSIBLE PERSON Standard For 98 (Rev. 8-98) Prescribed by ANSI Std Z39-8

3 odeling/prediction requires knowledge of the statistical distribution of H(t,f k ), the envelope aplitude statistics. Snapshots of the channel transfer functions are estiated fro received data using pseudo-rando signals, e.g., - sequences, Ht (, fk) = Rt (, fk) / St (, fk), (3) where R(t,f k ) and S(t,f k ) are the spectral level of the received and transitted signals as a function of frequency at t = t, for the -th sybol. The M-sequence signals, have a flat spectru when averaged over any sapling periods. B. Envelope Aplitude Statistics The M-sequence data were transitted in consecutive packets, each of 5 sec duration with built in tie gaps. Total transission tie was ~ 4 inutes. The M-sequence data are processed first by reoving the transducer s frequency response fro the received data. The beginning of the M- sequence in each packet is deterined by atched filtering the data using either the probe signal before the M-sequence or the first M-sequence, a standard processing technique for counications. The M-sequence data are then Fourier transfored with a window size equal to the sybol duration, (e.g., /8 sec). The channel spectru is obtained using Eq. (3), with the received and transitted data processed in the sae way. The ean spectral level Σ(f k ) of the channel transfer function is estiated by suing the spectru level over all channel transfer function snapshots and dividing the result by the nuber of saples. We find that Σ(f k ) decreases by as uch as 5 db at the edge of the frequency band. These frequency coponents are discarded in our analysis. The Σ(f k ) varies by - db within the 4 khz bandwidth, which is attributed to the uncertainty in the transducer response curve, which was under-sapled in the original (calibration) easureents. We reove this effect by the following operation: H ' ( t, fk) = H( t, fk) / Σ ( fk), (4) new where t denotes the sybol sequence in tie. Since the data were transitted in packets, one has t = n T + j t, where n is the packet nuber, n =,, 34. T is the tie separation between packets, and j is the sybol nuber within a packet, j =,, 856. Henceforth we will drop the prie and denote the data by H ( t, fk ). The frequency coherence bandwidth can be easured by cross correlating the channel transfer functions between two different frequencies denoted by its frequency index k and k, ρ (( k k) f ) = * H ( t, f ) H( t, f ) k k k k Ht (, f ) Ht (, f ), (5) where the correlation is done for each packet (suing over j for a fixed n) and then averaged over all the packets. We find that ρ <. when k k, indicating that the channel transfer functions are uncorrelated between frequency bins. In other words, the frequency coherence bandwidth is < 8 Hz. For each frequency bin f k, we deterine the probability distribution of the envelope aplitude (or the histogra) Ht (, fk). The distributions are used to copare with soe theoretical fading statistical odels. III. FADING STATISTICAL MODELS A narrowband signal can be represent by p( f) = H( f ) e i π f, where H(f) is the coplex aplitude, H( f) = X + i Y, where X and Y are often referred to as the in-phase and quadrature coponents of the signal. BER of MFSK signals is deterined by the fading statistics of the (envelope) aplitude Z = X + Y as a function of frequency. A. Models with Gaussian Assuption Assue that both X and Y are Gaussian rando variables with probability distributions given by X ~ N( µ x ; σ x ) and Y ~ N( µ y ; σ y ). The correlation coefficient of two Gaussian rando variables is defined as ρxy E( XY) µ xµ y =. (6) σxσy The distribution of the (envelope) aplitude can be expressed in ters of µ x, µ y, σ x, σ y, ρ xy as given in Eq.() of [4] in the context of a propagation odel. It can be shown that the (envelope) aplitude distribution so obtained is very general - the only assuptions are that the in-phase and quadrature coponents (X and Y) are Gaussian rando variables. One finds that when the two Gaussian rando variables are uncorrelated ( ρ xy = ), and σ x = σ y, the envelope aplitude distribution reduces to the Rician distribution for non-zero µ x, µ y and the Rayleigh distribution when µ x = µ y =. B. Models without Gaussian Assuption If the in-phase and quadrature coponents (X and Y) are not Gaussian rando variables, there are several odels used to characterize the fading channel including Nakagai - distribution [5] and non-rayleigh statistics [6]. Nakagai -distribution is odeled for RF counications channel and is defined as below. p ( ) z / z z = z e Ω, z Γ( ) Ω, (7) where Ω is defined as its second oent and the paraeter is defined as the ratio of oents, called the fading figure. The Nakagai distribution contains the Rayleigh distribution as a special case when =. It can have fewer deep fades than

4 the Rayleigh distribution when / <, and ore deep fades than the Rayleigh distribution when >. For non-rayleigh fading statistics, K-distribution is one of popular odels to characterize reverberant edia. The K- distribution is given by [6] υ 4 z z pz( z) = Kυ, z, (8) αγ( υ) α α where υ is a shape paraeter, α is a scale paraeter, Kυ is the odified Bessel function of the second kind, of order Γ (υ is the Gaa function. A special case of υ, and ) the K-distribution, as υ and αυ = σ reains constant, is a Rayleigh distribution. Experiental data are analyzed next to identify which odel is appropriate for the underwater acoustic counication channel. IV. FADING MODELS USING EXPERIMENTAL DATA TREX4 experient was conducted by the Naval Research Laboratory in April 4, which took place in the coast of New Jersey. Figure shows a sound speed profile based upon easureent at the site. Acoustic counication data were transitted fro a fixed source to a fixed receiver array at the range of 3.4 k. Water depth in the experiental area is about 7 eters. The source and receivers were located at about 35 eters depth. The vertical array has an aperture of approxiately eters, and contains 8 hydrophones with nonunifor spacing. The data presented below are fro a single receiver; we observe little difference between the receivers. The data have a high signal-to-noise ratio (SNR) 3 db. Depth [] TREX4: 4/3/4 :37:4(UTC) N W Sound Speed [/s] Figure. Sound speed profile in TREX4 experient An M-sequence signal with a bandwidth of 5 khz centered at 7 khz was used to characterize the underwater counication channel. Each transitted packet lasted approxiately.7 sec and contained 53 M-sequences. A total of 34 packets, extended over a period of an hour and containing 7 M-sequences, were analyzed. The aplitude statistics are plotted in Fig. for different values of f k. We find that the probability distributions are very siilar (within the statistical error) suggesting that the envelope aplitudes at different frequencies (within the band) have independent and identical distributions (iid). [In Fig., three frequencies bins have a slightly different distribution than the rest of the frequencies bins. This difference could be easily caused by a sall nuber of events in the high tail distribution (due to coherent interference between the signal and noise) that would shift the probability distribution to what is shown Aplitude Fading Statistics 3 Figure. Aplitude fading statistics in all frequency bins Assuing an iid property, we can include envelope aplitudes of all frequencies (within the band) to obtain ore statistical saples. The resulting statistical distribution is fit to the candidate distributions, whose paraeters are estiated using the st and nd oents of the experiental data. The statistics of the experiental data is plotted in Fig. 3(a) (for the 8Hz frequency bin data) and is copared with the Rician/Rayleigh distributions and the distribution using Mikhalevsky s odel. (The distribution of the Mikhalevsky s odel turns out to be close to the Rayleigh distribution given the easured first and second oents of the data.) We repeat the above analysis using a different signaling design, by varying the frequency bin size f fro 8Hz to 3Hz, and to 5Hz. The resulting envelope aplitude distributions are plotted in Figs. 3(b) and 3(c) to copare with the odeled probability distributions. These plots show that the odels have a poor fit with the data. They suggest that the aplitude statistics for high frequency underwater counication signals are neither Rician nor Rayleigh distribution, nor the ore general distribution derived assuing that the in-phase and quadrature coponents are Gaussian rando variables. Fro Figs. 3(a)-3(c), one notes that the easureent data do not fit the Nakagai odel either, despite the fact that the Nakagai -distribution can provide ore deep fades than a Rayleigh distribution. In contrast, the easureent data see to fit the K-distribution.

5 Fading Statistics (8Hz bin) Nakagai (=.65) TREX4 Data Rayleigh Unity Power K-distribution (ν=.9) Figure 3(a). Aplitude fading statistics at 8 Hz bin size Nakagai (=.56) Fading Statistics (3Hz) TREX4 Data Rayleigh Unity Power K-distribution (ν=.85) 3 Figure 3(b). Aplitude fading statistics at 3 Hz bin size Nakagai (=.767) Fading Statistics (5Hz) TREX4 Data Rayleigh Unity Power K-distribution (ν=3.7) 3 Figure 3(c). Aplitude fading statistics at 5 Hz bin size The question of interest is what is the underlying echanis for signal fluctuations (between low and high frequencies) that lead to the Rayleigh/Rician odel on the one hand and the K- distribution odel on the other hand. Recall that the Mikhalevsky s odel assues that the rando variables X and Y follow stationary Gaussian statistics. This assuption sees to be valid for low frequency signal propagation, but perhaps not appropriate for high frequency signal propagation. High frequency signals ay follow quasistationary statistics that involve two tie scales associated with long-ter fading and short-ter fading []. Over a short tie scale, the high frequency signal is heavily influenced by the icro-fine structures (e.g., turbulence) in the ocean. The signal aplitude fluctuation follows a short-ter statistics. Over a long tie scale, the aplitude fluctuations of the signal will likely be doinated by the fine-structure perturbations of the ocean, assuing that the rapid fluctuations induced by the icro-structures have been averaged out. The signal aplitude fluctuations follow a long-ter statistics, which ay be different fro the short-ter statistics. (At low frequencies, the turbulence has no effect on the signal, hence there is only the long ter statistics.) To obtain the long-ter statistics, we will introduce an average tie scale T. Long-ter statistics are obtained by averaging the signal over the tie period of T, such that the short-ter signal fluctuation has been averaged out. That is, the long-ter fluctuation statistics, H( fk, T n), can be obtained by averaging the signal intensity H( fk, t ) at a fixed frequency f k over a period of T. The aplitude, which is the square root of the average intensity, yields a distribution as shown in Fig. 4 for T =. sec. It is well fitted by a lognoral distribution. The short-ter distribution is obtained fro individual snapshots. The snapshot data are noralized by the ean aplitude for each period of T, that reflects the long ter fluctuations; i.e., reoving the effect of long ter fluctuations, H ( fk, τ ) T = H( f, )/ (, ) n k t H fk Tn. (9) The noralized data yields a distribution shown in Fig. 5 for T =. sec. One finds that the data are fitted by the Rayleigh distribution. At the short tie scale, the cause of the signal fluctuation is turbulence or other icro-fine structure disturbances. The fluctuation is fully saturated and hence is Rayleigh distribution. At the long tie, the signal fluctuation is predoinantly due to internal waves or other fine-structure disturbances. The fluctuation is partially saturated and is well described by a lognoral distribution. At the sybol level, the sybol aplitude envelope statistics follows a joint probability distribution, deterined by the short-ter probability distribution function conditioned on the aplitude distributions dictated by the long-ter probability distribution function. The K-distribution is a ixture of Gaa and Rayleigh distributions. It has been proven that lognoral and Gaa distributions are close approxiates of each other [8-9]. Consequently, one finds that

6 K-distribution is nuerically close approxiations of a ixture of lognoral and Rayleigh distributions []. Next, we evaluate the long-ter and short-ter statistics based on the goodness of fit easure of the root-eansquared error (RMSE), also known as a fit standard error. The RMSE is defined as below. RMSE = MSE = n ( F i S i ) L () i= where L=n- indicates the nuber of independent pieces of inforation involving the n data points and paraeters of the prospective probability distribution. S i denotes the sapled statistical function (either the probability distribution or the cuulative probability distribution function) based on data at aplitude x i, i =,,n. F i denotes the sapled statistics at aplitude x i based on the statistical odel. We shall evaluate Eq. () for different values of T. For each value of T, we obtain the short-ter statistics and long-ter statistics fro the data. We fit the short-ter and long-ter envelope fluctuation data with the Rayleigh and long-noral distribution respectively and deterine the best paraeters that fit the data. Having deterined the paraeters for the best fit, we then deterine the RMSE of the fit using Eq. (). Long-ter Fading Statistics (T=. sec) with the expectation that the long-ter fluctuation should not change significantly with the tie window T as long as it is long-ter. We note that there is no theoretical basis that the distribution has to be Rayleigh. Thus a % RMSE is quite reasonable. Figure 6 plots the su of the short-ter and longter RMSE. The iniu occurs around T ~.5 sec. We find that T =. and.4 sec yield a reasonable RMSE. For the above data analysis, we use T =. sec. We have also evaluated the fit of the data with the theoretical distribution using the Kologorov-Siirnov test statistics [6]. The results are very siilar and not explicitly shown here Short-ter Fading Statistics (T=.sec) Noralized Aplitude (db) Figure 4. Long-ter fading statistics as T=. sec vs. lognoral distribution We study the short-ter envelope aplitude statistics by deterining the RMSE values of the Rayleigh statistics as a function of the tie scale T. The iniu of the test is located at T.3 sec. The RMSE is % for T between.5 and.5 sec. It indicates that the Rayleigh distribution is a good fit for the short-ter fading statistics during this tie window. When T exceeds.5 sec, the fit deteriorates significantly. We interpret this result to ean that for T>.5 sec the effects of fine-structure processes are no longer negligible and need to be included. For long-ter statistical distribution, the RMSE between the data and the Rayleigh distribution is % for T between.4 and. sec,.5% for T between.3 and.63 sec, and % for a large window of T up to.5 sec. This is consistent 3 Figure 5. Short-ter fading statistics as T=. sec vs. Rayleigh distribution V. CONCLUSIONS In this paper, we presented envelope aplitude (fading) statistics for narrowband high frequency signals over a wide band of frequencies (5-9 khz). The envelope aplitude statistics shows a non-rayleigh or a non-rician distribution behavior. The conventional odels for the envelope aplitude distributions, developed for low frequency unsaturated, partially saturated and fully saturated signal fluctuations; do not fit the high frequency aplitude statistics data. The reason is that these odels assue a fading statistics that is valid for all tie scales. Our analysis of the high frequency data indicates two tie-scale fading phenoena: long-ter versus short-ter fading. The division between the two is deterined by using RMSE test, which is about. sec tie scale for the TREX4 data. We found that the long-ter aplitude fading statistics follow a lognoral distribution and the short-ter aplitude fading statistics follows a Rayleigh distribution. The signal aplitude distribution based on the joint long-ter and shortter distributions yields a distribution nuerically close to the K-distribution, which is found to be a good fit of the high frequency data.

7 ACKNOWLEDGMENT This work is supported by the Office of Naval Research. The authors thank J. Schindall, M. McCord and P. Gendron for their effort in conducting the ACOMMS experient during the TREX 4 experient, and our NRL colleagues for aking the TREX4 experient a success. 5 Su of RMSE Errors Root Mean Squared Error (%) Average Tie Scale (x /8 sec) Figure 6. Su of RMSE errors vs. average tie scale REFERENCES [] R.J.C. Bultitude, Measureent, Characterization and Modeling of Indoor 8/9 Mhz Radio Channels for Digital Counications, IEEE Counications Magazine, June 987, pp. 5-. [] W.C.Y. Lee, Mobile Counications Engineering, McGraw-Hill Book Copany, 993. [3] T.S. Rappaport, Indoor Radio Counications for Factories of the Future, IEEE Counications Magazine, May 989, pp [4] P.N. Mikhalevsky, Envelope Statistics of Partially Saturated Processes, J. Acoustical Society of Aerica, 7(), July 98, pp [5] J.G. Proakis, Digital Counications, fourth edition, McGraw-Hill Book Copany,. [6] D..A. Abraha, Modeling Non-Rayleigh Reverberation, SR-66, SACLANT Undersea Research Center, La Spezia, Italy, 997. [7] S.O. Rice, Matheatical Analysis of Rando Noise, Bell Syste Technical Journal, Vol. 3, p., 945. [8] J.R. Clark and S. Karp, Approxiations for lognorally fading optical signals, Proc. IEEE, 58, (97). [9] N.L. Johnson and S. Kotx, Distributions in statistics: continuous univariate distributions, Wiley, New York, 97. [] A. Abdi and M. Kaveh, K distribution: an appropriate substitute for Rayleigh-lognoral distribution in fading-shadowing wireless chanels, Electronic letters, 34, (998).

Non-Data Aided Doppler Shift Estimation for Underwater Acoustic Communication

Non-Data Aided Doppler Shift Estimation for Underwater Acoustic Communication Non-Data Aided Doppler Shift Estimation for Underwater Acoustic Communication (Invited paper) Paul Cotae (Corresponding author) 1,*, Suresh Regmi 1, Ira S. Moskowitz 2 1 University of the District of Columbia,

More information

Using Adaptive Modulation in a LEO Satellite Communication System

Using Adaptive Modulation in a LEO Satellite Communication System Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 27 255 Using Adaptive Modulation in a LEO Satellite Counication Syste L. HADJ

More information

NPAL Acoustic Noise Field Coherence and Broadband Full Field Processing

NPAL Acoustic Noise Field Coherence and Broadband Full Field Processing NPAL Acoustic Noise Field Coherence and Broadband Full Field Processing Arthur B. Baggeroer Massachusetts Institute of Technology Cambridge, MA 02139 Phone: 617 253 4336 Fax: 617 253 2350 Email: abb@boreas.mit.edu

More information

Travel-Time and Amplitude Sensitivity Kernels

Travel-Time and Amplitude Sensitivity Kernels DISTRIBUTION STATEMENT A. Approved for public release; distribution is unliited. Travel-Tie and Aplitude Sensitivity Kernels Eanuel Skarsoulis Foundation for Research and Technology Hellas Institute of

More information

A New Simple Model for Land Mobile Satellite Channels

A New Simple Model for Land Mobile Satellite Channels A New Siple Model for Land Mobile Satellite Channels A. Abdi, W. C. Lau, M.-S. Alouini, and M. Kaveh Dept. of Elec. and Cop. Eng., University of Minnesota, Minneapolis, MN 55455 Eails: {abdi, wlau, alouini,

More information

August 9, Attached please find the progress report for ONR Contract N C-0230 for the period of January 20, 2015 to April 19, 2015.

August 9, Attached please find the progress report for ONR Contract N C-0230 for the period of January 20, 2015 to April 19, 2015. August 9, 2015 Dr. Robert Headrick ONR Code: 332 O ce of Naval Research 875 North Randolph Street Arlington, VA 22203-1995 Dear Dr. Headrick, Attached please find the progress report for ONR Contract N00014-14-C-0230

More information

Model Development for the Wideband Vehicle-to-vehicle 2.4 GHz Channel

Model Development for the Wideband Vehicle-to-vehicle 2.4 GHz Channel Model Developent for the Wideband Vehicle-to-vehicle.4 GHz Channel Guillero Acosta and Mary Ann Ingra School of ECE, Georgia Institute of Technology, Atlanta, GA 333-5, USA gte437k@ail.gatech.edu, ai@ece.gatech.edu

More information

Low probability of detection underwater acoustic communications for mobile platforms

Low probability of detection underwater acoustic communications for mobile platforms Low probability of detection underwater acoustic communications for mobile platforms T.C. Yang 1 and Wen-Bin Yang 2 1 Naval Research Laboratory, Washington DC 20375 2 National Inst. of Standards and Technology,

More information

Performance Analysis of Atmospheric Field Conjugation Adaptive Arrays

Performance Analysis of Atmospheric Field Conjugation Adaptive Arrays Perforance Analysis of Atospheric Field Conjugation Adaptive Arrays Aniceto Belonte* a, Joseph M. Kahn b a Technical Univ. of Catalonia, Dept. of Signal Theory and Coun., 08034 Barcelona, Spain; b Stanford

More information

Keywords Frequency-domain equalization, antenna diversity, multicode DS-CDMA, frequency-selective fading

Keywords Frequency-domain equalization, antenna diversity, multicode DS-CDMA, frequency-selective fading Joint Frequency-doain Equalization and Antenna Diversity Cobining for Orthogonal Multicode DS-CDMA Signal Transissions in A Frequency-selective Fading Channel Taeshi ITAGAKI *1 and Fuiyui ADACHI *2 Dept.

More information

RAKE Receiver. Tommi Heikkilä S Postgraduate Course in Radio Communications, Autumn II.

RAKE Receiver. Tommi Heikkilä S Postgraduate Course in Radio Communications, Autumn II. S-72333 Postgraduate Course in Radio Counications, Autun 2004 1 RAKE Receiver Toi Heikkilä toiheikkila@teliasoneraco Abstract RAKE receiver is used in CDMA-based (Code Division Multiple Access) systes

More information

Ship echo discrimination in HF radar sea-clutter

Ship echo discrimination in HF radar sea-clutter Ship echo discrimination in HF radar sea-clutter A. Bourdillon (), P. Dorey () and G. Auffray () () Université de Rennes, IETR/UMR CNRS 664, Rennes Cedex, France () ONERA, DEMR/RHF, Palaiseau, France.

More information

Adaptive CFAR Performance Prediction in an Uncertain Environment

Adaptive CFAR Performance Prediction in an Uncertain Environment Adaptive CFAR Performance Prediction in an Uncertain Environment Jeffrey Krolik Department of Electrical and Computer Engineering Duke University Durham, NC 27708 phone: (99) 660-5274 fax: (99) 660-5293

More information

Investigation of a Forward Looking Conformal Broadband Antenna for Airborne Wide Area Surveillance

Investigation of a Forward Looking Conformal Broadband Antenna for Airborne Wide Area Surveillance Investigation of a Forward Looking Conformal Broadband Antenna for Airborne Wide Area Surveillance Hany E. Yacoub Department Of Electrical Engineering & Computer Science 121 Link Hall, Syracuse University,

More information

ROBUST UNDERWATER LOCALISATION OF ULTRA LOW FREQUENCY SOURCES IN OPERATIONAL CONTEXT

ROBUST UNDERWATER LOCALISATION OF ULTRA LOW FREQUENCY SOURCES IN OPERATIONAL CONTEXT ROBUST UNDERWATER LOCALISATION OF ULTRA LOW FREQUENCY SOURCES IN OPERATIONAL CONTEXT M. Lopatka a, B. Nicolas a, G. Le Touzé a,b, X. Cristol c, B. Chalindar c, J. Mars a, D. Fattaccioli d a GIPSA-Lab /DIS/

More information

Introduction Traditionally, studying outage or cellular systes has been based on the signal-to-intererence ratio (SIR) dropping below a required thres

Introduction Traditionally, studying outage or cellular systes has been based on the signal-to-intererence ratio (SIR) dropping below a required thres Miniu Duration Outages in Rayleigh Fading Channels Jie Lai and Narayan B. Mandaya WINLAB, Rutgers University 73 Brett Rd., Piscataway, NJ 8854-86 Eail: jlai@winlab.rutgers.edu, narayan@winlab.rutgers.edu

More information

Solar Radar Experiments

Solar Radar Experiments Solar Radar Experiments Paul Rodriguez Plasma Physics Division Naval Research Laboratory Washington, DC 20375 phone: (202) 767-3329 fax: (202) 767-3553 e-mail: paul.rodriguez@nrl.navy.mil Award # N0001498WX30228

More information

ELEC2202 Communications Engineering Laboratory Frequency Modulation (FM)

ELEC2202 Communications Engineering Laboratory Frequency Modulation (FM) ELEC Counications Engineering Laboratory ---- Frequency Modulation (FM) 1. Objectives On copletion of this laboratory you will be failiar with: Frequency odulators (FM), Modulation index, Bandwidth, FM

More information

PSEUDO-RANDOM CODE CORRELATOR TIMING ERRORS DUE TO MULTIPLE REFLECTIONS IN TRANSMISSION LINES

PSEUDO-RANDOM CODE CORRELATOR TIMING ERRORS DUE TO MULTIPLE REFLECTIONS IN TRANSMISSION LINES 30th Annual Precise Time and Time Interval (PTTI) Meeting PSEUDO-RANDOM CODE CORRELATOR TIMING ERRORS DUE TO MULTIPLE REFLECTIONS IN TRANSMISSION LINES F. G. Ascarrunz*, T. E. Parkert, and S. R. Jeffertst

More information

Improving the Detection of Near Earth Objects for Ground Based Telescopes

Improving the Detection of Near Earth Objects for Ground Based Telescopes Improving the Detection of Near Earth Objects for Ground Based Telescopes Anthony O'Dell Captain, United States Air Force Air Force Research Laboratories ABSTRACT Congress has mandated the detection of

More information

Acoustic Horizontal Coherence and Beamwidth Variability Observed in ASIAEX (SCS)

Acoustic Horizontal Coherence and Beamwidth Variability Observed in ASIAEX (SCS) Acoustic Horizontal Coherence and Beamwidth Variability Observed in ASIAEX (SCS) Stephen N. Wolf, Bruce H Pasewark, Marshall H. Orr, Peter C. Mignerey US Naval Research Laboratory, Washington DC James

More information

IREAP. MURI 2001 Review. John Rodgers, T. M. Firestone,V. L. Granatstein, M. Walter

IREAP. MURI 2001 Review. John Rodgers, T. M. Firestone,V. L. Granatstein, M. Walter MURI 2001 Review Experimental Study of EMP Upset Mechanisms in Analog and Digital Circuits John Rodgers, T. M. Firestone,V. L. Granatstein, M. Walter Institute for Research in Electronics and Applied Physics

More information

Adaptive Harmonic IIR Notch Filter with Varying Notch Bandwidth and Convergence Factor

Adaptive Harmonic IIR Notch Filter with Varying Notch Bandwidth and Convergence Factor Journal of Counication and Coputer (4 484-49 doi:.765/548-779/4.6. D DAVID PUBLISHING Adaptive Haronic IIR Notch Filter with Varying Notch Bandwidth and Convergence Factor Li Tan, Jean Jiang, and Liango

More information

Gaussian Acoustic Classifier for the Launch of Three Weapon Systems

Gaussian Acoustic Classifier for the Launch of Three Weapon Systems Gaussian Acoustic Classifier for the Launch of Three Weapon Systems by Christine Yang and Geoffrey H. Goldman ARL-TN-0576 September 2013 Approved for public release; distribution unlimited. NOTICES Disclaimers

More information

Transmit Power and Bit Allocations for OFDM Systems in a Fading Channel

Transmit Power and Bit Allocations for OFDM Systems in a Fading Channel Transit Power and Bit Allocations for OFD Systes in a Fading Channel Jiho Jang *, Kwang Bok Lee, and Yong-Hwan Lee * Sasung Electronics Co. Ltd., Suwon P.O.Box, Suwon-si, Gyeonggi-do 44-74, Korea School

More information

A soft decision decoding of product BCH and Reed-Müller codes for error control and peak-factor reduction in OFDM

A soft decision decoding of product BCH and Reed-Müller codes for error control and peak-factor reduction in OFDM A soft decision decoding of product BCH and Reed-Müller codes for error control and pea-factor reduction in OFDM Yves LOUET *, Annic LE GLAUNEC ** and Pierre LERAY ** * PhD Student and ** Professors, Departent

More information

LONG TERM GOALS OBJECTIVES

LONG TERM GOALS OBJECTIVES A PASSIVE SONAR FOR UUV SURVEILLANCE TASKS Stewart A.L. Glegg Dept. of Ocean Engineering Florida Atlantic University Boca Raton, FL 33431 Tel: (561) 367-2633 Fax: (561) 367-3885 e-mail: glegg@oe.fau.edu

More information

Frequency Stabilization Using Matched Fabry-Perots as References

Frequency Stabilization Using Matched Fabry-Perots as References April 1991 LIDS-P-2032 Frequency Stabilization Using Matched s as References Peter C. Li and Pierre A. Humblet Massachusetts Institute of Technology Laboratory for Information and Decision Systems Cambridge,

More information

SYSTEMATIC EFFECTS IN GPS AND WAAS TIME TRANSFERS

SYSTEMATIC EFFECTS IN GPS AND WAAS TIME TRANSFERS SYSTEMATIC EFFECTS IN GPS AND WAAS TIME TRANSFERS Bill Klepczynski Innovative Solutions International Abstract Several systematic effects that can influence SBAS and GPS time transfers are discussed. These

More information

Passive Localization of Multiple Sources Using Widely-Spaced Arrays With Application to Marine Mammals

Passive Localization of Multiple Sources Using Widely-Spaced Arrays With Application to Marine Mammals Passive Localization of Multiple Sources Using Widely-Spaced Arrays With Application to Marine Mammals L. Neil Frazer School of Ocean and Earth Science and Technology University of Hawaii at Manoa 1680

More information

LETTER Adaptive Multi-Stage Parallel Interference Cancellation Receiver for Multi-Rate DS-CDMA System

LETTER Adaptive Multi-Stage Parallel Interference Cancellation Receiver for Multi-Rate DS-CDMA System IEICE TRANS. COMMUN., VOL.E87 B, NO.8 AUGUST 2004 2401 LETTER Adaptive Multi-Stage Parallel Interference Cancellation Receiver for Multi-Rate DS-CDMA Syste Seung Hee HAN a), Student Meber and Jae Hong

More information

Oceanographic Variability and the Performance of Passive and Active Sonars in the Philippine Sea

Oceanographic Variability and the Performance of Passive and Active Sonars in the Philippine Sea DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Oceanographic Variability and the Performance of Passive and Active Sonars in the Philippine Sea Arthur B. Baggeroer Center

More information

Performance Evaluation of UWB Sensor Network with Aloha Multiple Access Scheme

Performance Evaluation of UWB Sensor Network with Aloha Multiple Access Scheme 1 Perforance Evaluation of UWB Sensor Network with Aloha Multiple Access Schee Roeo Giuliano 1 and Franco Mazzenga 2 1 RadioLabs Consorzio Università Industria, Via del Politecnico 1, 00133, Roe, Italy,

More information

Ocean Acoustic Observatories: Data Analysis and Interpretation

Ocean Acoustic Observatories: Data Analysis and Interpretation Ocean Acoustic Observatories: Data Analysis and Interpretation Peter F. Worcester Scripps Institution of Oceanography, University of California at San Diego La Jolla, CA 92093-0225 phone: (858) 534-4688

More information

Modeling an HF NVIS Towel-Bar Antenna on a Coast Guard Patrol Boat A Comparison of WIPL-D and the Numerical Electromagnetics Code (NEC)

Modeling an HF NVIS Towel-Bar Antenna on a Coast Guard Patrol Boat A Comparison of WIPL-D and the Numerical Electromagnetics Code (NEC) Modeling an HF NVIS Towel-Bar Antenna on a Coast Guard Patrol Boat A Comparison of WIPL-D and the Numerical Electromagnetics Code (NEC) Darla Mora, Christopher Weiser and Michael McKaughan United States

More information

Remote Sediment Property From Chirp Data Collected During ASIAEX

Remote Sediment Property From Chirp Data Collected During ASIAEX Remote Sediment Property From Chirp Data Collected During ASIAEX Steven G. Schock Department of Ocean Engineering Florida Atlantic University Boca Raton, Fl. 33431-0991 phone: 561-297-3442 fax: 561-297-3885

More information

Investigation of Modulated Laser Techniques for Improved Underwater Imaging

Investigation of Modulated Laser Techniques for Improved Underwater Imaging Investigation of Modulated Laser Techniques for Improved Underwater Imaging Linda J. Mullen NAVAIR, EO and Special Mission Sensors Division 4.5.6, Building 2185 Suite 1100-A3, 22347 Cedar Point Road Unit

More information

A HIGH-PRECISION COUNTER USING THE DSP TECHNIQUE

A HIGH-PRECISION COUNTER USING THE DSP TECHNIQUE A HIGH-PRECISION COUNTER USING THE DSP TECHNIQUE Shang-Shian Chen, Po-Cheng Chang, Hsin-Min Peng, and Chia-Shu Liao Telecommunication Labs., Chunghwa Telecom No. 12, Lane 551, Min-Tsu Road Sec. 5 Yang-Mei,

More information

Modeling and Evaluation of Bi-Static Tracking In Very Shallow Water

Modeling and Evaluation of Bi-Static Tracking In Very Shallow Water Modeling and Evaluation of Bi-Static Tracking In Very Shallow Water Stewart A.L. Glegg Dept. of Ocean Engineering Florida Atlantic University Boca Raton, FL 33431 Tel: (954) 924 7241 Fax: (954) 924-7270

More information

Evanescent Acoustic Wave Scattering by Targets and Diffraction by Ripples

Evanescent Acoustic Wave Scattering by Targets and Diffraction by Ripples Evanescent Acoustic Wave Scattering by Targets and Diffraction by Ripples PI name: Philip L. Marston Physics Department, Washington State University, Pullman, WA 99164-2814 Phone: (509) 335-5343 Fax: (509)

More information

3D Propagation and Geoacoustic Inversion Studies in the Mid-Atlantic Bight

3D Propagation and Geoacoustic Inversion Studies in the Mid-Atlantic Bight 3D Propagation and Geoacoustic Inversion Studies in the Mid-Atlantic Bight Kevin B. Smith Code PH/Sk, Department of Physics Naval Postgraduate School Monterey, CA 93943 phone: (831) 656-2107 fax: (831)

More information

Notes on Orthogonal Frequency Division Multiplexing (OFDM)

Notes on Orthogonal Frequency Division Multiplexing (OFDM) Notes on Orthogonal Frequency Division Multiplexing (OFDM). Discrete Fourier ransfor As a reinder, the analytic fors of Fourier and inverse Fourier transfors are X f x t t, f dt x t exp j2 ft dt (.) where

More information

A Comparison of Two Computational Technologies for Digital Pulse Compression

A Comparison of Two Computational Technologies for Digital Pulse Compression A Comparison of Two Computational Technologies for Digital Pulse Compression Presented by Michael J. Bonato Vice President of Engineering Catalina Research Inc. A Paravant Company High Performance Embedded

More information

Experiment 7: Frequency Modulation and Phase Locked Loops October 11, 2006

Experiment 7: Frequency Modulation and Phase Locked Loops October 11, 2006 Experient 7: Frequency Modulation and Phase ocked oops October 11, 2006 Frequency Modulation Norally, we consider a voltage wave for with a fixed frequency of the for v(t) = V sin(ω c t + θ), (1) where

More information

Overlapping Signal Separation in DPX Spectrum Based on EM Algorithm. Chuandang Liu 1, a, Luxi Lu 1, b

Overlapping Signal Separation in DPX Spectrum Based on EM Algorithm. Chuandang Liu 1, a, Luxi Lu 1, b nd International Worshop on Materials Engineering and Coputer Sciences (IWMECS 015) Overlapping Signal Separation in DPX Spectru Based on EM Algorith Chuandang Liu 1, a, Luxi Lu 1, b 1 National Key Laboratory

More information

Signal Processing Architectures for Ultra-Wideband Wide-Angle Synthetic Aperture Radar Applications

Signal Processing Architectures for Ultra-Wideband Wide-Angle Synthetic Aperture Radar Applications Signal Processing Architectures for Ultra-Wideband Wide-Angle Synthetic Aperture Radar Applications Atindra Mitra Joe Germann John Nehrbass AFRL/SNRR SKY Computers ASC/HPC High Performance Embedded Computing

More information

Behavior and Sensitivity of Phase Arrival Times (PHASE)

Behavior and Sensitivity of Phase Arrival Times (PHASE) DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Behavior and Sensitivity of Phase Arrival Times (PHASE) Emmanuel Skarsoulis Foundation for Research and Technology Hellas

More information

Ocean Acoustics and Signal Processing for Robust Detection and Estimation

Ocean Acoustics and Signal Processing for Robust Detection and Estimation Ocean Acoustics and Signal Processing for Robust Detection and Estimation Zoi-Heleni Michalopoulou Department of Mathematical Sciences New Jersey Institute of Technology Newark, NJ 07102 phone: (973) 596

More information

Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum

Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum Aaron Thode

More information

THE DET CURVE IN ASSESSMENT OF DETECTION TASK PERFORMANCE

THE DET CURVE IN ASSESSMENT OF DETECTION TASK PERFORMANCE THE DET CURVE IN ASSESSMENT OF DETECTION TASK PERFORMANCE A. Martin*, G. Doddington#, T. Kamm+, M. Ordowski+, M. Przybocki* *National Institute of Standards and Technology, Bldg. 225-Rm. A216, Gaithersburg,

More information

A New Scheme for Acoustical Tomography of the Ocean

A New Scheme for Acoustical Tomography of the Ocean A New Scheme for Acoustical Tomography of the Ocean Alexander G. Voronovich NOAA/ERL/ETL, R/E/ET1 325 Broadway Boulder, CO 80303 phone (303)-497-6464 fax (303)-497-3577 email agv@etl.noaa.gov E.C. Shang

More information

Presentation to TEXAS II

Presentation to TEXAS II Presentation to TEXAS II Technical exchange on AIS via Satellite II Dr. Dino Lorenzini Mr. Mark Kanawati September 3, 2008 3554 Chain Bridge Road Suite 103 Fairfax, Virginia 22030 703-273-7010 1 Report

More information

RECENT TIMING ACTIVITIES AT THE U.S. NAVAL RESEARCH LABORATORY

RECENT TIMING ACTIVITIES AT THE U.S. NAVAL RESEARCH LABORATORY RECENT TIMING ACTIVITIES AT THE U.S. NAVAL RESEARCH LABORATORY Ronald Beard, Jay Oaks, Ken Senior, and Joe White U.S. Naval Research Laboratory 4555 Overlook Ave. SW, Washington DC 20375-5320, USA Abstract

More information

Loop-Dipole Antenna Modeling using the FEKO code

Loop-Dipole Antenna Modeling using the FEKO code Loop-Dipole Antenna Modeling using the FEKO code Wendy L. Lippincott* Thomas Pickard Randy Nichols lippincott@nrl.navy.mil, Naval Research Lab., Code 8122, Wash., DC 237 ABSTRACT A study was done to optimize

More information

REPORT ITU-R SA Telecommunication characteristics and requirements for space VLBI systems

REPORT ITU-R SA Telecommunication characteristics and requirements for space VLBI systems Rep. ITU-R SA.2132 1 REPORT ITU-R SA.2132 Telecounication characteristics and requireents for space VLBI systes (2008) This Report describes the characteristics of the space VLBI systes. These characteristics

More information

Coherent distributed radar for highresolution

Coherent distributed radar for highresolution . Calhoun Drive, Suite Rockville, Maryland, 8 () 9 http://www.i-a-i.com Intelligent Automation Incorporated Coherent distributed radar for highresolution through-wall imaging Progress Report Contract No.

More information

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies INFRAMONITOR: A TOOL FOR REGIONAL INFRASOUND MONITORING

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies INFRAMONITOR: A TOOL FOR REGIONAL INFRASOUND MONITORING INFRAMONITOR: A TOOL FOR REGIONAL INFRASOUND MONITORING Stephen J. Arrowsmith and Rod Whitaker Los Alamos National Laboratory Sponsored by National Nuclear Security Administration Contract No. DE-AC52-06NA25396

More information

Cross-layer Approach to Low Energy Wireless Ad Hoc Networks

Cross-layer Approach to Low Energy Wireless Ad Hoc Networks Cross-layer Approach to Low Energy Wireless Ad Hoc Networks By Geethapriya Thamilarasu Dept. of Computer Science & Engineering, University at Buffalo, Buffalo NY Dr. Sumita Mishra CompSys Technologies,

More information

Strategic Technical Baselines for UK Nuclear Clean-up Programmes. Presented by Brian Ensor Strategy and Engineering Manager NDA

Strategic Technical Baselines for UK Nuclear Clean-up Programmes. Presented by Brian Ensor Strategy and Engineering Manager NDA Strategic Technical Baselines for UK Nuclear Clean-up Programmes Presented by Brian Ensor Strategy and Engineering Manager NDA Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting

More information

COMBINED FREQUENCY AND SPATIAL DOMAINS POWER DISTRIBUTION FOR MIMO-OFDM TRANSMISSION

COMBINED FREQUENCY AND SPATIAL DOMAINS POWER DISTRIBUTION FOR MIMO-OFDM TRANSMISSION The 8th nnual IEEE International Syposiu on Personal, Indoor and Mobile Radio Counications (PIMRC 07) COMINED FREQUENCY ND SPTIL DOMINS POWER DISTRIUTION FOR MIMO-OFDM TRNSMISSION Wladiir ocquet, Kazunori

More information

Modal Mapping in a Complex Shallow Water Environment

Modal Mapping in a Complex Shallow Water Environment Modal Mapping in a Complex Shallow Water Environment George V. Frisk Bigelow Bldg. - Mailstop 11 Department of Applied Ocean Physics and Engineering Woods Hole Oceanographic Institution Woods Hole, MA

More information

Available online at ScienceDirect. Procedia Technology 24 (2016 )

Available online at   ScienceDirect. Procedia Technology 24 (2016 ) Available online at www.sciencedirect.co ScienceDirect Procedia Technology 4 (16 ) 834 841 International Conference on Eerging Trends in Engineering, Science and Technology (ICETEST - 15) An Intensity

More information

PULSED BREAKDOWN CHARACTERISTICS OF HELIUM IN PARTIAL VACUUM IN KHZ RANGE

PULSED BREAKDOWN CHARACTERISTICS OF HELIUM IN PARTIAL VACUUM IN KHZ RANGE PULSED BREAKDOWN CHARACTERISTICS OF HELIUM IN PARTIAL VACUUM IN KHZ RANGE K. Koppisetty ξ, H. Kirkici Auburn University, Auburn, Auburn, AL, USA D. L. Schweickart Air Force Research Laboratory, Wright

More information

OTC Statistics of High- and Low-Frequency Motions of a Moored Tanker. sensitive to lateral loading such as the SAL5 and

OTC Statistics of High- and Low-Frequency Motions of a Moored Tanker. sensitive to lateral loading such as the SAL5 and OTC 61 78 Statistics of High- and Low-Frequency Motions of a Moored Tanker by J.A..Pinkster, Maritie Research Inst. Netherlands Copyright 1989, Offshore Technology Conference This paper was presented at

More information

Oceanographic and Bathymetric Effects on Ocean Acoustics

Oceanographic and Bathymetric Effects on Ocean Acoustics . DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Oceanographic and Bathymetric Effects on Ocean Acoustics Michael B. Porter Heat, Light, and Sound Research, Inc. 3366

More information

An orthogonal multi-beam based MIMO scheme. for multi-user wireless systems

An orthogonal multi-beam based MIMO scheme. for multi-user wireless systems An orthogonal ulti-bea based IO schee for ulti-user wireless systes Dong-chan Oh o and Yong-Hwan Lee School of Electrical Engineering and IC, Seoul ational University Kwana P.O. Box 34, Seoul, 151-600,

More information

Relation between C/N Ratio and S/N Ratio

Relation between C/N Ratio and S/N Ratio Relation between C/N Ratio and S/N Ratio In our discussion in the past few lectures, we have coputed the C/N ratio of the received signals at different points of the satellite transission syste. The C/N

More information

Characteristics of an Optical Delay Line for Radar Testing

Characteristics of an Optical Delay Line for Radar Testing Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5306--16-9654 Characteristics of an Optical Delay Line for Radar Testing Mai T. Ngo AEGIS Coordinator Office Radar Division Jimmy Alatishe SukomalTalapatra

More information

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss Introduction Small-scale fading is used to describe the rapid fluctuation of the amplitude of a radio

More information

Multicarrier Interleave-Division Multiple Access Communication in Multipath Channels

Multicarrier Interleave-Division Multiple Access Communication in Multipath Channels Multicarrier Interleave-Division Multiple Access Counication in Multipath Channels Habib ur Rehan *, Muhaad Naee **, Iran Zaa *, Syed Isail Shah ** * Center for Advanced Studies in Engineering (CASE) Islaabad

More information

Deep Horizontal Atmospheric Turbulence Modeling and Simulation with a Liquid Crystal Spatial Light Modulator. *Corresponding author:

Deep Horizontal Atmospheric Turbulence Modeling and Simulation with a Liquid Crystal Spatial Light Modulator. *Corresponding author: Deep Horizontal Atmospheric Turbulence Modeling and Simulation with a Liquid Crystal Spatial Light Modulator Peter Jacquemin a*, Bautista Fernandez a, Christopher C. Wilcox b, Ty Martinez b, Brij Agrawal

More information

COM DEV AIS Initiative. TEXAS II Meeting September 03, 2008 Ian D Souza

COM DEV AIS Initiative. TEXAS II Meeting September 03, 2008 Ian D Souza COM DEV AIS Initiative TEXAS II Meeting September 03, 2008 Ian D Souza 1 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated

More information

Coverage Metric for Acoustic Receiver Evaluation and Track Generation

Coverage Metric for Acoustic Receiver Evaluation and Track Generation Coverage Metric for Acoustic Receiver Evaluation and Track Generation Steven M. Dennis Naval Research Laboratory Stennis Space Center, MS 39529, USA Abstract-Acoustic receiver track generation has been

More information

Acoustic Monitoring of Flow Through the Strait of Gibraltar: Data Analysis and Interpretation

Acoustic Monitoring of Flow Through the Strait of Gibraltar: Data Analysis and Interpretation Acoustic Monitoring of Flow Through the Strait of Gibraltar: Data Analysis and Interpretation Peter F. Worcester Scripps Institution of Oceanography, University of California at San Diego La Jolla, CA

More information

North Pacific Acoustic Laboratory (NPAL) Towed Array Measurements

North Pacific Acoustic Laboratory (NPAL) Towed Array Measurements DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. North Pacific Acoustic Laboratory (NPAL) Towed Array Measurements Kevin D. Heaney Ocean Acoustical Services and Instrumentation

More information

Acoustic Change Detection Using Sources of Opportunity

Acoustic Change Detection Using Sources of Opportunity Acoustic Change Detection Using Sources of Opportunity by Owen R. Wolfe and Geoffrey H. Goldman ARL-TN-0454 September 2011 Approved for public release; distribution unlimited. NOTICES Disclaimers The findings

More information

Performance Analysis of an AMC System with an Iterative V-BLAST Decoding Algorithm

Performance Analysis of an AMC System with an Iterative V-BLAST Decoding Algorithm I. J. Counications, Network and Syste Sciences, 008,, 105-06 Published Online May 008 in SciRes (http://www.srpublishing.org/journal/ijcns/). Perforance Analysis of an AMC Syste with an Iterative V-BLAST

More information

Innovative 3D Visualization of Electro-optic Data for MCM

Innovative 3D Visualization of Electro-optic Data for MCM Innovative 3D Visualization of Electro-optic Data for MCM James C. Luby, Ph.D., Applied Physics Laboratory University of Washington 1013 NE 40 th Street Seattle, Washington 98105-6698 Telephone: 206-543-6854

More information

Enhanced Algorithm for MIESM

Enhanced Algorithm for MIESM Recent Patents on Signal Processing, 9,, -7 Enhanced Algorith for MIESM R. Sandanalakshi *, Shahid Mutaz * and Kazi Saidul * Open Access University of Aveiro, Aveiro, Portugal Abstract: The link adaptation

More information

Acoustic Measurements of Tiny Optically Active Bubbles in the Upper Ocean

Acoustic Measurements of Tiny Optically Active Bubbles in the Upper Ocean Acoustic Measurements of Tiny Optically Active Bubbles in the Upper Ocean Svein Vagle Ocean Sciences Division Institute of Ocean Sciences 9860 West Saanich Road P.O. Box 6000 Sidney, BC, V8L 4B2 Canada

More information

Marine~4 Pbscl~ PHYS(O laboratory -Ip ISUt

Marine~4 Pbscl~ PHYS(O laboratory -Ip ISUt Marine~4 Pbscl~ PHYS(O laboratory -Ip ISUt il U!d U Y:of thc SCrip 1 nsti0tio of Occaiiographv U n1icrsi ry of' alifi ra, San Die".(o W.A. Kuperman and W.S. Hodgkiss La Jolla, CA 92093-0701 17 September

More information

EFFECTS OF MASKING ANGLE AND MULTIPATH ON GALILEO PERFORMANCES IN DIFFERENT ENVIRONMENTS

EFFECTS OF MASKING ANGLE AND MULTIPATH ON GALILEO PERFORMANCES IN DIFFERENT ENVIRONMENTS 1 EFFECTS OF MASKING ANGLE AND MULTIPATH ON GALILEO PERFORMANCES IN DIFFERENT ENVIRONMENTS M. Malicorne*, M. Bousquet**, V. Calettes*** SUPAERO, 1 avenue Edouard Belin BP 43, 3155 Toulouse Cedex, France.

More information

Measurement of Ocean Spatial Coherence by Spaceborne Synthetic Aperture Radar

Measurement of Ocean Spatial Coherence by Spaceborne Synthetic Aperture Radar Measurement of Ocean Spatial Coherence by Spaceborne Synthetic Aperture Radar Frank Monaldo, Donald Thompson, and Robert Beal Ocean Remote Sensing Group Johns Hopkins University Applied Physics Laboratory

More information

Simulation Comparisons of Three Different Meander Line Dipoles

Simulation Comparisons of Three Different Meander Line Dipoles Simulation Comparisons of Three Different Meander Line Dipoles by Seth A McCormick ARL-TN-0656 January 2015 Approved for public release; distribution unlimited. NOTICES Disclaimers The findings in this

More information

TESTING OF ADCS BY FREQUENCY-DOMAIN ANALYSIS IN MULTI-TONE MODE

TESTING OF ADCS BY FREQUENCY-DOMAIN ANALYSIS IN MULTI-TONE MODE THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volue 5, Nuber /004, pp.000-000 TESTING OF ADCS BY FREQUENCY-DOMAIN ANALYSIS IN MULTI-TONE MODE Daniel BELEGA

More information

DSI3 Sensor to Master Current Threshold Adaptation for Pattern Recognition

DSI3 Sensor to Master Current Threshold Adaptation for Pattern Recognition International Journal of Signal Processing Systes Vol., No. Deceber 03 DSI3 Sensor to Master Current Threshold Adaptation for Pattern Recognition David Levy Infineon Austria AG, Autootive Power Train Systes,

More information

A Comparative Study of Differential and Noncoherent Direct Sequence Spread Spectrum over Underwater Acoustic Channels with Multiuser Interference

A Comparative Study of Differential and Noncoherent Direct Sequence Spread Spectrum over Underwater Acoustic Channels with Multiuser Interference A Comparative Study of and Direct Sequence Spread Spectrum over Underwater Acoustic Channels with Multiuser Interference Sean Mason 1, Shengli Zhou 1, Wen-Bin Yang 2, and Paul Gendron 3 1 Dept. of Elec.

More information

ANALYSIS OF WINDSCREEN DEGRADATION ON ACOUSTIC DATA

ANALYSIS OF WINDSCREEN DEGRADATION ON ACOUSTIC DATA ANALYSIS OF WINDSCREEN DEGRADATION ON ACOUSTIC DATA Duong Tran-Luu* and Latasha Solomon US Army Research Laboratory Adelphi, MD 2783 ABSTRACT Windscreens have long been used to filter undesired wind noise

More information

0.18 μm CMOS Fully Differential CTIA for a 32x16 ROIC for 3D Ladar Imaging Systems

0.18 μm CMOS Fully Differential CTIA for a 32x16 ROIC for 3D Ladar Imaging Systems 0.18 μm CMOS Fully Differential CTIA for a 32x16 ROIC for 3D Ladar Imaging Systems Jirar Helou Jorge Garcia Fouad Kiamilev University of Delaware Newark, DE William Lawler Army Research Laboratory Adelphi,

More information

Modeling of Ionospheric Refraction of UHF Radar Signals at High Latitudes

Modeling of Ionospheric Refraction of UHF Radar Signals at High Latitudes Modeling of Ionospheric Refraction of UHF Radar Signals at High Latitudes Brenton Watkins Geophysical Institute University of Alaska Fairbanks USA watkins@gi.alaska.edu Sergei Maurits and Anton Kulchitsky

More information

DIGITAL Communications

DIGITAL Communications DIGITAL Counications Contents Introduction to Counication Systes Analogue Modulation AM, DSBSC, SB, SSB, FM, PM, Narrow band FM, PLL Deodulators, and FLL Loops Sapling Systes Tie and Frequency Division

More information

Student Independent Research Project : Evaluation of Thermal Voltage Converters Low-Frequency Errors

Student Independent Research Project : Evaluation of Thermal Voltage Converters Low-Frequency Errors . Session 2259 Student Independent Research Project : Evaluation of Thermal Voltage Converters Low-Frequency Errors Svetlana Avramov-Zamurovic and Roger Ashworth United States Naval Academy Weapons and

More information

AUVFEST 05 Quick Look Report of NPS Activities

AUVFEST 05 Quick Look Report of NPS Activities AUVFEST 5 Quick Look Report of NPS Activities Center for AUV Research Naval Postgraduate School Monterey, CA 93943 INTRODUCTION Healey, A. J., Horner, D. P., Kragelund, S., Wring, B., During the period

More information

Report Documentation Page

Report Documentation Page Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Kalman Filtering for NLOS Mitigation and Target Tracking in Indoor Wireless Environment

Kalman Filtering for NLOS Mitigation and Target Tracking in Indoor Wireless Environment 16 Kalan Filtering for NLOS Mitigation and Target Tracking in Indoor Wireless Environent Chin-Der Wann National Sun Yat-Sen University Taiwan 1. Introduction Kalan filter and its nonlinear extension, extended

More information

Active Denial Array. Directed Energy. Technology, Modeling, and Assessment

Active Denial Array. Directed Energy. Technology, Modeling, and Assessment Directed Energy Technology, Modeling, and Assessment Active Denial Array By Randy Woods and Matthew Ketner 70 Active Denial Technology (ADT) which encompasses the use of millimeter waves as a directed-energy,

More information

Hybrid QR Factorization Algorithm for High Performance Computing Architectures. Peter Vouras Naval Research Laboratory Radar Division

Hybrid QR Factorization Algorithm for High Performance Computing Architectures. Peter Vouras Naval Research Laboratory Radar Division Hybrid QR Factorization Algorithm for High Performance Computing Architectures Peter Vouras Naval Research Laboratory Radar Division 8/1/21 Professor G.G.L. Meyer Johns Hopkins University Parallel Computing

More information

Thermal Simulation of a Silicon Carbide (SiC) Insulated-Gate Bipolar Transistor (IGBT) in Continuous Switching Mode

Thermal Simulation of a Silicon Carbide (SiC) Insulated-Gate Bipolar Transistor (IGBT) in Continuous Switching Mode ARL-MR-0973 APR 2018 US Army Research Laboratory Thermal Simulation of a Silicon Carbide (SiC) Insulated-Gate Bipolar Transistor (IGBT) in Continuous Switching Mode by Gregory Ovrebo NOTICES Disclaimers

More information

Modeling Antennas on Automobiles in the VHF and UHF Frequency Bands, Comparisons of Predictions and Measurements

Modeling Antennas on Automobiles in the VHF and UHF Frequency Bands, Comparisons of Predictions and Measurements Modeling Antennas on Automobiles in the VHF and UHF Frequency Bands, Comparisons of Predictions and Measurements Nicholas DeMinco Institute for Telecommunication Sciences U.S. Department of Commerce Boulder,

More information

Wireless Channel Propagation Model Small-scale Fading

Wireless Channel Propagation Model Small-scale Fading Wireless Channel Propagation Model Small-scale Fading Basic Questions T x What will happen if the transmitter - changes transmit power? - changes frequency? - operates at higher speed? Transmit power,

More information