Time Series/Data Processing and Analysis (MATH 587/GEOP 505)

Size: px
Start display at page:

Download "Time Series/Data Processing and Analysis (MATH 587/GEOP 505)"

Transcription

1 Time Series/Data Processing and Analysis (MATH 587/GEOP 55) Rick Aster and Brian Borchers October 7, 28 Plotting Spectra Using the FFT Plotting the spectrum of a signal from its FFT is a very common activity. In this set of notes, we discuss how to produce such plots on both absolute and db scales. Suppose that x n represents a voltage. Then the power of the signal at time t = n t, assuming a constant load R is P n = x 2 n/r. (1) For convenience, we ll take R = 1 ohm. The scaling factor of R can easily be reinserted into the equations, but it has no important effects. The average power of the signal is N 1 n= x n 2 t T where the total length of the signal is T = N t. Thus (2) N 1 Recall that by Parseval s theorem for the DFT, N 1 n= x n 2 = 1 N n= x n 2. (3) N N 1 k= X k 2. (4) Thus N 1 k= X k 2 N 2. (5) Now, consider the power spectral density. We want to have r 1 P SD(f)df (6)

2 where r is the sampling frequency. In terms of the discrete Fourier transform, we want N 1 k= where f = r/n. Combining (5) and (7) we see that P SD k f (7) P SD k = X k 2 Nr. (8) The units of the PSD are x 2 /Hz, whatever the units of x are. If we want to plot the spectrum with a db scale, relative to to an amplitude of 1, then we should plot P SDk db X k 2 = 1 log 1 Nr. (9) Note that a factor of 1 is used here because the amplitudes are already squared The frequency associated with point k of the DFT is f k = kr N. We can also shift the range of frequencies to run from r/2 to r/2 if desired. Note that the PSD values will automatically adjust to changes in the length N of the sampled signal and the sampling rate r. We should be able to recover the total power of the signal by integrating the PSD from f = to f = r. A common problem with spectral estimation is that due to short term random variations in the signal (noise), the spectral estimate can be noisy. By computing the spectrum for each of many sections of the input signal and then averaging the spectra, we can average out these variations to get at the long term behavior of the signal. In computing the average, there are several optionswe could average the values of X k, the values of X k 2, or even the db values. This produces subtle changes in the results. In Welch s method, the method most commonly used in practice, values of X k 2 are averaged. In the following example, we consider the spectral analysis of a signal containing what is known as Gaussian white noise. The signal consists of samples that are independent and normally distributed with expected value and standard deviation 1. We ll assume a sampling frequency of r = 1 Hz. For such a signal, the average value of x 2 n is 1, so the average power of the signal should be 1 Watt. It can be shown (later in the course) that the spectrum of such a signal is flat, with equal energy at all frequencies from to r. However, because we have only a random sample of finite length, the actual spectrum that we obtain from our sample will have some sampling variability. We generate a signal of 1,, samples. Both approaches to computing the average power give P = 1.2 Watts. Figure 1 shows the periodogram estimate of the spectrum. One problem with this plot is that 1,, different frequencies are represented and there simply isn t enough resolution on the paper to show all of these frequencies. In 2

3 Figure 2, we ve plotted 1, of the frequencies. Notice that the average value of the PSD is about.1. When this is multiplied by the frequency range of 1 Hz, we get an average power of 1 Watt, as expected. Figure 3 shows the same figure, on a db scale. The average is at -2 db, corresponding to an average x 2 /Hz of.1. Again, when multiplied by 1, this gives a total power of 1 Watt. These spectra are somewhat noisy. We can improve upon them by breaking the signal into sections of length M = 1, computing spectra for each section, and averaging the spectra. Figure 4 shows the averaged spectrum in x 2 /Hz units. Figure 5 shows the same spectrum in db units. These spectra are much smoother than the first three spectra. Note that the vertical axes have changed to cover a much smaller range. Finally, Figure 6 shows the spectrum produced by MATLAB s pwelch command. This closely matches Figure 5. A few small differences can be attributed to the fact that pwelch uses a Hamming window before computing the FFT to help reduce spectral leakage. There are many other varieties of colored noise that have been identified over the years. For example, in red noise, a white noise signal x n is integrated to obtain a new signal y n. Since differentiation effectively mulitplies the Fourier transform of a signal by 2πif, one would expect integration to divide the Fourier transform (and thus the spectrum) by the same factor of 2πif. Since Φ(f) falls off proportionally to 1/f as f increases, we would expect the power spectrum of red noise to fall off as 1/f 2. Figure 7 shows the averaged spectrum of a red noise signal plotted against a logarithmic frequency scale. Notice that the PSD falls off at a rate of 2 db per decade. Similarly, pink noise or 1/f noise, Φ(f) is proportional to 1/ f and the power spectral density is proportional to 1/f as f increases. Here 1/f refers to the power spectral density, not Φ(f). 3

4 PSD (x 2 /Hz) Figure 1: Periodogram of the white noise signal, N = 1,, PSD (x 2 /Hz) Figure 2: Periodogram of the white noise signal, N = 1,,. This graph shows only 1, equally spaced frequency values. 4

5 PSD (db/hz) Figure 3: Periodogram of the white noise signal, N = 1,,. This graph shows only 1, equally spaced frequency values. This version of the plot has db/hz units PSD (x 2 /Hz) Figure 4: Averaged periodogram of the white noise signal, blocks of M = 1,. 5

6 PSD (db/hz) Figure 5: Averaged periodogram of the white noise signal, blocks of M = 1,, db/hz units Power Spectral Density Estimate via Welch Power/frequency (db/hz) Frequency (Hz) Figure 6: PSD estimate produced by pwelch. 6

7 3 2 1 PSD (db/hz) Figure 7: Spectrum of red noise. 7

Use Matlab Function pwelch to Find Power Spectral Density or Do It Yourself

Use Matlab Function pwelch to Find Power Spectral Density or Do It Yourself Use Matlab Function pwelch to Find Power Spectral Density or Do It Yourself In my last post, we saw that finding the spectrum of a signal requires several steps beyond computing the discrete Fourier transform

More information

Frequency Domain Representation of Signals

Frequency Domain Representation of Signals Frequency Domain Representation of Signals The Discrete Fourier Transform (DFT) of a sampled time domain waveform x n x 0, x 1,..., x 1 is a set of Fourier Coefficients whose samples are 1 n0 X k X0, X

More information

EE 464 Short-Time Fourier Transform Fall and Spectrogram. Many signals of importance have spectral content that

EE 464 Short-Time Fourier Transform Fall and Spectrogram. Many signals of importance have spectral content that EE 464 Short-Time Fourier Transform Fall 2018 Read Text, Chapter 4.9. and Spectrogram Many signals of importance have spectral content that changes with time. Let xx(nn), nn = 0, 1,, NN 1 1 be a discrete-time

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Amplitude Amplitude Discrete Fourier Transform (DFT) DFT transforms the time domain signal samples to the frequency domain components. DFT Signal Spectrum Time Frequency DFT is often used to do frequency

More information

ME scope Application Note 01 The FFT, Leakage, and Windowing

ME scope Application Note 01 The FFT, Leakage, and Windowing INTRODUCTION ME scope Application Note 01 The FFT, Leakage, and Windowing NOTE: The steps in this Application Note can be duplicated using any Package that includes the VES-3600 Advanced Signal Processing

More information

Introduction. Chapter Time-Varying Signals

Introduction. Chapter Time-Varying Signals Chapter 1 1.1 Time-Varying Signals Time-varying signals are commonly observed in the laboratory as well as many other applied settings. Consider, for example, the voltage level that is present at a specific

More information

ECE 440L. Experiment 1: Signals and Noise (1 week)

ECE 440L. Experiment 1: Signals and Noise (1 week) ECE 440L Experiment 1: Signals and Noise (1 week) I. OBJECTIVES Upon completion of this experiment, you should be able to: 1. Use the signal generators and filters in the lab to generate and filter noise

More information

Outline. Introduction to Biosignal Processing. Overview of Signals. Measurement Systems. -Filtering -Acquisition Systems (Quantisation and Sampling)

Outline. Introduction to Biosignal Processing. Overview of Signals. Measurement Systems. -Filtering -Acquisition Systems (Quantisation and Sampling) Outline Overview of Signals Measurement Systems -Filtering -Acquisition Systems (Quantisation and Sampling) Digital Filtering Design Frequency Domain Characterisations - Fourier Analysis - Power Spectral

More information

EE 422G - Signals and Systems Laboratory

EE 422G - Signals and Systems Laboratory EE 422G - Signals and Systems Laboratory Lab 3 FIR Filters Written by Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 September 19, 2015 Objectives:

More information

Fourier Methods of Spectral Estimation

Fourier Methods of Spectral Estimation Department of Electrical Engineering IIT Madras Outline Definition of Power Spectrum Deterministic signal example Power Spectrum of a Random Process The Periodogram Estimator The Averaged Periodogram Blackman-Tukey

More information

EE 451: Digital Signal Processing

EE 451: Digital Signal Processing EE 451: Digital Signal Processing Stochastic Processes and Spectral Estimation Aly El-Osery Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA November 29, 2011 Aly El-Osery (NMT)

More information

Digital Signal Processing PW1 Signals, Correlation functions and Spectra

Digital Signal Processing PW1 Signals, Correlation functions and Spectra Digital Signal Processing PW1 Signals, Correlation functions and Spectra Nathalie Thomas Master SATCOM 018 019 1 Introduction The objectives of this rst practical work are the following ones : 1. to be

More information

EE 451: Digital Signal Processing

EE 451: Digital Signal Processing EE 451: Digital Signal Processing Power Spectral Density Estimation Aly El-Osery Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA December 4, 2017 Aly El-Osery (NMT) EE 451:

More information

(i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods

(i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods Tools and Applications Chapter Intended Learning Outcomes: (i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods

More information

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters FIR Filter Design Chapter Intended Learning Outcomes: (i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters (ii) Ability to design linear-phase FIR filters according

More information

Noise estimation and power spectrum analysis using different window techniques

Noise estimation and power spectrum analysis using different window techniques IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 78-1676,p-ISSN: 30-3331, Volume 11, Issue 3 Ver. II (May. Jun. 016), PP 33-39 www.iosrjournals.org Noise estimation and power

More information

EE 422G - Signals and Systems Laboratory

EE 422G - Signals and Systems Laboratory EE 422G - Signals and Systems Laboratory Lab 5 Filter Applications Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 February 18, 2014 Objectives:

More information

Electrical & Computer Engineering Technology

Electrical & Computer Engineering Technology Electrical & Computer Engineering Technology EET 419C Digital Signal Processing Laboratory Experiments by Masood Ejaz Experiment # 1 Quantization of Analog Signals and Calculation of Quantized noise Objective:

More information

Exercise Problems: Information Theory and Coding

Exercise Problems: Information Theory and Coding Exercise Problems: Information Theory and Coding Exercise 9 1. An error-correcting Hamming code uses a 7 bit block size in order to guarantee the detection, and hence the correction, of any single bit

More information

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters FIR Filter Design Chapter Intended Learning Outcomes: (i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters (ii) Ability to design linear-phase FIR filters according

More information

ADC, FFT and Noise. p. 1. ADC, FFT, and Noise

ADC, FFT and Noise. p. 1. ADC, FFT, and Noise ADC, FFT and Noise. p. 1 ADC, FFT, and Noise Analog to digital conversion and the FFT A LabView program, Acquire&FFT_Nscans.vi, is available on your pc which (1) captures a waveform and digitizes it using

More information

2.1 BASIC CONCEPTS Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal.

2.1 BASIC CONCEPTS Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal. 1 2.1 BASIC CONCEPTS 2.1.1 Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal. 2 Time Scaling. Figure 2.4 Time scaling of a signal. 2.1.2 Classification of Signals

More information

Noise Measurements Using a Teledyne LeCroy Oscilloscope

Noise Measurements Using a Teledyne LeCroy Oscilloscope Noise Measurements Using a Teledyne LeCroy Oscilloscope TECHNICAL BRIEF January 9, 2013 Summary Random noise arises from every electronic component comprising your circuits. The analysis of random electrical

More information

Response spectrum Time history Power Spectral Density, PSD

Response spectrum Time history Power Spectral Density, PSD A description is given of one way to implement an earthquake test where the test severities are specified by time histories. The test is done by using a biaxial computer aided servohydraulic test rig.

More information

SAMPLING THEORY. Representing continuous signals with discrete numbers

SAMPLING THEORY. Representing continuous signals with discrete numbers SAMPLING THEORY Representing continuous signals with discrete numbers Roger B. Dannenberg Professor of Computer Science, Art, and Music Carnegie Mellon University ICM Week 3 Copyright 2002-2013 by Roger

More information

Reference: PMU Data Event Detection

Reference: PMU Data Event Detection Reference: PMU Data Event Detection This is to present how to analyze data from phasor measurement units (PMUs) Why important? Because so much data are being generated, it is difficult to detect events

More information

ECE 5650/4650 Exam II November 20, 2018 Name:

ECE 5650/4650 Exam II November 20, 2018 Name: ECE 5650/4650 Exam II November 0, 08 Name: Take-Home Exam Honor Code This being a take-home exam a strict honor code is assumed. Each person is to do his/her own work. Bring any questions you have about

More information

System Identification & Parameter Estimation

System Identification & Parameter Estimation System Identification & Parameter Estimation Wb2301: SIPE lecture 4 Perturbation signal design Alfred C. Schouten, Dept. of Biomechanical Engineering (BMechE), Fac. 3mE 3/9/2010 Delft University of Technology

More information

Reference Sources. Prelab. Proakis chapter 7.4.1, equations to as attached

Reference Sources. Prelab. Proakis chapter 7.4.1, equations to as attached Purpose The purpose of the lab is to demonstrate the signal analysis capabilities of Matlab. The oscilloscope will be used as an A/D converter to capture several signals we have examined in previous labs.

More information

The Fast Fourier Transform

The Fast Fourier Transform The Fast Fourier Transform Basic FFT Stuff That s s Good to Know Dave Typinski, Radio Jove Meeting, July 2, 2014, NRAO Green Bank Ever wonder how an SDR-14 or Dongle produces the spectra that it does?

More information

Design of FIR Filter for Efficient Utilization of Speech Signal Akanksha. Raj 1 Arshiyanaz. Khateeb 2 Fakrunnisa.Balaganur 3

Design of FIR Filter for Efficient Utilization of Speech Signal Akanksha. Raj 1 Arshiyanaz. Khateeb 2 Fakrunnisa.Balaganur 3 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 03, 2015 ISSN (online): 2321-0613 Design of FIR Filter for Efficient Utilization of Speech Signal Akanksha. Raj 1 Arshiyanaz.

More information

G(f ) = g(t) dt. e i2πft. = cos(2πf t) + i sin(2πf t)

G(f ) = g(t) dt. e i2πft. = cos(2πf t) + i sin(2πf t) Fourier Transforms Fourier s idea that periodic functions can be represented by an infinite series of sines and cosines with discrete frequencies which are integer multiples of a fundamental frequency

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #29 Wednesday, November 19, 2003 Correlation-based methods of spectral estimation: In the periodogram methods of spectral estimation, a direct

More information

LABORATORY - FREQUENCY ANALYSIS OF DISCRETE-TIME SIGNALS

LABORATORY - FREQUENCY ANALYSIS OF DISCRETE-TIME SIGNALS LABORATORY - FREQUENCY ANALYSIS OF DISCRETE-TIME SIGNALS INTRODUCTION The objective of this lab is to explore many issues involved in sampling and reconstructing signals, including analysis of the frequency

More information

6.555 Lab1: The Electrocardiogram

6.555 Lab1: The Electrocardiogram 6.555 Lab1: The Electrocardiogram Tony Hyun Kim Spring 11 1 Data acquisition Question 1: Draw a block diagram to illustrate how the data was acquired. The EKG signal discussed in this report was recorded

More information

DCSP-10: DFT and PSD. Jianfeng Feng. Department of Computer Science Warwick Univ., UK

DCSP-10: DFT and PSD. Jianfeng Feng. Department of Computer Science Warwick Univ., UK DCSP-10: DFT and PSD Jianfeng Feng Department of Computer Science Warwick Univ., UK Jianfeng.feng@warwick.ac.uk http://www.dcs.warwick.ac.uk/~feng/dcsp.html DFT Definition: The discrete Fourier transform

More information

Signal Processing for Digitizers

Signal Processing for Digitizers Signal Processing for Digitizers Modular digitizers allow accurate, high resolution data acquisition that can be quickly transferred to a host computer. Signal processing functions, applied in the digitizer

More information

Solutions to Information Theory Exercise Problems 5 8

Solutions to Information Theory Exercise Problems 5 8 Solutions to Information Theory Exercise roblems 5 8 Exercise 5 a) n error-correcting 7/4) Hamming code combines four data bits b 3, b 5, b 6, b 7 with three error-correcting bits: b 1 = b 3 b 5 b 7, b

More information

Understanding Digital Signal Processing

Understanding Digital Signal Processing Understanding Digital Signal Processing Richard G. Lyons PRENTICE HALL PTR PRENTICE HALL Professional Technical Reference Upper Saddle River, New Jersey 07458 www.photr,com Contents Preface xi 1 DISCRETE

More information

Lecture 10 Performance of Communication System: Bit Error Rate (BER) EE4900/EE6720 Digital Communications

Lecture 10 Performance of Communication System: Bit Error Rate (BER) EE4900/EE6720 Digital Communications EE4900/EE6720: Digital Communications 1 Lecture 10 Performance of Communication System: Bit Error Rate (BER) Block Diagrams of Communication System Digital Communication System 2 Informatio n (sound, video,

More information

PROBLEM SET 6. Note: This version is preliminary in that it does not yet have instructions for uploading the MATLAB problems.

PROBLEM SET 6. Note: This version is preliminary in that it does not yet have instructions for uploading the MATLAB problems. PROBLEM SET 6 Issued: 2/32/19 Due: 3/1/19 Reading: During the past week we discussed change of discrete-time sampling rate, introducing the techniques of decimation and interpolation, which is covered

More information

Spur Detection, Analysis and Removal Stable32 W.J. Riley Hamilton Technical Services

Spur Detection, Analysis and Removal Stable32 W.J. Riley Hamilton Technical Services Introduction Spur Detection, Analysis and Removal Stable32 W.J. Riley Hamilton Technical Services Stable32 Version 1.54 and higher has the capability to detect, analyze and remove discrete spectral components

More information

Signal Processing Toolbox

Signal Processing Toolbox Signal Processing Toolbox Perform signal processing, analysis, and algorithm development Signal Processing Toolbox provides industry-standard algorithms for analog and digital signal processing (DSP).

More information

Post-processing using Matlab (Advanced)!

Post-processing using Matlab (Advanced)! OvGU! Vorlesung «Messtechnik»! Post-processing using Matlab (Advanced)! Dominique Thévenin! Lehrstuhl für Strömungsmechanik und Strömungstechnik (LSS)! thevenin@ovgu.de! 1 Noise filtering (1/2)! We have

More information

Experiment 1 Introduction to MATLAB and Simulink

Experiment 1 Introduction to MATLAB and Simulink Experiment 1 Introduction to MATLAB and Simulink INTRODUCTION MATLAB s Simulink is a powerful modeling tool capable of simulating complex digital communications systems under realistic conditions. It includes

More information

Section 7.2 Logarithmic Functions

Section 7.2 Logarithmic Functions Math 150 c Lynch 1 of 6 Section 7.2 Logarithmic Functions Definition. Let a be any positive number not equal to 1. The logarithm of x to the base a is y if and only if a y = x. The number y is denoted

More information

The 29 th Annual ARRL and TAPR Digital Communications Conference. DSP Short Course Session 1: DSP Intro and Basics. Rick Muething, KN6KB/AAA9WK

The 29 th Annual ARRL and TAPR Digital Communications Conference. DSP Short Course Session 1: DSP Intro and Basics. Rick Muething, KN6KB/AAA9WK The 29 th Annual ARRL and TAPR Digital Communications Conference DSP Short Course Session 1: DSP Intro and Basics Rick Muething, KN6KB/AAA9WK Session 1 Overview What is DSP? Why is DSP better/different

More information

EE 442 Homework #3 Solutions (Spring 2016 Due February 13, 2017 ) Print out homework and do work on the printed pages.

EE 442 Homework #3 Solutions (Spring 2016 Due February 13, 2017 ) Print out homework and do work on the printed pages. NAME Solutions EE 44 Homework #3 Solutions (Spring 06 Due February 3, 07 ) Print out homework and do work on the printed pages. Textbook: B. P. Lathi & Zhi Ding, Modern Digital and Analog Communication

More information

2015 HBM ncode Products User Group Meeting

2015 HBM ncode Products User Group Meeting Looking at Measured Data in the Frequency Domain Kurt Munson HBM-nCode Do Engineers Need Tools? 3 What is Vibration? http://dictionary.reference.com/browse/vibration 4 Some Statistics Amplitude PDF y Measure

More information

ELECTRONOTES APPLICATION NOTE NO Hanshaw Road Ithaca, NY Nov 7, 2014 MORE CONCERNING NON-FLAT RANDOM FFT

ELECTRONOTES APPLICATION NOTE NO Hanshaw Road Ithaca, NY Nov 7, 2014 MORE CONCERNING NON-FLAT RANDOM FFT ELECTRONOTES APPLICATION NOTE NO. 416 1016 Hanshaw Road Ithaca, NY 14850 Nov 7, 2014 MORE CONCERNING NON-FLAT RANDOM FFT INTRODUCTION A curiosity that has probably long been peripherally noted but which

More information

Reading: Johnson Ch , Ch.5.5 (today); Liljencrants & Lindblom; Stevens (Tues) reminder: no class on Thursday.

Reading: Johnson Ch , Ch.5.5 (today); Liljencrants & Lindblom; Stevens (Tues) reminder: no class on Thursday. L105/205 Phonetics Scarborough Handout 7 10/18/05 Reading: Johnson Ch.2.3.3-2.3.6, Ch.5.5 (today); Liljencrants & Lindblom; Stevens (Tues) reminder: no class on Thursday Spectral Analysis 1. There are

More information

Fourier Signal Analysis

Fourier Signal Analysis Part 1B Experimental Engineering Integrated Coursework Location: Baker Building South Wing Mechanics Lab Experiment A4 Signal Processing Fourier Signal Analysis Please bring the lab sheet from 1A experiment

More information

SECTION 7: FREQUENCY DOMAIN ANALYSIS. MAE 3401 Modeling and Simulation

SECTION 7: FREQUENCY DOMAIN ANALYSIS. MAE 3401 Modeling and Simulation SECTION 7: FREQUENCY DOMAIN ANALYSIS MAE 3401 Modeling and Simulation 2 Response to Sinusoidal Inputs Frequency Domain Analysis Introduction 3 We ve looked at system impulse and step responses Also interested

More information

ECE 3155 Experiment I AC Circuits and Bode Plots Rev. lpt jan 2013

ECE 3155 Experiment I AC Circuits and Bode Plots Rev. lpt jan 2013 Signature Name (print, please) Lab section # Lab partner s name (if any) Date(s) lab was performed ECE 3155 Experiment I AC Circuits and Bode Plots Rev. lpt jan 2013 In this lab we will demonstrate basic

More information

ADC Clock Jitter Model, Part 2 Random Jitter

ADC Clock Jitter Model, Part 2 Random Jitter db ADC Clock Jitter Model, Part 2 Random Jitter In Part 1, I presented a Matlab function to model an ADC with jitter on the sample clock, and applied it to examples with deterministic jitter. Now we ll

More information

Quantification of glottal and voiced speech harmonicsto-noise ratios using cepstral-based estimation

Quantification of glottal and voiced speech harmonicsto-noise ratios using cepstral-based estimation Quantification of glottal and voiced speech harmonicsto-noise ratios using cepstral-based estimation Peter J. Murphy and Olatunji O. Akande, Department of Electronic and Computer Engineering University

More information

EE 435/535: Error Correcting Codes Project 1, Fall 2009: Extended Hamming Code. 1 Introduction. 2 Extended Hamming Code: Encoding. 1.

EE 435/535: Error Correcting Codes Project 1, Fall 2009: Extended Hamming Code. 1 Introduction. 2 Extended Hamming Code: Encoding. 1. EE 435/535: Error Correcting Codes Project 1, Fall 2009: Extended Hamming Code Project #1 is due on Tuesday, October 6, 2009, in class. You may turn the project report in early. Late projects are accepted

More information

FFT 1 /n octave analysis wavelet

FFT 1 /n octave analysis wavelet 06/16 For most acoustic examinations, a simple sound level analysis is insufficient, as not only the overall sound pressure level, but also the frequency-dependent distribution of the level has a significant

More information

Figure 1: The Penobscot Narrows Bridge in Maine, U.S.A. Figure 2: Arrangement of stay cables tested

Figure 1: The Penobscot Narrows Bridge in Maine, U.S.A. Figure 2: Arrangement of stay cables tested Figure 1: The Penobscot Narrows Bridge in Maine, U.S.A. Figure 2: Arrangement of stay cables tested EXPERIMENTAL SETUP AND PROCEDURES Dynamic testing was performed in two phases. The first phase took place

More information

Introduction to Simulink

Introduction to Simulink EE 460 Introduction to Communication Systems MATLAB Tutorial #3 Introduction to Simulink This tutorial provides an overview of Simulink. It also describes the use of the FFT Scope and the filter design

More information

Structure of Speech. Physical acoustics Time-domain representation Frequency domain representation Sound shaping

Structure of Speech. Physical acoustics Time-domain representation Frequency domain representation Sound shaping Structure of Speech Physical acoustics Time-domain representation Frequency domain representation Sound shaping Speech acoustics Source-Filter Theory Speech Source characteristics Speech Filter characteristics

More information

Noise by the Numbers

Noise by the Numbers Noise by the Numbers 1 What can I do with noise? The two primary applications for white noise are signal jamming/impairment and reference level comparison. Signal jamming/impairment is further divided

More information

PHYSICS 330 LAB Operational Amplifier Frequency Response

PHYSICS 330 LAB Operational Amplifier Frequency Response PHYSICS 330 LAB Operational Amplifier Frequency Response Objectives: To measure and plot the frequency response of an operational amplifier circuit. History: Operational amplifiers are among the most widely

More information

Chapter 5 Window Functions. periodic with a period of N (number of samples). This is observed in table (3.1).

Chapter 5 Window Functions. periodic with a period of N (number of samples). This is observed in table (3.1). Chapter 5 Window Functions 5.1 Introduction As discussed in section (3.7.5), the DTFS assumes that the input waveform is periodic with a period of N (number of samples). This is observed in table (3.1).

More information

Outline. Design Procedure. Filter Design. Generation and Analysis of Random Processes

Outline. Design Procedure. Filter Design. Generation and Analysis of Random Processes Outline We will first develop a method to construct a discrete random process with an arbitrary power spectrum. We will then analyze the spectra using the periodogram and corrlogram methods. Generation

More information

Gain From Using One of Process Control's Emerging Tools: Power Spectrum

Gain From Using One of Process Control's Emerging Tools: Power Spectrum Gain From Using One of Process Control's Emerging Tools: Power Spectrum By Michel Ruel (TOP Control) and John Gerry (ExperTune Inc.) Process plants are starting to get big benefits from a widely available

More information

THE SPEAKER. The decibel scale is related to the physical sound intensity measured in watts/cm 2 by the following equation:

THE SPEAKER. The decibel scale is related to the physical sound intensity measured in watts/cm 2 by the following equation: OBJECTIVES: THE SPEAKER 1) Know the definition of "decibel" as a measure of sound intensity or power level. ) Know the relationship between voltage and power level measured in decibels. 3) Illustrate how

More information

Laboratory Assignment 5 Amplitude Modulation

Laboratory Assignment 5 Amplitude Modulation Laboratory Assignment 5 Amplitude Modulation PURPOSE In this assignment, you will explore the use of digital computers for the analysis, design, synthesis, and simulation of an amplitude modulation (AM)

More information

Time-Frequency analysis of biophysical time series. Courtesy of Arnaud Delorme

Time-Frequency analysis of biophysical time series. Courtesy of Arnaud Delorme Time-Frequency analysis of biophysical time series Courtesy of Arnaud Delorme 1 2 Why Frequency-domain Analysis For many signals, the signal's frequency content is of great importance. Beta Alpha Theta

More information

PART II Practical problems in the spectral analysis of speech signals

PART II Practical problems in the spectral analysis of speech signals PART II Practical problems in the spectral analysis of speech signals We have now seen how the Fourier analysis recovers the amplitude and phase of an input signal consisting of a superposition of multiple

More information

Performing the Spectrogram on the DSP Shield

Performing the Spectrogram on the DSP Shield Performing the Spectrogram on the DSP Shield EE264 Digital Signal Processing Final Report Christopher Ling Department of Electrical Engineering Stanford University Stanford, CA, US x24ling@stanford.edu

More information

Time and Frequency Domain Windowing of LFM Pulses Mark A. Richards

Time and Frequency Domain Windowing of LFM Pulses Mark A. Richards Time and Frequency Domain Mark A. Richards September 29, 26 1 Frequency Domain Windowing of LFM Waveforms in Fundamentals of Radar Signal Processing Section 4.7.1 of [1] discusses the reduction of time

More information

(i) Sine sweep (ii) Sine beat (iii) Time history (iv) Continuous sine

(i) Sine sweep (ii) Sine beat (iii) Time history (iv) Continuous sine A description is given of one way to implement an earthquake test where the test severities are specified by the sine-beat method. The test is done by using a biaxial computer aided servohydraulic test

More information

Fourier Theory & Practice, Part I: Theory (HP Product Note )

Fourier Theory & Practice, Part I: Theory (HP Product Note ) Fourier Theory & Practice, Part I: Theory (HP Product Note 54600-4) By: Robert Witte Hewlett-Packard Co. Introduction: This product note provides a brief review of Fourier theory, especially the unique

More information

Volume 3 Signal Processing Reference Manual

Volume 3 Signal Processing Reference Manual Contents Volume 3 Signal Processing Reference Manual Contents 1 Sampling analogue signals 1.1 Introduction...1-1 1.2 Selecting a sampling speed...1-1 1.3 References...1-5 2 Digital filters 2.1 Introduction...2-1

More information

EE 791 EEG-5 Measures of EEG Dynamic Properties

EE 791 EEG-5 Measures of EEG Dynamic Properties EE 791 EEG-5 Measures of EEG Dynamic Properties Computer analysis of EEG EEG scientists must be especially wary of mathematics in search of applications after all the number of ways to transform data is

More information

Windows and Leakage Brief Overview

Windows and Leakage Brief Overview Windows and Leakage Brief Overview When converting a signal from the time domain to the frequency domain, the Fast Fourier Transform (FFT) is used. The Fourier Transform is defined by the Equation: j2πft

More information

EE 215 Semester Project SPECTRAL ANALYSIS USING FOURIER TRANSFORM

EE 215 Semester Project SPECTRAL ANALYSIS USING FOURIER TRANSFORM EE 215 Semester Project SPECTRAL ANALYSIS USING FOURIER TRANSFORM Department of Electrical and Computer Engineering Missouri University of Science and Technology Page 1 Table of Contents Introduction...Page

More information

Lab 1B LabVIEW Filter Signal

Lab 1B LabVIEW Filter Signal Lab 1B LabVIEW Filter Signal Due Thursday, September 12, 2013 Submit Responses to Questions (Hardcopy) Equipment: LabVIEW Setup: Open LabVIEW Skills learned: Create a low- pass filter using LabVIEW and

More information

3.2 Measuring Frequency Response Of Low-Pass Filter :

3.2 Measuring Frequency Response Of Low-Pass Filter : 2.5 Filter Band-Width : In ideal Band-Pass Filters, the band-width is the frequency range in Hz where the magnitude response is at is maximum (or the attenuation is at its minimum) and constant and equal

More information

ELEC3104: Digital Signal Processing Session 1, 2013

ELEC3104: Digital Signal Processing Session 1, 2013 ELEC3104: Digital Signal Processing Session 1, 2013 The University of New South Wales School of Electrical Engineering and Telecommunications LABORATORY 1: INTRODUCTION TO TIMS AND MATLAB INTRODUCTION

More information

Lecture notes on Waves/Spectra Noise, Correlations and.

Lecture notes on Waves/Spectra Noise, Correlations and. Lecture notes on Waves/Spectra Noise, Correlations and. W. Gekelman Lecture 4, February 28, 2004 Our digital data is a function of time x(t) and can be represented as: () = a + ( a n t+ b n t) x t cos

More information

18.8 Channel Capacity

18.8 Channel Capacity 674 COMMUNICATIONS SIGNAL PROCESSING 18.8 Channel Capacity The main challenge in designing the physical layer of a digital communications system is approaching the channel capacity. By channel capacity

More information

Chapter 5. Frequency Domain Analysis

Chapter 5. Frequency Domain Analysis Chapter 5 Frequency Domain Analysis CHAPTER 5 FREQUENCY DOMAIN ANALYSIS By using the HRV data and implementing the algorithm developed for Spectral Entropy (SE), SE analysis has been carried out for healthy,

More information

Computing TIE Crest Factors for Telecom Applications

Computing TIE Crest Factors for Telecom Applications TECHNICAL NOTE Computing TIE Crest Factors for Telecom Applications A discussion on computing crest factors to estimate the contribution of random jitter to total jitter in a specified time interval. by

More information

EBU5375 Signals and Systems: Filtering and sampling in Matlab. Dr Jesús Requena Carrión

EBU5375 Signals and Systems: Filtering and sampling in Matlab. Dr Jesús Requena Carrión EBU5375 Signals and Systems: Filtering and sampling in Matlab Dr Jesús Requena Carrión Background: Ideal filters We have learnt three types of filters: lowpass, highpass and bandpass filters. We represent

More information

AUDL Final exam page 1/7 Please answer all of the following questions.

AUDL Final exam page 1/7 Please answer all of the following questions. AUDL 11 28 Final exam page 1/7 Please answer all of the following questions. 1) Consider 8 harmonics of a sawtooth wave which has a fundamental period of 1 ms and a fundamental component with a level of

More information

JOURNAL OF OBJECT TECHNOLOGY

JOURNAL OF OBJECT TECHNOLOGY JOURNAL OF OBJECT TECHNOLOGY Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering JOT, 2009 Vol. 9, No. 1, January-February 2010 The Discrete Fourier Transform, Part 5: Spectrogram

More information

OCS Implementation of Amplifiers

OCS Implementation of Amplifiers 1 Overview of the lecture OCS Implementation of Amplifiers April 1, 2003 This lecture is about how we have implemented erbium-doped fiber amplifiers in our OCS code. The topics we will discuss are: 1.

More information

Signals and Systems Using MATLAB

Signals and Systems Using MATLAB Signals and Systems Using MATLAB Second Edition Luis F. Chaparro Department of Electrical and Computer Engineering University of Pittsburgh Pittsburgh, PA, USA AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK

More information

The 29 th Annual ARRL and TAPR Digital Communications Conference. DSP Short Course Session 4: Tricks of the DSP trade. Rick Muething, KN6KB/AAA9WK

The 29 th Annual ARRL and TAPR Digital Communications Conference. DSP Short Course Session 4: Tricks of the DSP trade. Rick Muething, KN6KB/AAA9WK The 29 th Annual ARRL and TAPR Digital Communications Conference DSP Short Course Session 4: Tricks of the DSP trade Rick Muething, KN6KB/AAA9WK Recap We ve surveyed the roots of DSP and some of the tools

More information

STABLE32 FREQUENCY DOMAIN FUNCTIONS W.J. Riley, Hamilton Technical Services

STABLE32 FREQUENCY DOMAIN FUNCTIONS W.J. Riley, Hamilton Technical Services STABLE32 FREQUENCY DOMAIN FUNCTIONS W.J. Riley, Hamilton Technical Services ABSTRACT This document shows an example of a time and frequency domain stability analysis using Stable32. First, a set of simulated

More information

QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61)

QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61) QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61) Module 1 1. Explain Digital communication system with a neat block diagram. 2. What are the differences between digital and analog communication systems?

More information

Adaptive Filters Application of Linear Prediction

Adaptive Filters Application of Linear Prediction Adaptive Filters Application of Linear Prediction Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Faculty of Engineering Electrical Engineering and Information Technology Digital Signal Processing

More information

The Fundamentals of FFT-Based Signal Analysis and Measurement Michael Cerna and Audrey F. Harvey

The Fundamentals of FFT-Based Signal Analysis and Measurement Michael Cerna and Audrey F. Harvey Application ote 041 The Fundamentals of FFT-Based Signal Analysis and Measurement Michael Cerna and Audrey F. Harvey Introduction The Fast Fourier Transform (FFT) and the power spectrum are powerful tools

More information

Fourier transforms, SIM

Fourier transforms, SIM Fourier transforms, SIM Last class More STED Minflux Fourier transforms This class More FTs 2D FTs SIM 1 Intensity.5 -.5 FT -1.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6 Time (s) IFT 4 2 5 1 15 Frequency (Hz) ff tt

More information

Nyquist, Shannon and the information carrying capacity of signals

Nyquist, Shannon and the information carrying capacity of signals Nyquist, Shannon and the information carrying capacity of signals Figure 1: The information highway There is whole science called the information theory. As far as a communications engineer is concerned,

More information

New Features of IEEE Std Digitizing Waveform Recorders

New Features of IEEE Std Digitizing Waveform Recorders New Features of IEEE Std 1057-2007 Digitizing Waveform Recorders William B. Boyer 1, Thomas E. Linnenbrink 2, Jerome Blair 3, 1 Chair, Subcommittee on Digital Waveform Recorders Sandia National Laboratories

More information

Signal segmentation and waveform characterization. Biosignal processing, S Autumn 2012

Signal segmentation and waveform characterization. Biosignal processing, S Autumn 2012 Signal segmentation and waveform characterization Biosignal processing, 5173S Autumn 01 Short-time analysis of signals Signal statistics may vary in time: nonstationary how to compute signal characterizations?

More information

Contents. Introduction 1 1 Suggested Reading 2 2 Equipment and Software Tools 2 3 Experiment 2

Contents. Introduction 1 1 Suggested Reading 2 2 Equipment and Software Tools 2 3 Experiment 2 ECE363, Experiment 02, 2018 Communications Lab, University of Toronto Experiment 02: Noise Bruno Korst - bkf@comm.utoronto.ca Abstract This experiment will introduce you to some of the characteristics

More information