Unit 4 - Cellular System Design, Capacity, Handoff, and Outage

Size: px
Start display at page:

Download "Unit 4 - Cellular System Design, Capacity, Handoff, and Outage"

Transcription

1 Unit 4 - Cellular System Design, Capacity, Handoff, and Outage Course outline How to access the portal Assignment. Overview of Cellular Evolution and Wireless Technologies Wireless Propagation and Cellular Concepts Cellular System Design, Capacity, Handoff, and Outage Cellular Geometry & System Design Cellular System Capacity, Trunking Handoff & Mobility Handoff Part, Classification of Signal Variation Shadowing, Outage, Multipath Quiz : Assignment Lec0_notes Lec_notes Lec_notes Lec_notes ) Which of the following is not a valid cluster size ( assume hexagonal cells)? point ) Consider a N-cell reuse pattern (hexagonal geometry) with base stations at the point centre of each cell with omni-directional antennas. What would be the D/R ratio required if a minimum value of C/I = 8dB must be ensured. Assume path loss exponent n =. and only tier interferers ) Consider a N-cell reuse pattern (hexagonal geometry) with base stations at the point centre of each cell with omni-directional antennas. What would be the value of N that will ensure that a minimum C/I = 8dB is maintained. Assume path loss exponent n =. and only tier interferers are present. 9 Lec4_notes Feedback for week /

2 Assignment Solutions Week 4 - Multipath Fading Environment Week 5 - BER Performance in Fading Channels 4) Consider a cellular system with N= (hexagonal cells, BTS(base station) at the point centre of cell with omnidirectional antenna) with path loss exponent n =. Assume that MS(mobile station) is at the worst case C/I situation (at a vertex). Compute via geometric estimation the C/I due to tier interferers only. Hint: Since N= is small, you need to calculate the distance of the MS from all the tier interferers via geometric estimation. Week 6 - Wide Sense Stationary Uncorrelated Scattering (WSSUS) Channel Model 5.5 db 6.5 db 4. db 8.6 db Week - Computer simulation of Rayleigh fading, Antenna Diversity Week 8 - Fading Channels - Diversity and Capacity Week 9 - Capacity and Introduction to CDMA Week 0 - Introduction to CDMA Week - CDMA Receivers Week MATLAB 5.5 db 5) Consider a cellular system with N= with hexagonal cells. Antenna sectorization point is introduced in the system. What is the number of tier interferers if 0 degree sectorization is employed. Assume that the base station is at the center of the cell and evaluate for the worst case interference ) Repeat problem 5 if 60 degree sectorization is employed. Again evaluate for the point worst case interference 4 ) Which of the following is the most favourable action for a cellular system to take point which receives high RSSI but low RxQual (SINR)? Frequency hopping Intracell handover Intercell handover either (a) or (b) either (a) or (b) 8) A cellular service provider implements a digital TDMA system which requires a point minimum signal-to-interference ratio of 5 db. Assume that only Tier- interferers need to /

3 be considered and the approximation that all Tier- interferers are equidistant from the mobile station. What is the optimal value of N considering omni-directional antennas? (Assume a path loss exponent of n = 4) 4 9) Consider a cellular system consisting of 5 users. Each user makes an average point of calls per hour. Each call, on average, lasts for 4 minutes. What is the total offered traffic (in Erlang)? ) What is the maximum system capacity per channel in Erlangs when providing a point blocking probability of % with C = 40 channels (Use the Erlang-B calculator given in ) ) ( For questions and use the following information). A cellular system has point a cluster size N. It is given that a total of 00 voice channels are available, and users are uniformly distributed over the geographic area covered by the cells. Each user generates 0.04 Erlangs of traffic. Assuming that blocked calls are cleared and that the target blocking probability is %. (Use the Erlang-B calculator given in ) What is the maximum number of users per cell that can be supported for cluster size N = 4? /

4 5 ) For the system in previous question, what should be the reduction in offered traffic to maintain the same Grade-of-Service (GOS) if one channel in each cell is reserved for handoff traffic. (Assume cluster size is N = 4 ) point 0.9 Erl. Erl.5 Erl.8 Erl 0.9 Erl ) (Rappaport.) For a N = system with blocking P = % and average call point length of two minutes, find the capacity loss (in terms of No. of users per cell) due to trunking for 60 channels / cell when going from omni-directional antenna to 60 degree sectored antennas. Assume blocked calls are cleared and the average user call rate is call per hour (Use the Erlang-B calculator given in ) 4 users /cell 40 users /cell 609 users /cell 98 users /cell 609 users /cell 4) Which of the following fact is true about the maximum per-channel capacity for a given Pr(blocking)? (Hint : You may use the Erlang-B calculator given in The plot of per-channel capacity versus No. of Channels used is point a concave downwards function a convex downwards function neither concave nor convex Constant a concave downwards function 5) (Q.5-6) Assume that you re travelling in Hyperloop, a High-Speed-Train at a point speed of 60 m/s. Base stations are located at regular intervals along the rails. Assume that you re connected to BTS-A and moving away from BTS-A towards BTS-B. The two base stations, A and B are separated by a distance of km. (Refer. Lec / Slide for picture) The User Equipment, i.e, your mobile phone has a receiver sensitivity of -00 dbm. Neglect the height of the base station towers, and assume Free-Space-Path-Loss model. Assume that the carriers of A and B are around.4 GHz. What is the minimum transmit power required at the base stations to avoid Call-drop. 4/

5 Assume that all base stations work at the same transmit power. Assume that instantaneous hand-off is possible for this problem. dbm 0 dbw 0 dbm dbw 0 dbm 6) Let s say a Hand-off takes about s on an average since initiation, and BTS point transmit power is dbm, what is the Hand-off margin required in db to avoid Call-drops while in the moving train. (Again, UE is moving from BTS-A to BTS-B) db.5 db 0. db 0 db.5 db ) Assuming that the size of the cells and the total number of available channels point are fixed. Increasing the cluster size improves the C/I and at the same time, increases Erlang capacity. This statement is False True Insufficient information to make the statement True under some conditions False 8) A mobile phone receiver operates in a bandwidth of MHz at 00 K and has a point noise figure 4 db. The receiver is present on the cell edge and minimum db SNR is required for reliable communication. Consider log normal shadowing effects with σ = 5 db. Carrier frequency = GHz. To achieve 90% coverage probability, find the mean received power. Make use of the data Q(-.86) = 0.9 Hint: Q(-x) = - Q(x). Q function calculator: dbm dbm -50 dbm -05. dbm 5/

6 -0.6 dbm 9) A mobile phone receiver operates in a bandwidth of MHz at 00 K and has a point noise figure 4 db. The receiver is present on the cell edge and minimum db SNR is required for reliable communication. Consider log normal shadowing effects with σ = 5 db. Given there is maximum power constraint of mw that a base station can transmit., find the maximum radius of the cell for 90% coverage probability. Assume free space path loss model. Carrier frequency = GHz. Make use of the data Q(-.86) = 0.9 Hint: Q(-x) = - Q(x). Q function calculator: 50 km 45.4 km.4 km km.4 km 0) Consider GHz. If the user is moving at 0 m/s towards the base station, find the maximum Doppler shift. point. Hz. Hz Hz 6.66 Hz Hz ) In a normalized U-V coordinate system, consider two points with the following coordinates: point Point A (,) and Point B (5,4). What is the actual distance between points A and B if the side of each hexagon is R= km 5. km 9. km 8 km None of the above 5. km 6/

7 /

Unit 3 - Wireless Propagation and Cellular Concepts

Unit 3 - Wireless Propagation and Cellular Concepts X Courses» Introduction to Wireless and Cellular Communications Unit 3 - Wireless Propagation and Cellular Concepts Course outline How to access the portal Assignment 2. Overview of Cellular Evolution

More information

Unit 7 - Week 6 - Wide Sense Stationary Uncorrelated Scattering (WSSUS) Channel Model

Unit 7 - Week 6 - Wide Sense Stationary Uncorrelated Scattering (WSSUS) Channel Model X Courses» Introduction to Wireless and Cellular Communications Announcements Course Forum Progress Mentor Unit 7 - Week 6 - Wide Sense Stationary Uncorrelated Scattering (WSSUS) Channel Model Course outline

More information

Unit 8 - Week 7 - Computer simulation of Rayleigh fading, Antenna Diversity

Unit 8 - Week 7 - Computer simulation of Rayleigh fading, Antenna Diversity X Courses» Introduction to Wireless and Cellular Communications Announcements Course Forum Progress Mentor Unit 8 - Week 7 - Computer simulation of Rayleigh fading, Antenna Diversity Course outline How

More information

Unit 5 - Week 4 - Multipath Fading Environment

Unit 5 - Week 4 - Multipath Fading Environment 2/29/207 Introduction to ireless and Cellular Communications - - Unit 5 - eek 4 - Multipath Fading Environment X Courses Unit 5 - eek 4 - Multipath Fading Environment Course outline How to access the portal

More information

03_57_104_final.fm Page 97 Tuesday, December 4, :17 PM. Problems Problems

03_57_104_final.fm Page 97 Tuesday, December 4, :17 PM. Problems Problems 03_57_104_final.fm Page 97 Tuesday, December 4, 2001 2:17 PM Problems 97 3.9 Problems 3.1 Prove that for a hexagonal geometry, the co-channel reuse ratio is given by Q = 3N, where N = i 2 + ij + j 2. Hint:

More information

12/29/2017 Introduction to Wireless and Cellular Communications - - Unit 2 - Overview of Cellular Evolution and Wireless Technologies

12/29/2017 Introduction to Wireless and Cellular Communications - - Unit 2 - Overview of Cellular Evolution and Wireless Technologies 12/29/2017 Introduction to Wireless and Communications - - Unit 2 - Evolution and Wireless Technologies Course outline How to access the portal Evolution and Wireless Technologies Assignment 1 This assignment

More information

Level 6 Graduate Diploma in Engineering Wireless and mobile communications

Level 6 Graduate Diploma in Engineering Wireless and mobile communications 9210-119 Level 6 Graduate Diploma in Engineering Wireless and mobile communications Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil,

More information

Unit-1 The Cellular Concept

Unit-1 The Cellular Concept Unit-1 The Cellular Concept 1.1 Introduction to Cellular Systems Solves the problem of spectral congestion and user capacity. Offer very high capacity in a limited spectrum without major technological

More information

Unit 2: Mobile Communication Systems Lecture 8, 9: Performance Improvement Techniques in Cellular Systems. Today s Lecture: Outline

Unit 2: Mobile Communication Systems Lecture 8, 9: Performance Improvement Techniques in Cellular Systems. Today s Lecture: Outline Unit 2: Mobile Communication Systems Lecture 8, 9: Performance Improvement Techniques in Cellular Systems Today s Lecture: Outline Handover & Roaming Hard and Soft Handover Power Control Cell Splitting

More information

King Fahd University of Petroleum & Minerals Computer Engineering Dept

King Fahd University of Petroleum & Minerals Computer Engineering Dept King Fahd University of Petroleum & Minerals Computer Engineering Dept COE 543 Mobile and Wireless Networks Term 0 Dr. Ashraf S. Hasan Mahmoud Rm -148-3 Ext. 174 Email: ashraf@ccse.kfupm.edu.sa 4//003

More information

UNIK4230: Mobile Communications Spring Per Hjalmar Lehne Tel:

UNIK4230: Mobile Communications Spring Per Hjalmar Lehne Tel: UNIK4230: Mobile Communications Spring 2015 Per Hjalmar Lehne per-hjalmar.lehne@telenor.com Tel: 916 94 909 Cells and Cellular Traffic (Chapter 4) Date: 12 March 2015 Agenda Introduction Hexagonal Cell

More information

UNIK4230: Mobile Communications. Abul Kaosher

UNIK4230: Mobile Communications. Abul Kaosher UNIK4230: Mobile Communications Abul Kaosher abul.kaosher@nsn.com Cells and Cellular Traffic Cells and Cellular Traffic Introduction Hexagonal Cell Geometry Co-Channel Interference (CCI) CCI Reduction

More information

UNIK4230: Mobile Communications Spring 2013

UNIK4230: Mobile Communications Spring 2013 UNIK4230: Mobile Communications Spring 2013 Abul Kaosher abul.kaosher@nsn.com Mobile: 99 27 10 19 1 UNIK4230: Mobile Communications Cells and Cellular Traffic- I Date: 07.03.2013 2 UNIK4230: Mobile Communications

More information

EKT 450 Mobile Communication System

EKT 450 Mobile Communication System EKT 450 Mobile Communication System Chapter 6: The Cellular Concept Dr. Azremi Abdullah Al-Hadi School of Computer and Communication Engineering azremi@unimap.edu.my 1 Introduction Introduction to Cellular

More information

GTBIT ECE Department Wireless Communication

GTBIT ECE Department Wireless Communication Q-1 What is Simulcast Paging system? Ans-1 A Simulcast Paging system refers to a system where coverage is continuous over a geographic area serviced by more than one paging transmitter. In this type of

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 3: Cellular Fundamentals

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 3: Cellular Fundamentals ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2004 Lecture 3: Cellular Fundamentals Chapter 3 - The Cellular Concept - System Design Fundamentals I. Introduction Goals of a Cellular System

More information

M Y R E V E A L - C E L L U L A R

M Y R E V E A L - C E L L U L A R M Y R E V E A L - C E L L U L A R The hexagon cell shape If we have two BTSs with omniantennas and we require that the border between the coverage area of each BTS is the set of points where the signal

More information

EENG473 Mobile Communications Module 2 : Week # (8) The Cellular Concept System Design Fundamentals

EENG473 Mobile Communications Module 2 : Week # (8) The Cellular Concept System Design Fundamentals EENG473 Mobile Communications Module 2 : Week # (8) The Cellular Concept System Design Fundamentals Improving Capacity in Cellular Systems Cellular design techniques are needed to provide more channels

More information

Mobile & Wireless Networking. Lecture 4: Cellular Concepts & Dealing with Mobility. [Reader, Part 3 & 4]

Mobile & Wireless Networking. Lecture 4: Cellular Concepts & Dealing with Mobility. [Reader, Part 3 & 4] 192620010 Mobile & Wireless Networking Lecture 4: Cellular Concepts & Dealing with Mobility [Reader, Part 3 & 4] Geert Heijenk Outline of Lecture 4 Cellular Concepts q Introduction q Cell layout q Interference

More information

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Fall Increasing Capacity and Coverage. Lecture 4

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Fall Increasing Capacity and Coverage. Lecture 4 ECE 5325/6325: Wireless Communication Systems Lecture Notes, Fall 2011 Lecture 4 Today: (1) Sectoring (2) Cell Splitting Reading today: 3.7; Tue: 4.1-4.3, 4.9. HW 1 due Friday 10am in HW locker (#3). Please

More information

Wireless Communications and Networking

Wireless Communications and Networking IMA - Wireless Communications and Networking Jon W. Mark and Weihua Zhuang Centre for Wireless Communications Department of Electrical and Computer Engineering University of Waterloo Waterloo, Ontario,

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 2. Interference and Shadow Margins, Handoff Gain, Coverage Capacity, Flat Fading

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 2. Interference and Shadow Margins, Handoff Gain, Coverage Capacity, Flat Fading ECE6604 PERSONAL & MOBILE COMMUNICATIONS Week 2 Interference and Shadow Margins, Handoff Gain, Coverage Capacity, Flat Fading 1 Interference Margin As the subscriber load increases, additional interference

More information

Introduction to Wireless and Mobile Networking. Hung-Yu Wei g National Taiwan University

Introduction to Wireless and Mobile Networking. Hung-Yu Wei g National Taiwan University Introduction to Wireless and Mobile Networking Lecture 3: Multiplexing, Multiple Access, and Frequency Reuse Hung-Yu Wei g National Taiwan University Multiplexing/Multiple Access Multiplexing Multiplexing

More information

Spring 2017 MIMO Communication Systems Solution of Homework Assignment #5

Spring 2017 MIMO Communication Systems Solution of Homework Assignment #5 Spring 217 MIMO Communication Systems Solution of Homework Assignment #5 Problem 1 (2 points Consider a channel with impulse response h(t α δ(t + α 1 δ(t T 1 + α 3 δ(t T 2. Assume that T 1 1 µsecs and

More information

UNIT-II 1. Explain the concept of frequency reuse channels. Answer:

UNIT-II 1. Explain the concept of frequency reuse channels. Answer: UNIT-II 1. Explain the concept of frequency reuse channels. Concept of Frequency Reuse Channels: A radio channel consists of a pair of frequencies one for each direction of transmission that is used for

More information

6 Uplink is from the mobile to the base station.

6 Uplink is from the mobile to the base station. It is well known that by using the directional properties of adaptive arrays, the interference from multiple users operating on the same channel as the desired user in a time division multiple access (TDMA)

More information

GSM FREQUENCY PLANNING

GSM FREQUENCY PLANNING GSM FREQUENCY PLANNING PROJECT NUMBER: PRJ070 BY NAME: MUTONGA JACKSON WAMBUA REG NO.: F17/2098/2004 SUPERVISOR: DR. CYRUS WEKESA EXAMINER: DR. MAURICE MANG OLI Introduction GSM is a cellular mobile network

More information

NATIONAL INSTITUTE OF TECHNOLOGY, Arunachal Pradesh

NATIONAL INSTITUTE OF TECHNOLOGY, Arunachal Pradesh NATIONAL INSTITUTE OF TECHNOLOGY, Arunachal Pradesh (Established by Ministry of Human Resources Development, Govt. Of India) Yupia, District-Papum Pare, Arunachal Pradesh -791112. M.Techl20I End-semester

More information

College of Engineering

College of Engineering WiFi and WCDMA Network Design Robert Akl, D.Sc. College of Engineering Department of Computer Science and Engineering Outline WiFi Access point selection Traffic balancing Multi-Cell WCDMA with Multiple

More information

CCAP: A Strategic Tool for Managing Capacity of CDMA Networks

CCAP: A Strategic Tool for Managing Capacity of CDMA Networks CCAP: A Strategic Tool for Managing Capacity of CDMA Networks Teleware Co. Ltd. in cooperation with Washington University, Saint Louis, Missouri, USA What is CCAP Graphical interactive tool for CDMA Calculates

More information

Cellular Wireless Networks and GSM Architecture. S.M. Riazul Islam, PhD

Cellular Wireless Networks and GSM Architecture. S.M. Riazul Islam, PhD Cellular Wireless Networks and GSM Architecture S.M. Riazul Islam, PhD Desirable Features More Capacity Less Power Larger Coverage Cellular Network Organization Multiple low power transmitters 100w or

More information

EC 551 Telecommunication System Engineering. Mohamed Khedr

EC 551 Telecommunication System Engineering. Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr 1 Mohamed Khedr., 2008 Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week

More information

ECS455 Chapter 2 Cellular Systems

ECS455 Chapter 2 Cellular Systems ECS455 Chapter 2 Cellular Systems 2.2 Co-Channel Interference r.rapun Suksompong prapun.com/ecs455 Office Hours: BK 360-7 Tuesday 9:30-0:30 Tuesday 3:30-4:30 Thursday 3:30-4:30 Co-Channel Cells: Ex. N

More information

Cellular Concept. Cell structure

Cellular Concept. Cell structure Cellular Concept Dr Yousef Dama Faculty of Engineering and Information Technology An-Najah National University 2014-2015 Mobile communications Lecture Notes, prepared by Dr Yousef Dama, An-Najah National

More information

SNS COLLEGE OF ENGINEERING COIMBATORE DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK

SNS COLLEGE OF ENGINEERING COIMBATORE DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK SNS COLLEGE OF ENGINEERING COIMBATORE 641107 DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK EC6801 WIRELESS COMMUNICATION UNIT-I WIRELESS CHANNELS PART-A 1. What is propagation model? 2. What are the

More information

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010 ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010 Lecture 2 Today: (1) Frequency Reuse, (2) Handoff Reading for today s lecture: 3.2-3.5 Reading for next lecture: Rap 3.6 HW 1 will

More information

CELLULAR AND MOBILE COMMUNICATIONS

CELLULAR AND MOBILE COMMUNICATIONS CELLULAR AND MOBILE COMMUNICATIONS by VIDYA SAGAR POTHARAJU Associate Professor, Dept of ECE,. 1 TEXT BOOKS 1.Mobile and Cellular Telecommunications-W.C.Y.Lee 2 nd Edn, 1989. 2. Wireless Communications-Theodre.S.Rapport,

More information

A Glimps at Cellular Mobile Radio Communications. Dr. Erhan A. İnce

A Glimps at Cellular Mobile Radio Communications. Dr. Erhan A. İnce A Glimps at Cellular Mobile Radio Communications Dr. Erhan A. İnce 28.03.2012 CELLULAR Cellular refers to communications systems that divide a geographic region into sections, called cells. The purpose

More information

Positioning and Relay Assisted Robust Handover Scheme for High Speed Railway

Positioning and Relay Assisted Robust Handover Scheme for High Speed Railway Positioning and Relay Assisted Robust Handover Scheme for High Speed Railway Linghui Lu, Xuming Fang, Meng Cheng, Chongzhe Yang, Wantuan Luo, Cheng Di Provincial Key Lab of Information Coding & Transmission

More information

Autumn Main Exam SEAT NUMBER: STUDENTNUMBER: L--- ~~--~--~--~----~--~--L-~ SURNAME: (FAMILY NAME) OTHER NAMES: LECTURER NAME:

Autumn Main Exam SEAT NUMBER: STUDENTNUMBER: L--- ~~--~--~--~----~--~--L-~ SURNAME: (FAMILY NAME) OTHER NAMES: LECTURER NAME: Autumn 216- Main Exam SEAT NUMBER: iuts UNIVERSITY OF TECHNOLOGY SYDNEY STUDENTNUMBER: L--- ~~--~--~--~----~--~--L-~ SURNAME: (FAMILY NAME) OTHER NAMES: LECTURER NAME: This paper and all materials issued

More information

Multiple access and cellular systems

Multiple access and cellular systems RADIO SYSTEMS ETIN15 Lecture no: 9 Multiple access and cellular systems 2017-05-02 Anders J Johansson 1 Contents Background Interference and spectrum efficiency Frequency-division multiple access (FDMA)

More information

Dynamic Frequency Hopping in Cellular Fixed Relay Networks

Dynamic Frequency Hopping in Cellular Fixed Relay Networks Dynamic Frequency Hopping in Cellular Fixed Relay Networks Omer Mubarek, Halim Yanikomeroglu Broadband Communications & Wireless Systems Centre Carleton University, Ottawa, Canada {mubarek, halim}@sce.carleton.ca

More information

The Cellular Concept. History of Communication. Frequency Planning. Coverage & Capacity

The Cellular Concept. History of Communication. Frequency Planning. Coverage & Capacity The Cellular Concept History of Communication Frequency Planning Coverage & Capacity Engr. Mian Shahzad Iqbal Lecturer Department of Telecommunication Engineering Before GSM: Mobile Telephony Mile stones

More information

Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow.

Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow. Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow WiMAX Whitepaper Author: Frank Rayal, Redline Communications Inc. Redline

More information

CS Mobile and Wireless Networking Homework 1

CS Mobile and Wireless Networking Homework 1 S 515 - Mobile and Wireless Networking Homework 1 ate: Oct 16, 2002, Wednesday You may benefit from the following tools if you wish: scientific calculator function plotter like matlab, gnuplot, or any

More information

Adaptive Modulation, Adaptive Coding, and Power Control for Fixed Cellular Broadband Wireless Systems: Some New Insights 1

Adaptive Modulation, Adaptive Coding, and Power Control for Fixed Cellular Broadband Wireless Systems: Some New Insights 1 Adaptive, Adaptive Coding, and Power Control for Fixed Cellular Broadband Wireless Systems: Some New Insights Ehab Armanious, David D. Falconer, and Halim Yanikomeroglu Broadband Communications and Wireless

More information

Chapter 3: Cellular concept

Chapter 3: Cellular concept Chapter 3: Cellular concept Introduction to cellular concept: The cellular concept was a major breakthrough in solving the problem of spectral congestion and user capacity. It offered very high capacity

More information

International Journal of Engineering Trends and Technology (IJETT) Volume 50 Number 1 August 2017

International Journal of Engineering Trends and Technology (IJETT) Volume 50 Number 1 August 2017 Comparative Analysis of Power Control Algorithms for Uplink in CDMA System-A Review Chandra Prakash, Dr. Manish Rai, Prof. V.K. Sharma Ph.D Research Scholar, ECE Department, Bhagwant University, Ajmer,

More information

Revision of Lecture One

Revision of Lecture One Revision of Lecture One System blocks and basic concepts Multiple access, MIMO, space-time Transceiver Wireless Channel Signal/System: Bandpass (Passband) Baseband Baseband complex envelope Linear system:

More information

Revision of Lecture One

Revision of Lecture One Revision of Lecture One System block Transceiver Wireless Channel Signal / System: Bandpass (Passband) Baseband Baseband complex envelope Linear system: complex (baseband) channel impulse response Channel:

More information

WIRELESS COMMUNICATIONS PRELIMINARIES

WIRELESS COMMUNICATIONS PRELIMINARIES WIRELESS COMMUNICATIONS Preliminaries Radio Environment Modulation Performance PRELIMINARIES db s and dbm s Frequency/Time Relationship Bandwidth, Symbol Rate, and Bit Rate 1 DECIBELS Relative signal strengths

More information

A New Analysis of the DS-CDMA Cellular Uplink Under Spatial Constraints

A New Analysis of the DS-CDMA Cellular Uplink Under Spatial Constraints A New Analysis of the DS-CDMA Cellular Uplink Under Spatial Constraints D. Torrieri M. C. Valenti S. Talarico U.S. Army Research Laboratory Adelphi, MD West Virginia University Morgantown, WV June, 3 the

More information

Performance Evaluation of Uplink Closed Loop Power Control for LTE System

Performance Evaluation of Uplink Closed Loop Power Control for LTE System Performance Evaluation of Uplink Closed Loop Power Control for LTE System Bilal Muhammad and Abbas Mohammed Department of Signal Processing, School of Engineering Blekinge Institute of Technology, Ronneby,

More information

Mobile Wireless Communications - Overview

Mobile Wireless Communications - Overview S. R. Zinka srinivasa_zinka@daiict.ac.in October 16, 2014 First of all... Which frequencies we can use for wireless communications? Atmospheric Attenuation of EM Waves 100 % Gamma rays, X-rays and ultraviolet

More information

The Cellular Concept

The Cellular Concept The Cellular Concept Key problems in multi-user wireless system: spectrum is limited and expensive large # of users to accommodate high quality-of-services (QoS) is required expandable systems are needed

More information

Chapter 3 Ahmad Bilal ahmadbilal.webs.com

Chapter 3 Ahmad Bilal ahmadbilal.webs.com Chapter 3 A Quick Recap We learned about cell and reuse factor. We looked at traffic capacity We looked at different Earling Formulas We looked at channel strategies We had a look at Handoff Interference

More information

UNIT - 1 [INTRODUCTION TO WIRELESS COMMUNICATION SYSTEMS] OLUTION OF MOBILE RADIO COMMUNICATION

UNIT - 1 [INTRODUCTION TO WIRELESS COMMUNICATION SYSTEMS] OLUTION OF MOBILE RADIO COMMUNICATION i CONTENTS UNIT - 1 [INTRODUCTION TO WIRELESS COMMUNICATION SYSTEMS]... 1.1-1.26 1.1 INTRODUCTION... 1.2 1.2 EVOL OLUTION OF MOBILE RADIO COMMUNICATION... 1.2 1.3 EXAMPLES OF WIRELESS COMMUNICATION SYSTEMS...

More information

ECS455 Chapter 2 Cellular Systems

ECS455 Chapter 2 Cellular Systems ECS455 Chapter 2 Cellular Systems 2.3 Sectoring 1 Dr.Prapun Suksompong prapun.com/ecs455 C A Improving Coverage and Capacity As the demand for wireless service increases, the number of channels assigned

More information

EEG473 Mobile Communications Module 2 : Week # (6) The Cellular Concept System Design Fundamentals

EEG473 Mobile Communications Module 2 : Week # (6) The Cellular Concept System Design Fundamentals EEG473 Mobile Communications Module 2 : Week # (6) The Cellular Concept System Design Fundamentals Interference and System Capacity Interference is the major limiting factor in the performance of cellular

More information

Wireless Transmission in Cellular Networks

Wireless Transmission in Cellular Networks Wireless Transmission in Cellular Networks Frequencies Signal propagation Signal to Interference Ratio Channel capacity (Shannon) Multipath propagation Multiplexing Spatial reuse in cellular systems Antennas

More information

3GPP TR V7.0.0 ( )

3GPP TR V7.0.0 ( ) TR 25.816 V7.0.0 (2005-12) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; UMTS 900 MHz Work Item Technical Report (Release 7) The present document

More information

1. Classify the mobile radio transmission systems. Simplex & Duplex. 2. State example for a half duplex system. Push to talk and release to listen.

1. Classify the mobile radio transmission systems. Simplex & Duplex. 2. State example for a half duplex system. Push to talk and release to listen. 1. Classify the mobile radio transmission systems. Simplex & Duplex. 2. State example for a half duplex system. Push to talk and release to listen. 3. State example for a Simplex system. Pager. 4. State

More information

Data and Computer Communications

Data and Computer Communications Data and Computer Communications Chapter 14 Cellular Wireless Networks Eighth Edition by William Stallings Cellular Wireless Networks key technology for mobiles, wireless nets etc developed to increase

More information

MOBILE COMMUNICATIONS (650520) Part 3

MOBILE COMMUNICATIONS (650520) Part 3 Philadelphia University Faculty of Engineering Communication and Electronics Engineering MOBILE COMMUNICATIONS (650520) Part 3 Dr. Omar R Daoud 1 Trunking and Grade Services Trunking: A means for providing

More information

UNIVERSITY OF TECHNOLOGY, SYNDEY

UNIVERSITY OF TECHNOLOGY, SYNDEY Cover Page - Type B: THIS PAPER MUST NOT BE REMOVED FROM EXAM CENTRE TO BE RETURNED AT THE END OF THE EXAMINATION UNIVERSITY OF TECHNOLOGY, SYNDEY SURNAME: FIRST NAME: STUDENT NO: COURSE: AUTUMN SEMESTER

More information

LECTURE 3. Radio Propagation

LECTURE 3. Radio Propagation LECTURE 3 Radio Propagation 2 Simplified model of a digital communication system Source Source Encoder Channel Encoder Modulator Radio Channel Destination Source Decoder Channel Decoder Demod -ulator Components

More information

Narrow- and wideband channels

Narrow- and wideband channels RADIO SYSTEMS ETIN15 Lecture no: 3 Narrow- and wideband channels Ove Edfors, Department of Electrical and Information technology Ove.Edfors@eit.lth.se 27 March 2017 1 Contents Short review NARROW-BAND

More information

Figure 1.1:- Representation of a transmitter s Cell

Figure 1.1:- Representation of a transmitter s Cell Volume 4, Issue 2, February 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Study on Improving

More information

Opportunistic Vehicular Networks by Satellite Links for Safety Applications

Opportunistic Vehicular Networks by Satellite Links for Safety Applications 1 Opportunistic Vehicular Networks by Satellite Links for Safety Applications A.M. Vegni, C. Vegni, and T.D.C. Little Outline 2 o o o Opportunistic Networking as traditional connectivity in VANETs. Limitation

More information

Path-loss and Shadowing (Large-scale Fading) PROF. MICHAEL TSAI 2015/03/27

Path-loss and Shadowing (Large-scale Fading) PROF. MICHAEL TSAI 2015/03/27 Path-loss and Shadowing (Large-scale Fading) PROF. MICHAEL TSAI 2015/03/27 Multipath 2 3 4 5 Friis Formula TX Antenna RX Antenna = 4 EIRP= Power spatial density 1 4 6 Antenna Aperture = 4 Antenna Aperture=Effective

More information

EXAM QUESTION EXAMPLES

EXAM QUESTION EXAMPLES EXAM QUESTION EXAMPLES ETIN10, CHANNEL MODELING FOR WIRELESS COMMUNICATIONS, 2017 Question 1 This question is regarding the concepts of large-scale and small-scale fading: a) Please give a brief physical

More information

Reti di Telecomunicazione. Channels and Multiplexing

Reti di Telecomunicazione. Channels and Multiplexing Reti di Telecomunicazione Channels and Multiplexing Point-to-point Channels They are permanent connections between a sender and a receiver The receiver can be designed and optimized based on the (only)

More information

LTE Radio Network Design

LTE Radio Network Design LTE Radio Network Design Sławomir Pietrzyk IS-Wireless LTE Radio Network Design Overall Picture Step 1: Initial planning Step 2: Detailed planning Our scope of interest Step 3: Parameter planning Step

More information

Heterogeneous Networks (HetNets) in HSPA

Heterogeneous Networks (HetNets) in HSPA Qualcomm Incorporated February 2012 QUALCOMM is a registered trademark of QUALCOMM Incorporated in the United States and may be registered in other countries. Other product and brand names may be trademarks

More information

ECS455 Chapter 2 Cellular Systems

ECS455 Chapter 2 Cellular Systems ECS455 Chapter 2 Cellular Systems 2.3 Sectoring 1 Dr.Prapun Suksompong prapun.com/ecs455 C A Improving Coverage and Capacity As the demand for wireless service increases, the number of channels assigned

More information

Wireless Communications Principles and Practice 2 nd Edition Prentice-Hall. By Theodore S. Rappaport

Wireless Communications Principles and Practice 2 nd Edition Prentice-Hall. By Theodore S. Rappaport Wireless Communications Principles and Practice 2 nd Edition Prentice-Hall By Theodore S. Rappaport Chapter 3 The Cellular Concept- System Design Fundamentals 3.1 Introduction January, 2004 Spring 2011

More information

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P.

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. The Radio Channel COS 463: Wireless Networks Lecture 14 Kyle Jamieson [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. Steenkiste] Motivation The radio channel is what limits most radio

More information

Evaluation of Power Budget and Cell Coverage Range in Cellular GSM System

Evaluation of Power Budget and Cell Coverage Range in Cellular GSM System Evaluation of Power Budget and Cell Coverage Range in Cellular GSM System Dr. S. A. Mawjoud samialmawjoud_2005@yahoo.com Abstract The paper deals with study of affecting parameters on the communication

More information

Selected answers * Problem set 6

Selected answers * Problem set 6 Selected answers * Problem set 6 Wireless Communications, 2nd Ed 243/212 2 (the second one) GSM channel correlation across a burst A time slot in GSM has a length of 15625 bit-times (577 ) Of these, 825

More information

A New Power Control Algorithm for Cellular CDMA Systems

A New Power Control Algorithm for Cellular CDMA Systems ISSN 1746-7659, England, UK Journal of Information and Computing Science Vol. 4, No. 3, 2009, pp. 205-210 A New Power Control Algorithm for Cellular CDMA Systems Hamidreza Bakhshi 1, +, Sepehr Khodadadi

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS

ECE6604 PERSONAL & MOBILE COMMUNICATIONS ECE6604 PERSONAL & MOBILE COMMUNICATIONS GORDON L. STÜBER School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, Georgia, 30332-0250 Ph: (404) 894-2923 Fax: (404) 894-7883

More information

MSIT 413: Wireless Technologies Week 3

MSIT 413: Wireless Technologies Week 3 MSIT 413: Wireless Technologies Week 3 Michael L. Honig Department of EECS Northwestern University January 2016 Why Study Radio Propagation? To determine coverage Can we use the same channels? Must determine

More information

Chapter 3. Mobile Radio Propagation

Chapter 3. Mobile Radio Propagation Chapter 3 Mobile Radio Propagation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Andrea Goldsmith, Stanford University Propagation Mechanisms Outline Radio Propagation

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS

ECE6604 PERSONAL & MOBILE COMMUNICATIONS ECE6604 PERSONAL & MOBILE COMMUNICATIONS GORDON L. STÜBER School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, Georgia, 30332-0250 Ph: (404) 894-2923 Fax: (404) 894-7883

More information

Considerations about Wideband Data Transmission at 4.9 GHz for an hypothetical city wide deployment

Considerations about Wideband Data Transmission at 4.9 GHz for an hypothetical city wide deployment Considerations about Wideband Data Transmission at 4.9 GHz for an hypothetical city wide deployment Leonhard Korowajczuk CEO, CelPlan Technologies, Inc. WCA Public Safety Task Force 11/18/2004 Copyright

More information

This tutorial is prepared for beginners to help them understand the basic-to-advanced concepts related to UMTS.

This tutorial is prepared for beginners to help them understand the basic-to-advanced concepts related to UMTS. About the Tutorial The Universal Mobile Telecommunications System (UMTS), based on the GSM standards, is a mobile cellular system of third generation that is maintained by 3GPP (3 rd Generation Partnership

More information

CAPACITY OF CDMA SYSTEMS

CAPACITY OF CDMA SYSTEMS CAPACITY OF CDMA SYSTEMS VIJAYA CHANDRAN RAMASAMI KUID - 698659 Abstract. This report presents an overview of the Capacity of Code Division Multiple Access CDMA Systems. In the past decade, it has been

More information

DISTRIBUTION AND BACKHAUL

DISTRIBUTION AND BACKHAUL DISTRIBUTION AND BACKHAUL USING WHITE SPACE 3G WHITE SPACES WIFI FIBER BACKHAUL NETWORK 2 OUTLINE Our proposed system First order Methodology Achievable Capacity Traffic Demand How many cells would need

More information

RECOMMENDATION ITU-R F Characteristics of HF fixed radiocommunication systems

RECOMMENDATION ITU-R F Characteristics of HF fixed radiocommunication systems Rec. ITU-R F.1761 1 RECOMMENDATION ITU-R F.1761 Characteristics of HF fixed radiocommunication systems (Question ITU-R 158/9) (2006) Scope This Recommendation specifies the typical RF characteristics of

More information

3 RANGE INCREASE OF ADAPTIVE AND PHASED ARRAYS IN THE PRESENCE OF INTERFERERS

3 RANGE INCREASE OF ADAPTIVE AND PHASED ARRAYS IN THE PRESENCE OF INTERFERERS 3 RANGE INCREASE OF ADAPTIVE AND PHASED ARRAYS IN THE PRESENCE OF INTERFERERS A higher directive gain at the base station will result in an increased signal level at the mobile receiver, allowing longer

More information

2016/10/14. YU Xiangyu

2016/10/14. YU Xiangyu 2016/10/14 YU Xiangyu yuxy@scut.edu.cn Structure of Mobile Communication System Cell Handover/Handoff Roaming Mobile Telephone Switching Office Public Switched Telephone Network Tomasi Advanced Electronic

More information

Downlink Erlang Capacity of Cellular OFDMA

Downlink Erlang Capacity of Cellular OFDMA Downlink Erlang Capacity of Cellular OFDMA Gauri Joshi, Harshad Maral, Abhay Karandikar Department of Electrical Engineering Indian Institute of Technology Bombay Powai, Mumbai, India 400076. Email: gaurijoshi@iitb.ac.in,

More information

Session2 Antennas and Propagation

Session2 Antennas and Propagation Wireless Communication Presented by Dr. Mahmoud Daneshvar Session2 Antennas and Propagation 1. Introduction Types of Anttenas Free space Propagation 2. Propagation modes 3. Transmission Problems 4. Fading

More information

Cellular Expert Professional module features

Cellular Expert Professional module features Cellular Expert Professional module features Tasks Network data management Features Site, sector, construction, customer, repeater management: Add Edit Move Copy Delete Site re-use patterns for nominal

More information

System Level Simulations for Cellular Networks Using MATLAB

System Level Simulations for Cellular Networks Using MATLAB System Level Simulations for Cellular Networks Using MATLAB Sriram N. Kizhakkemadam, Swapnil Vinod Khachane, Sai Chaitanya Mantripragada Samsung R&D Institute Bangalore Cellular Systems Cellular Network:

More information

Superposition Coding in the Downlink of CDMA Cellular Systems

Superposition Coding in the Downlink of CDMA Cellular Systems Superposition Coding in the Downlink of CDMA Cellular Systems Surendra Boppana and John M. Shea Wireless Information Networking Group University of Florida Feb 13, 2006 Outline of the talk Introduction

More information

UNIK4230: Mobile Communications Spring 2013

UNIK4230: Mobile Communications Spring 2013 UNIK4230: Mobile Communications Spring 2013 Abul Kaosher abul.kaosher@nsn.com Mobile: 99 27 10 19 1 UNIK4230: Mobile Communications Propagation characteristis of wireless channel Date: 07.02.2013 2 UNIK4230:

More information

ECS 445: Mobile Communications The Cellular Concept

ECS 445: Mobile Communications The Cellular Concept Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology ECS 445: Mobile Communications The Cellular Concept Prapun Suksompong,

More information

University of Bristol - Explore Bristol Research. Link to published version (if available): /VTCF

University of Bristol - Explore Bristol Research. Link to published version (if available): /VTCF Bian, Y. Q., & Nix, A. R. (2006). Throughput and coverage analysis of a multi-element broadband fixed wireless access (BFWA) system in the presence of co-channel interference. In IEEE 64th Vehicular Technology

More information

8. MOBILE AND CELLULAR SYSTEMS

8. MOBILE AND CELLULAR SYSTEMS 8. MOBILE AND CELLULAR SYSTEMS 8.1 INTRODUCTION Mobile communication systems are wireless communication systems that allow one or both users to be nomadic. Systems and applications that allow for mobility

More information