DWDM Theory. ZTE Corporation Transmission Course Team. ZTE University

Size: px
Start display at page:

Download "DWDM Theory. ZTE Corporation Transmission Course Team. ZTE University"

Transcription

1 DWDM Theory ZTE Corporation Transmission Course Team

2 DWDM Overview

3 Multiplexing Technology WDM TDM SDM

4 What is DWDM? Gas Station High Way Prowl Car

5 Definition l 1 l 2 l N l 1 l 2 l 1 l 2 l N OA l N OMU ODU Dense wavelength division multiplexing (DWDM) is a fiber optic transmission technique that employs light wavelengths to transmit data parallel-by-bit or serial-by-character.

6 Characteristics power dbm) wavelength interval : 1 ~ 10 nm nm wavelength

7 System Working Wavelength No Central Frequency (THz) Wavelength (nm)

8 continuation

9 Losses (db/km) THz In use : In research : Wavelength (µm) C-band : 1525~1565nm L-band : 1570~1620nm and S-band : 1400nm l 0

10 Difference between DWDM and SDH Transmitter Electrical Regenerator Receiver T l 1 R TDM: Electrical Regenerator for Single Wavelength Electrical Multiplex Electrical Demultiplex λ 1 λ 2 λ N λ 1 λ DWDM: Multi-wavelength on Single 2 Fiber, for Optic Amplification λ N Optical Multiplexer OA λ 1 λ 2 λ N Optical Demultiplexer

11 Relationship between DWDM and SDH Client and Server SDH DWDM

12 Relationship between DWDM and Other Services IP ATM SDH ATM IP Other SDH Open Optical Interface DWDM Physical Fiber

13 Characteristics of DWDM 32*2.5G 32*10G 8*2.5G 16*2.5G

14 DWDM Equipment Types OTM λ 1 λ 2 λ N λ 1 λ 2 λ N OADM λ i λ i λ k λ k OXC OXC

15 Optical Interface Criteria SDH DWDM G.957 G M 622M 2.5G 10G G.692 PDH

16 Transmission Characteristics

17 Types of Optic Fibers G.652 : A single-mode optical fiber that has a nominal zero-dispersion wavelength in the 1310 nm window. (dispersion-unshifted fiber) G.653 : Dispersion-shifted fiber, zero dispersion at 1550 nm window, easy to cause FWM. G.655 : Non-zero dispersion fiber; used in 1550 nm window. Less dispersion coefficient, dispersion limited transmission distance can be hundreds of km; prevent FWM

18 Attenuation (db/km) Attenuation NZDF+ G.655+ NZDF- G.655- G.652 SMF EDFA Bandwidth G.653 DSF Dispersion (ps/nm-km) Wavelength (nm)

19 WDM Wavelength According to the characteristic of fibers and EDFA, the wavelength between 1525 nm and 1565 nm is used

20 Transport characteristics of optical fibers Attenuation Dispersion Non-linear Effect

21 Attenuation It is the reduction of signal strength or light power over the length of the light-carrying medium. Fiber attenuation is measured in decibels per kilometer (db/km).

22 Attenuation Absorbency Attenuation Intrinsic Absorbency Attenuation Impurity Absorbency Attenuation Scattering Attenuation

23 Dispersion T Optical signals of different wavelengths have different speeds in the optical fiber, and this will cause a phenomena called dispersion.

24 Influence of Dispersion Input Output Time Time

25 Kinds of Dispersion 1. Chromatic Dispersion 2. Polarization Mode Dispersion

26 Chromatic Dispersion It represents the fact that different colors or wavelengths travel at different speeds, even within the same mode. Chromatic dispersion is the result of material dispersion, waveguide dispersion, or profile dispersion.

27 Chirp The directly modulated signal will cause more chirp and more dispersion. T

28 Dispersion Tolerance Parameter of dispersion tolerance for laser source (Ds) Dispersion parameter for optical fiber (D) Longest transmission distance: Ds/D Example If Ds = ps/nm, SMF G.652 dispersion is D = 20 ps/km/nm and then the longest transmission distance of this optical source is 640km.

29 Polarization Mode Dispersion This problem occurs because the fiber is not consistent along its length. Due to bending and twisting, as well as temperature changes, the fiber core is not exactly circular. The result is that the modes in the fiber exchange power with each other in a random fashion down the fiber length, which result in different group velocities; the signal breaks up. In effect, the light travels faster on one polarization plane than another.

30 Nonlinear Effects 1. Brillouin Scattering 2. Stimulated Raman Scattering 3. Four Wave Mixing 4. Self-phase Modulation 5. Cross-phase Modulation 6. Intermodulation (Mixing)

31 Causes of Nonlinearities 1. Refractive index of the glass 2. Scattering phenomena

32 Key Technology of DWDM

33 DWDM system Optical Transmitter OLA Optical Receiver Ch 1 Input Ch N OTU1 OTUn 1 OMU ODU 1 OTU1 OTUn Ch 1 Output Ch N OSC OSC OSC EMS

34 Bidirection OTM OTM OTU OTU O M U OBA OLA OPA O D U OTU OTU OTU OTU O D U OPA OLA OBA O M U OTU OTU

35 Important Technologies of WDM Laser source Optical Mutiplexer and Demultiplexer Optical Transceiver EDFA Supervision of WDM system

36 Laser Source Parameters Fixed wavelength The tolerance of dispersion Kinds Modulate directly Modulate indirectly

37 Modulate Directly Electric Signal Optical Signal Shortcomings : cause the chirp, dispersion.

38 Modulate indirectly Modulator Output Electrical Signal Reduce the chirp

39 Main Problem Fixed Wavelength Tolerance of Dispersion G.652 SMF, near 1550 nm window, dispersion is 20 ps/km nm For 350 km, 500 km and 640 km, the tolerance is 7200 ps/nm, ps/nm and ps/nm respectively

40 Muliplexer and Demultiplexer Multiplexer Demultiplexer Fiber

41 OTU OTU wavelength conversion electrical regeneration supervision information of B1 and J0 OTU includes OTUT, OTUG and OTUR 2.5G OTU, 10G OTU, multi-service OTU OTU With FEC & No FEC

42 OTU technology The major function of the OTU board is to employ the optical/electrical/optical conversion mode to realize wavelength conversion. SDH Transmission Receiving Unit Transmission Unit Output Supervision 1. Dispersion tolerance 2. Fixed standard wavelength Supervision Card

43 Transmission OTU G.957 S1 OTU R1 S2 S3 O M U OA OA OA O D U R2 R3 Sn Rn

44 Regenerator OTU S1 S1 S2 S3 O M U OA OA O D U O M U OA OA O D U S2 S3 Sn Sn

45 Receive OTU R1 G.957 S1 OTU S2 S3 O M U OA OA OA O D U R2 R3 Sn Rn

46 continuation According to transmission distance OTUD (short) Ds = 1800ps/nm : OTUEM (middle) Ds = 7200ps/nm : OTUEL (long) Ds=12800ps/nm : < 90km 90km-360km 360km-640km

47 Erbium Doped Fiber Amplifier O M U OBA n OLA OLA OPA O M U 2 n EDFA include Optical Booster Amplifier (OBA) - high optical output power Optical Line Amplifier (OLA) - compensate the loss of the transmission line Optical Pre Amplifier (OPA) - low noise

48 EDFA Parameters Output Power Channel Gain - the ratio of input optical power to output optical power. Gain Evenness - maximum gain in the amplify band. Noise Coefficient - the ratio of input OSNR to output OSNR

49 Noise is mainly caused by OA.

50 Optical Supervision Control (OSC) OMU OBA OLA OLA OLA OPA ODU OSC OSC OSC OSC OSC ODU OMU OPA OLA OLA OLA OBA

51 O B A osc O L A O L A O P A OMU OBA OLA OLA OLA OPA ODU OSC OSC OSC OSC OSC ODU OMU OPA OLA OLA OLA OBA

52 OSC 1510nm Signal speed : 2.048Mb/s Receiving sensitivity : Transmission power : -48dbm 0 ~ -7 dbm

Dr. Monir Hossen ECE, KUET

Dr. Monir Hossen ECE, KUET Dr. Monir Hossen ECE, KUET 1 Outlines of the Class Principles of WDM DWDM, CWDM, Bidirectional WDM Components of WDM AWG, filter Problems with WDM Four-wave mixing Stimulated Brillouin scattering WDM Network

More information

Photonics and Optical Communication Spring 2005

Photonics and Optical Communication Spring 2005 Photonics and Optical Communication Spring 2005 Final Exam Instructor: Dr. Dietmar Knipp, Assistant Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Final Exam: 2 hour You

More information

Total care for networks. Introduction to Dispersion

Total care for networks. Introduction to Dispersion Introduction to Dispersion Introduction to PMD Version1.0- June 01, 2000 Copyright GN Nettest 2000 Introduction To Dispersion Contents Definition of Dispersion Chromatic Dispersion Polarization Mode Dispersion

More information

Elements of Optical Networking

Elements of Optical Networking Bruckner Elements of Optical Networking Basics and practice of optical data communication With 217 Figures, 13 Tables and 93 Exercises Translated by Patricia Joliet VIEWEG+ TEUBNER VII Content Preface

More information

S Optical Networks Course Lecture 4: Transmission System Engineering

S Optical Networks Course Lecture 4: Transmission System Engineering S-72.3340 Optical Networks Course Lecture 4: Transmission System Engineering Edward Mutafungwa Communications Laboratory, Helsinki University of Technology, P. O. Box 2300, FIN-02015 TKK, Finland Tel:

More information

Optical networking. Emilie CAMISARD GIP RENATER Optical technologies engineer Advanced IP Services

Optical networking. Emilie CAMISARD GIP RENATER Optical technologies engineer Advanced IP Services Optical networking Emilie CAMISARD GIP RENATER Optical technologies engineer Advanced IP Services Agenda Optical fibre principle Time Division Multiplexing (TDM) Wavelength Division Multiplexing (WDM)

More information

DWDM 101 BRKOPT Rodger Nutt High-End Routing and Optical BU Technical Leader

DWDM 101 BRKOPT Rodger Nutt High-End Routing and Optical BU Technical Leader DWDM 101 Rodger Nutt High-End Routing and Optical BU Technical Leader Agenda Introduction What is DWDM Fiber Types Linear Effects The BIG Three: Attenuation, Chromatic Dispersion, OSNR Solutions to the

More information

CHAPTER 5 SPECTRAL EFFICIENCY IN DWDM

CHAPTER 5 SPECTRAL EFFICIENCY IN DWDM 61 CHAPTER 5 SPECTRAL EFFICIENCY IN DWDM 5.1 SPECTRAL EFFICIENCY IN DWDM Due to the ever-expanding Internet data traffic, telecommunication networks are witnessing a demand for high-speed data transfer.

More information

Contents for this Presentation. Multi-Service Transport

Contents for this Presentation. Multi-Service Transport Contents for this Presentation SDH/DWDM based Multi-Service Transport Platform by Khurram Shahzad ad Brief Contents Description for this of Presentation the Project Development of a Unified Transport Platform

More information

OPTICAL NETWORKS. Building Blocks. A. Gençata İTÜ, Dept. Computer Engineering 2005

OPTICAL NETWORKS. Building Blocks. A. Gençata İTÜ, Dept. Computer Engineering 2005 OPTICAL NETWORKS Building Blocks A. Gençata İTÜ, Dept. Computer Engineering 2005 Introduction An introduction to WDM devices. optical fiber optical couplers optical receivers optical filters optical amplifiers

More information

Wavelength Multiplexing. The Target

Wavelength Multiplexing. The Target The Target Design a MAN* like fiber network for high data transmission rates. The network is partial below sea level and difficult to install and to maintain. Such a fiber network demands an optimized

More information

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier Aied K. Mohammed, PhD Department of Electrical Engineering, University

More information

Mixing TrueWave RS Fiber with Other Single-Mode Fiber Designs Within a Network

Mixing TrueWave RS Fiber with Other Single-Mode Fiber Designs Within a Network Mixing TrueWave RS Fiber with Other Single-Mode Fiber Designs Within a Network INTRODUCTION A variety of single-mode fiber types can be found in today s installed networks. Standards bodies, such as the

More information

Implementing of High Capacity Tbps DWDM System Optical Network

Implementing of High Capacity Tbps DWDM System Optical Network , pp. 211-218 http://dx.doi.org/10.14257/ijfgcn.2016.9.6.20 Implementing of High Capacity Tbps DWDM System Optical Network Daleep Singh Sekhon *, Harmandar Kaur Deptt.of ECE, GNDU Regional Campus, Jalandhar,Punjab,India

More information

Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates

Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates Simarpreet Kaur Gill 1, Gurinder Kaur 2 1Mtech Student, ECE Department, Rayat- Bahra University,

More information

Optical Transport Tutorial

Optical Transport Tutorial Optical Transport Tutorial 4 February 2015 2015 OpticalCloudInfra Proprietary 1 Content Optical Transport Basics Assessment of Optical Communication Quality Bit Error Rate and Q Factor Wavelength Division

More information

Optical systems have carrier frequencies of ~100 THz. This corresponds to wavelengths from µm.

Optical systems have carrier frequencies of ~100 THz. This corresponds to wavelengths from µm. Introduction A communication system transmits information form one place to another. This could be from one building to another or across the ocean(s). Many systems use an EM carrier wave to transmit information.

More information

Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks

Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks 363 Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks CHAOUI Fahd 3, HAJAJI Anas 1, AGHZOUT Otman 2,4, CHAKKOUR Mounia 3, EL YAKHLOUFI Mounir

More information

Network Challenges for Coherent Systems. Mike Harrop Technical Sales Engineering, EXFO

Network Challenges for Coherent Systems. Mike Harrop Technical Sales Engineering, EXFO Network Challenges for Coherent Systems Mike Harrop Technical Sales Engineering, EXFO Agenda 1. 100G Transmission Technology 2. Non Linear effects 3. RAMAN Amplification 1. Optimsing gain 2. Keeping It

More information

8 10 Gbps optical system with DCF and EDFA for different channel spacing

8 10 Gbps optical system with DCF and EDFA for different channel spacing Research Article International Journal of Advanced Computer Research, Vol 6(24) ISSN (Print): 2249-7277 ISSN (Online): 2277-7970 http://dx.doi.org/10.19101/ijacr.2016.624002 8 10 Gbps optical system with

More information

Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System

Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System Gagandeep Singh Walia 1, Kulwinder Singh 2, Manjit Singh Bhamrah 3

More information

Optical Fibre Amplifiers Continued

Optical Fibre Amplifiers Continued 1 Optical Fibre Amplifiers Continued Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus ECE 445 Lecture 09 Fall Semester 2016 2 ERBIUM-DOPED FIBRE AMPLIFIERS BASIC

More information

Ph.D. Course Spring Wireless Communications. Wirebound Communications

Ph.D. Course Spring Wireless Communications. Wirebound Communications Ph.D. Course Spring 2005 Danyo Danev associate professor Div. Data Transmission, Dept. Electrical Engineering Linköping University SWEDEN Wireless Communications Radio transmissions Mobile telephony Satellite

More information

Performance Analysis of Dwdm System With Different Modulation Techique And Photodiode

Performance Analysis of Dwdm System With Different Modulation Techique And Photodiode The International Journal Of Engineering And Science (IJES) Volume 2 Issue 7 Pages 07-11 2013 ISSN(e): 2319 1813 ISSN(p): 2319 1805 Performance Analysis of Dwdm System With Different Modulation Techique

More information

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University Photonics Group Department of Micro- and Nanosciences Aalto University Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Last Lecture Topics Course introduction Ray optics & optical

More information

Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using DCF

Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using DCF Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using Sabina #1, Manpreet Kaur *2 # M.Tech(Scholar) & Department of Electronics & Communication

More information

Introduction Fundamental of optical amplifiers Types of optical amplifiers

Introduction Fundamental of optical amplifiers Types of optical amplifiers ECE 6323 Introduction Fundamental of optical amplifiers Types of optical amplifiers Erbium-doped fiber amplifiers Semiconductor optical amplifier Others: stimulated Raman, optical parametric Advanced application:

More information

WDM. Coarse WDM. Nortel's WDM System

WDM. Coarse WDM. Nortel's WDM System WDM wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths (i.e. colors) of laser light.

More information

Fundamentals of DWDM Technology

Fundamentals of DWDM Technology CHAPTER 2 The emergence of DWDM is one of the most recent and important phenomena in the development of fiber optic transmission technology. In the following discussion we briefly trace the stages of fiber

More information

RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM

RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM Prof. Muthumani 1, Mr. Ayyanar 2 1 Professor and HOD, 2 UG Student, Department of Electronics and Communication Engineering,

More information

Module 19 : WDM Components

Module 19 : WDM Components Module 19 : WDM Components Lecture : WDM Components - I Part - I Objectives In this lecture you will learn the following WDM Components Optical Couplers Optical Amplifiers Multiplexers (MUX) Insertion

More information

Photonics and Optical Communication

Photonics and Optical Communication Photonics and Optical Communication (Course Number 300352) Spring 2007 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering http://www.faculty.iu-bremen.de/dknipp/ 1 Photonics and Optical Communication

More information

Simulation of Negative Influences on the CWDM Signal Transmission in the Optical Transmission Media

Simulation of Negative Influences on the CWDM Signal Transmission in the Optical Transmission Media Simulation of Negative Influences on the CWDM Signal Transmission in the Optical Transmission Media Rastislav Róka, Martin Mokráň and Pavol Šalík Abstract This lecture is devoted to the simulation of negative

More information

Ultra-long Span Repeaterless Transmission System Technologies

Ultra-long Span Repeaterless Transmission System Technologies Ultra-long Span Repeaterless Transmission System Technologies INADA Yoshihisa Abstract The recent increased traffic accompanying the rapid dissemination of broadband communications has been increasing

More information

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian m.karbassian@arizona.edu Contents Optical Communications: Review Optical Communications and Photonics Why Photonics?

More information

Advanced Fibre Testing: Paving the Way for High-Speed Networks. Trevor Nord Application Specialist JDSU (UK) Ltd

Advanced Fibre Testing: Paving the Way for High-Speed Networks. Trevor Nord Application Specialist JDSU (UK) Ltd Advanced Fibre Testing: Paving the Way for High-Speed Networks Trevor Nord Application Specialist JDSU (UK) Ltd Fibre Review Singlemode Optical Fibre Elements of Loss Fibre Attenuation - Caused by scattering

More information

Thursday, April 17, 2008, 6:28:40

Thursday, April 17, 2008, 6:28:40 Wavelength Division Multiplexing By: Gurudatha Pai K gurudatha@gmail.com Thursday, April 17, 2008, 6:28:40 Overview Introduction Popular Multiplexing Techniques Optical Networking WDM An Analogy of Multiplexing

More information

A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF

A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF Research Manuscript Title A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF Dr.Punal M.Arabi, Nija.P.S PG Scholar, Professor, Department of ECE, SNS College of Technology,

More information

International Journal Of Scientific Research And Education Volume 3 Issue 4 Pages April-2015 ISSN (e): Website:

International Journal Of Scientific Research And Education Volume 3 Issue 4 Pages April-2015 ISSN (e): Website: International Journal Of Scientific Research And Education Volume 3 Issue 4 Pages-3183-3188 April-2015 ISSN (e): 2321-7545 Website: http://ijsae.in Effects of Four Wave Mixing (FWM) on Optical Fiber in

More information

Cisco s CLEC Networkers Power Session

Cisco s CLEC Networkers Power Session Course Number Presentation_ID 1 Cisco s CLEC Networkers Power Session Session 2 The Business Case for ONS 15800 3 What s Driving the Demand? Data Voice 4 What s Driving the Demand? Internet 36,700,000

More information

Recent Advances of Distributed Optical Fiber Raman Amplifiers in Ultra Wide Wavelength Division Multiplexing Telecommunication Networks

Recent Advances of Distributed Optical Fiber Raman Amplifiers in Ultra Wide Wavelength Division Multiplexing Telecommunication Networks IJCST Vo l. 3, Is s u e 1, Ja n. - Ma r c h 2012 ISSN : 0976-8491 (Online) ISSN : 2229-4333 (Print) Recent Advances of Distributed Optical Fiber Raman Amplifiers in Ultra Wide Wavelength Division Multiplexing

More information

Analyzing the Non-Linear Effects in DWDM Optical Network Using MDRZ Modulation Format

Analyzing the Non-Linear Effects in DWDM Optical Network Using MDRZ Modulation Format Analyzing the Non-Linear Effects in DWDM Optical Network Using MDRZ Modulation Format Ami R. Lavingia Electronics & Communication Dept. SAL Institute of Technology & Engineering Research Gujarat Technological

More information

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion M. A. Khayer Azad and M. S. Islam Institute of Information and Communication

More information

ADVANCED OPTICAL FIBER FOR LONG DISTANCE TELECOMMUNICATION NETWORKS

ADVANCED OPTICAL FIBER FOR LONG DISTANCE TELECOMMUNICATION NETWORKS Presented at AMTC 2000 ADVANCED OPTICAL FIBER FOR LONG DISTANCE TELECOMMUNICATION NETWORKS Christopher Towery North American Market Development Manager towerycr@corning.com & E. Alan Dowdell European Market

More information

Optical Transport Technologies and Trends

Optical Transport Technologies and Trends Optical Transport Technologies and Trends A Network Planning Perspective Sept 1, 2014 Dion Leung, Director of Solutions and Sales Engineering dleung@btisystem.com About BTI Customers 380+ worldwide in

More information

Integration of OOFDM With RoF For High Data Rates Long-haul Optical Communications

Integration of OOFDM With RoF For High Data Rates Long-haul Optical Communications University of Denver Digital Commons @ DU Electronic Theses and Dissertations Graduate Studies 1-1-2013 Integration of OOFDM With RoF For High Data Rates Long-haul Optical Communications Fahad Mobark Almasoudi

More information

ABSTRACT: Keywords: WDM, SRS, FWM, Channel spacing, Dispersion, Power level INTRODUCTION:

ABSTRACT: Keywords: WDM, SRS, FWM, Channel spacing, Dispersion, Power level INTRODUCTION: REDUCING SRS AND FWM IN DWDM SYSTEMS Charvi Mittal #1, Yuvraj Singh Rathore #2, Sonakshi Verma #3 #1 School of Electronics Engineering, VIT University, Vellore, 919566819903, #2 School of Electrical Engineering,

More information

The absorption of the light may be intrinsic or extrinsic

The absorption of the light may be intrinsic or extrinsic Attenuation Fiber Attenuation Types 1- Material Absorption losses 2- Intrinsic Absorption 3- Extrinsic Absorption 4- Scattering losses (Linear and nonlinear) 5- Bending Losses (Micro & Macro) Material

More information

Qualifying Fiber for 10G Deployment

Qualifying Fiber for 10G Deployment Qualifying Fiber for 10G Deployment Presented by: Bob Chomycz, P.Eng. Email: BChomycz@TelecomEngineering.com Tel: 1.888.250.1562 www.telecomengineering.com 2017, Slide 1 of 25 Telecom Engineering Introduction

More information

Pass Cisco Exam

Pass Cisco Exam Pass Cisco 642-321 Exam Number: 642-321 Passing Score: 800 Time Limit: 120 min File Version: 38.8 http://www.gratisexam.com/ Pass Cisco 642-321 Exam Exam Name : Cisco Optical SDH Exam (SDH) Braindumps

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 37

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 37 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 37 Introduction to Raman Amplifiers Fiber Optics, Prof. R.K. Shevgaonkar, Dept.

More information

Preparatory School to the Winter College on Fibre Optics, Fibre Lasers and Sensors

Preparatory School to the Winter College on Fibre Optics, Fibre Lasers and Sensors SMR 1826-9 Preparatory School to the Winter College on Fibre Optics, Fibre Lasers and Sensors 5-9 February 2007 Fiber-Optic Communications Hugo L. Fragnito Optics and Photonics Research Center UNICAMP-IFGW

More information

EE 233. LIGHTWAVE. Chapter 2. Optical Fibers. Instructor: Ivan P. Kaminow

EE 233. LIGHTWAVE. Chapter 2. Optical Fibers. Instructor: Ivan P. Kaminow EE 233. LIGHTWAVE SYSTEMS Chapter 2. Optical Fibers Instructor: Ivan P. Kaminow PLANAR WAVEGUIDE (RAY PICTURE) Agrawal (2004) Kogelnik PLANAR WAVEGUIDE a = (n s 2 - n c2 )/ (n f 2 - n s2 ) = asymmetry;

More information

Optical Fiber Enabler of Wireless Devices in the Palms of Your Hands

Optical Fiber Enabler of Wireless Devices in the Palms of Your Hands Optical Fiber Enabler of Wireless Devices in the Palms of Your Hands A Presentation to EE1001 Class of Electrical Engineering Department at University of Minnesota Duluth By Professor Imran Hayee Smartphone

More information

Effect of the FWM Influence on the CWDM Signal Transmission in the Optical Transmission Media

Effect of the FWM Influence on the CWDM Signal Transmission in the Optical Transmission Media Effect of the FWM Influence on the CWDM Signal Transmission in the Optical Transmission Media Rastislav Róka, Martin Mokráň Abstract This paper deals with analysis of negative influences on the optical

More information

Advanced Test Equipment Rentals ATEC (2832)

Advanced Test Equipment Rentals ATEC (2832) Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) BN 8000 May 2000 Profile Optische Systeme GmbH Gauss Str. 11 D - 85757 Karlsfeld / Germany Tel + 49 8131 5956-0 Fax

More information

What the future holds for DWDM - pushing the speed, capacity and distance envelope. J. J. (Cobus) Nel (M.Eng (Electron), University of Pretoria)

What the future holds for DWDM - pushing the speed, capacity and distance envelope. J. J. (Cobus) Nel (M.Eng (Electron), University of Pretoria) What the future holds for DWDM - pushing the speed, capacity and distance envelope J. J. (Cobus) Nel (M.Eng (Electron), University of Pretoria) Abstract In this paper we discuss what the future holds for

More information

FIBER OPTIC COMMUNICATION LINK LOSS, OSNR AND FEC PERFORMANCE

FIBER OPTIC COMMUNICATION LINK LOSS, OSNR AND FEC PERFORMANCE Tallinn University of Technology Laboratory exercise 2 of Fiber Optical Communication course FIBER OPTIC COMMUNICATION LINK LOSS, OSNR AND FEC PERFORMANCE Tallinn 2016 Please note that the OSA (Optical

More information

Optische netwerken SNE opleiding - 19 maart 2009

Optische netwerken SNE opleiding - 19 maart 2009 Optische netwerken SNE opleiding - 19 maart 2009 Roeland Nuijts, SURFnet, The Netherlands roeland.nuijts@surfnet.nl Outline - Introduction - Optical transmission fiber - Optical transmitters and receivers

More information

UNIT - 7 WDM CONCEPTS AND COMPONENTS

UNIT - 7 WDM CONCEPTS AND COMPONENTS UNIT - 7 WDM CONCEPTS AND COMPONENTS WDM concepts, overview of WDM operation principles, WDM standards, Mach-Zehender interferometer, multiplexer, Isolators and circulators, direct thin film filters, active

More information

FOPA Pump Phase Modulation and Polarization Impact on Generation of Idler Components

FOPA Pump Phase Modulation and Polarization Impact on Generation of Idler Components http://dx.doi.org/10.5755/j01.eie.22.4.15924 FOPA Pump Phase Modulation and Polarization Impact on Generation of Idler Components Sergejs Olonkins 1, Vjaceslavs Bobrovs 1, Girts Ivanovs 1 1 Institute of

More information

Nortel Networks OPTera Long Haul 1600 Optical Line System. 1600G Amplifier Optical Layer Applications Guide

Nortel Networks OPTera Long Haul 1600 Optical Line System. 1600G Amplifier Optical Layer Applications Guide NTY315DX Nortel Networks OPTera Long Haul 1600 Optical Line System 1600G Amplifier Optical Layer Applications Guide Standard Rel 3 Issue 2 October 2000 What s inside... Introduction Optical layer building

More information

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1 Lecture 3 Dispersion in single-mode fibers Material dispersion Waveguide dispersion Limitations from dispersion Propagation equations Gaussian pulse broadening Bit-rate limitations Fiber losses Fiber Optical

More information

Simulative Analysis of 40 Gbps DWDM System Using Combination of Hybrid Modulators and Optical Filters for Suppression of Four-Wave Mixing

Simulative Analysis of 40 Gbps DWDM System Using Combination of Hybrid Modulators and Optical Filters for Suppression of Four-Wave Mixing Vol.9, No.7 (2016), pp.213-220 http://dx.doi.org/10.14257/ijsip.2016.9.7.18 Simulative Analysis of 40 Gbps DWDM System Using Combination of Hybrid Modulators and Optical Filters for Suppression of Four-Wave

More information

Design of Ultra High Capacity DWDM System with Different Modulation Formats

Design of Ultra High Capacity DWDM System with Different Modulation Formats Design of Ultra High Capacity DWDM System with Different Modulation Formats A. Nandhini 1, K. Gokulakrishnan 2 1 PG Scholar, Department of Electronics & Communication Engineering, Regional Center, Anna

More information

Optical communications

Optical communications Optical communications Components and enabling technologies Optical networking Evolution of optical networking: road map SDH = Synchronous Digital Hierarchy SONET = Synchronous Optical Network SDH SONET

More information

Performance Investigation of Dispersion Compensation Techniques in 32-Channel DWDM System

Performance Investigation of Dispersion Compensation Techniques in 32-Channel DWDM System Performance Investigation of Dispersion Compensation Techniques in 32-Channel DWDM System Deepak Sharma ECE Department, UIET, MDU Rohtak Payal ECE Department, UIET, MDU Rohtak Rajbir Singh ECE Department,

More information

Improved Analysis of Hybrid Optical Amplifier in CWDM System

Improved Analysis of Hybrid Optical Amplifier in CWDM System Improved Analysis of Hybrid Optical Amplifier in CWDM System 1 Bandana Mallick, 2 Reeta Kumari, 3 Anirban Mukherjee, 4 Kunwar Parakram 1. Asst Proffesor in Dept. of ECE, GIET Gunupur 2, 3,4. Student in

More information

High Performance Dispersion and Dispersion Slope Compensating Fiber Modules for Non-zero Dispersion Shifted Fibers

High Performance Dispersion and Dispersion Slope Compensating Fiber Modules for Non-zero Dispersion Shifted Fibers High Performance Dispersion and Dispersion Slope Compensating Fiber Modules for Non-zero Dispersion Shifted Fibers Kazuhiko Aikawa, Ryuji Suzuki, Shogo Shimizu, Kazunari Suzuki, Masato Kenmotsu, Masakazu

More information

Optical switches. Switching Technology S Optical switches

Optical switches. Switching Technology S Optical switches Optical switches Switching Technology S38.165 http://www.netlab.hut.fi/opetus/s38165 13-1 Optical switches Components and enabling technologies Contention resolution Optical switching schemes 13-2 1 Components

More information

Optinex. Alcatel 1686 WM. 32 Channels DWDM System (Regional & Metro)

Optinex. Alcatel 1686 WM. 32 Channels DWDM System (Regional & Metro) Optinex Alcatel 1686 WM 32 Channels DWDM System (Regional & Metro) Compliant with G.692 ITU-T standards. Product based on flat gain amplifiers and dense wavelength division multiplexers. Designed for very

More information

Agilent 83430A Lightwave Digital Source Product Overview

Agilent 83430A Lightwave Digital Source Product Overview Agilent Lightwave Digital Source Product Overview SDH/SONET Compliant DFB laser source for digital, WDM, and analog test up to 2.5 Gb/s 52 Mb/s STM-0/OC-1 155 Mb/s STM-1/OC-3 622 Mb/s STM-4/OC-12 2488

More information

Lecture 1: Introduction

Lecture 1: Introduction Optical Fibre Communication Systems Lecture 1: Introduction Professor Z Ghassemlooy Electronics & It Division School of Engineering Sheffield Hallam University U.K. www.shu.ac.uk/ocr 1 Contents Reading

More information

UNIT - 7 WDM CONCEPTS AND COMPONENTS

UNIT - 7 WDM CONCEPTS AND COMPONENTS UNIT - 7 LECTURE-1 WDM CONCEPTS AND COMPONENTS WDM concepts, overview of WDM operation principles, WDM standards, Mach-Zehender interferometer, multiplexer, Isolators and circulators, direct thin film

More information

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs)

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Prof. Dr. Yaocheng SHI ( 时尧成 ) yaocheng@zju.edu.cn http://mypage.zju.edu.cn/yaocheng 1 Traditional Optical Communication System Loss

More information

University of Arizona ECE 430/530: Optical Communication Systems Spring 2010, Ivan B. Djordjevic Introduction to Fiber-Optics Communications

University of Arizona ECE 430/530: Optical Communication Systems Spring 2010, Ivan B. Djordjevic Introduction to Fiber-Optics Communications University of Arizona : Optical Communication Systems Spring 2010, Ivan B. Djordjevic Introduction to Fiber-Optics Communications 1 INTRODUCTION TO FIBER-OPTICS COMMUNICATIONS Optical communication systems

More information

Chapter 9 GUIDED WAVE OPTICS

Chapter 9 GUIDED WAVE OPTICS [Reading Assignment, Hecht 5.6] Chapter 9 GUIDED WAVE OPTICS Optical fibers The step index circular waveguide is the most common fiber design for optical communications plastic coating (sheath) core cladding

More information

HFTA-08.0: Receivers and Transmitters in DWDM Systems

HFTA-08.0: Receivers and Transmitters in DWDM Systems HFTA-08.0: Receivers and Transmitters in DWDM Systems The rapidly growing internet traffic demands a near-continuous expansion of data-transmission capacity. To avoid traffic jams on the data highways,

More information

Study and Simulation of Dispersion Compensation Scheme Effects on the Performance of Optical WDM System

Study and Simulation of Dispersion Compensation Scheme Effects on the Performance of Optical WDM System People s Democratic Republic of Algeria Ministry of Higher Education and Scientific Research University M Hamed BOUGARA Boumerdes Institute of Electrical and Electronic Engineering Department of Electronics

More information

Basics overview of Optical networking. Kurosh, August/2014

Basics overview of Optical networking. Kurosh, August/2014 Basics overview of Optical networking Kurosh, August/2014 Agenda Basic optical terminologies (fiber and DWDM device) DWDM building blocks and enabling technologies Terrestrial deployments Submarine deployment

More information

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm Khaled O. Basulaim, Samah Ali Al-Azani Dept. of Information Technology Faculty of Engineering,

More information

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion 36 Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion Supreet Singh 1, Kulwinder Singh 2 1 Department of Electronics and Communication Engineering, Punjabi

More information

Optical solitons. Mr. FOURRIER Jean-christophe Mr. DUREL Cyrille. Applied Physics Year

Optical solitons. Mr. FOURRIER Jean-christophe Mr. DUREL Cyrille. Applied Physics Year Mr. FOURRIER Jean-christophe Mr. DUREL Cyrille Applied Physics Year 4 2000 Optical solitons Module PS407 : Quantum Electronics Lecturer : Dr. Jean-paul MOSNIER 1.Introduction The nineties have seen the

More information

Spectral Response of FWM in EDFA for Long-haul Optical Communication

Spectral Response of FWM in EDFA for Long-haul Optical Communication Spectral Response of FWM in EDFA for Long-haul Optical Communication Lekshmi.S.R 1, Sindhu.N 2 1 P.G.Scholar, Govt. Engineering College, Wayanad, Kerala, India 2 Assistant Professor, Govt. Engineering

More information

OPTICAL COMMUNICATIONS S

OPTICAL COMMUNICATIONS S OPTICAL COMMUNICATIONS S-108.3110 1 Course program 1. Introduction and Optical Fibers 2. Nonlinear Effects in Optical Fibers 3. Fiber-Optic Components 4. Transmitters and Receivers 5. Fiber-Optic Measurements

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 26

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 26 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 26 Wavelength Division Multiplexed (WDM) Systems Fiber Optics, Prof. R.K. Shevgaonkar,

More information

Optical Fiber Technology. Photonic Network By Dr. M H Zaidi

Optical Fiber Technology. Photonic Network By Dr. M H Zaidi Optical Fiber Technology Numerical Aperture (NA) What is numerical aperture (NA)? Numerical aperture is the measure of the light gathering ability of optical fiber The higher the NA, the larger the core

More information

EDFA Applications in Test & Measurement

EDFA Applications in Test & Measurement EDFA Applications in Test & Measurement White Paper PN 200-0600-00 Revision 1.1 September 2003 Calmar Optcom, Inc www.calamropt.com Overview Erbium doped fiber amplifiers (EDFAs) amplify optical pulses

More information

Performance Analysis of Gb/s DWDM Metropolitan Area Network using SMF-28 and MetroCor Optical Fibres

Performance Analysis of Gb/s DWDM Metropolitan Area Network using SMF-28 and MetroCor Optical Fibres Research Cell: An International Journal of Engineering Sciences ISSN: 2229-6913 Issue Sept 2011, Vol. 4 11 Performance Analysis of 32 2.5 Gb/s DWDM Metropolitan Area Network using SMF-28 and MetroCor Optical

More information

Exam : : Cisco Optical SONET Exam. Title. Ver :

Exam : : Cisco Optical SONET Exam. Title. Ver : Exam : 642-311 Title : Cisco Optical SONET Exam Ver : 10.05.07 QUESTION 1: The exhibit shows a 15454/15216 DWDM system and alarm indications. What are two possible sources of trouble shown in the system?

More information

Computer Networks

Computer Networks 15-441 Computer Networks Physical Layer Professor Hui Zhang hzhang@cs.cmu.edu 1 Communication & Physical Medium There were communications before computers There were communication networks before computer

More information

Optical DWDM Networks

Optical DWDM Networks Optical DWDM Networks ain The Oh Columbus, OH 43210 Jain@CIS.Ohio-State.Edu These slides are available at http://www.cis.ohio-state.edu/~jain/cis788-99/ 1 Overview Sparse and Dense WDM Recent WDM Records

More information

UNREPEATERED SYSTEMS: STATE OF THE ART

UNREPEATERED SYSTEMS: STATE OF THE ART UNREPEATERED SYSTEMS: STATE OF THE ART Hans Bissessur, Isabelle Brylski, Dominique Mongardien (Alcatel-Lucent Submarine Networks), Philippe Bousselet (Alcatel-Lucent Bell Labs) Email: < hans.bissessur@alcatel-lucent.com

More information

E2-E3 CONSUMER FIXED ACCESS. CHAPTER-4 OVERVIEW OF OFC NETWORK (Date Of Creation: )

E2-E3 CONSUMER FIXED ACCESS. CHAPTER-4 OVERVIEW OF OFC NETWORK (Date Of Creation: ) E2-E3 CONSUMER FIXED ACCESS CHAPTER-4 OVERVIEW OF OFC NETWORK (Date Of Creation: 01-04-2011) Page: 1 Overview Of OFC Network Learning Objective: Optical Fiber concept & types OFC route and optical budget

More information

Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA

Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA P.P. Hema [1], Prof. A.Sangeetha [2] School of Electronics Engineering [SENSE], VIT University, Vellore

More information

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian m.karbassian@arizona.edu Contents Optical Communications: Review Optical Communications and Photonics Why Photonics?

More information

TD 505 Rev.1 (PLEN/15)

TD 505 Rev.1 (PLEN/15) INTERNATIONAL TELECOMMUNICATION UNION STUDY GROUP 15 TELECOMMUNICATION STANDARDIZATION SECTOR STUDY PERIOD 2009-2012 English only Original: English Question(s): 6/15 Geneva, 5-16 December 2011 Source:

More information

EKT 465 OPTICAL COMMUNICATION SYSTEM. Chapter 2 OPTICAL FIBER COMMUNICATIONS

EKT 465 OPTICAL COMMUNICATION SYSTEM. Chapter 2 OPTICAL FIBER COMMUNICATIONS EKT 465 OPTICAL COMMUNICATION SYSTEM Chapter 2 OPTICAL FIBER COMMUNICATIONS SEMESTER 1-2017/18 3 Credit Hours 222.3 Gbps pada 2017, daripada 6.4Gbps pada 2012 10/3/2017 2 Light Propagation & Transmission

More information

There are lots of problems or challenges with fiber, Attenuation, Reflections, Dispersion and so on. So here we will look at these problems.

There are lots of problems or challenges with fiber, Attenuation, Reflections, Dispersion and so on. So here we will look at these problems. The Hard theory The Hard Theory An introduction to fiber, should also include a section with some of the difficult theory. So if everything else in the book was very easily understood, then this section

More information

Signal Conditioning Parameters for OOFDM System

Signal Conditioning Parameters for OOFDM System Chapter 4 Signal Conditioning Parameters for OOFDM System 4.1 Introduction The idea of SDR has been proposed for wireless transmission in 1980. Instead of relying on dedicated hardware, the network has

More information