Self-Contained Audio Preamplifier SSM2019

Size: px
Start display at page:

Download "Self-Contained Audio Preamplifier SSM2019"

Transcription

1 a FEATURES Excellent Noise Performance:. nv/ Hz or.5 db Noise Figure Ultra-low THD: G = Over the Full Audio Band Wide Bandwidth: G = High Slew Rate: V/ G = V rms Full-Scale Input, G =, V S = V Unity Gain Stable True Differential Inputs Subaudio /f Noise Corner -Lead PDIP or -Lead SOIC Only One External Component Required Very Low Cost Extended Temperature Range: C to +5 C APPLICATIONS Audio Mix Consoles Intercom/Paging Systems -Way Radio Sonar Digital Audio Systems +IN RG RG Self-Contained Audio Preamplifier SSM9 FUNCTIONAL BLOCK DIAGRAM IN V PIN CONNECTIONS -Lead PDIP (N Suffix) -Lead Narrow Body SOIC (RN Suffix)* V+ OUT REFERENCE V GENERAL DESCRIPTION The SSM9 is a latest generation audio preamplifier, combining SSM preamplifier design expertise with advanced processing. The result is excellent audio performance from a monolithic device, requiring only one external gain set resistor or potentiometer. The SSM9 is further enhanced by its unity gain stability. Key specifications include ultra-low noise (.5 db noise figure) and THD (<.% at G = ), complemented by wide bandwidth and high slew rate. Applications for this low cost device include microphone preamplifiers and bus summing amplifiers in professional and consumer audio equipment, sonar, and other applications requiring a low noise instrumentation amplifier with high gain capability. RG IN +IN V 3 SSM9 TOP VIEW (Not to Scale) 7 5 RG V+ OUT REFERENCE -Lead Wide Body SOIC (RW Suffix) NC RG NC 3 IN +IN 5 NC V 7 NC NC 5 RG NC SSM9 3 V+ TOP VIEW (Not to Scale) NC OUT REFERENCE 9 NC NC = NO CONNECT *Consult factory for availability. Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies. One Technology Way, P.O. Box 9, Norwood, MA -9, U.S.A. Tel: 7/ Fax: 7/-33 Analog Devices, Inc. All rights reserved.

2 SSM9 SPECIFICATIONS (V S = 5 V and C T A +5 C, unless otherwise noted. Typical specifications apply at T A = 5 C.) Parameter Symbol Conditions Min Typ Max Unit DISTORTION PERFORMANCE V O = 7 V rms R L = kw Total Harmonic Distortion Plus Noise THD + N f = khz, G =.7 % f = khz, G =.5 % f = khz, G =.35 % f = khz, G =.5 % BW = khz NOISE PERFORMANCE Input Referred Voltage Noise Density e n f = khz, G =. nv/ Hz f = khz, G =.7 nv/ Hz f = khz, G = 7 nv/ Hz f = khz, G = 5 nv/ Hz Input Current Noise Density i n f = khz, G = pa/ Hz DYNAMIC RESPONSE Slew Rate SR G = V/ms R L = kw C L = pf Small Signal Bandwidth BW 3 db G = khz G = khz G = khz G = khz INPUT Input Offset Voltage V IOS.5.5 mv Input Bias Current I B V CM = V 3 ma Input Offset Current Ios V CM = V ±. ±. ma Common-Mode Rejection CMR V CM = ± V G = 3 db G = 9 3 db G = 7 9 db G = 5 7 db Power Supply Rejection PSR V S = ± 5 V to ± V G = db G = db G = 9 db G = 7 db Input Voltage Range IVR ± V Input Resistance R IN Differential, G = MW G = 3 MW Common Mode, G = 5.3 MW G = 7. MW OUTPUT Output Voltage Swing V O R L = kw, T A = 5 C ± 3.5 ± 3.9 V Output Offset Voltage V OOS 3 mv Maximum Capacitive Load Drive 5 pf Short Circuit Current Limit I SC Output-to-Ground Short ± 5 ma Output Short Circuit Duration Continuous sec GAIN Gain Accuracy kw R G = T A = 5 C G R G = W, G =.5. db R G = W, G =.5. db R G =. kw, G =.5. db R G =, G =.. db Maximum Gain G 7 db REFERENCE INPUT Input Resistance kw Voltage Range ± V Gain to Output V/V POWER SUPPLY Supply Voltage Range V S ± 5 ± V Supply Current I SY V CM = V, R L = ±. ± 7.5 ma V CM = V, V S = ± V, R L = ±.7 ±.5 ma Specifications subject to change without notice.

3 SSM9 ABSOLUTE MAXIMUM RATINGS Supply Voltage ±9 V Input Voltage Supply Voltage Output Short Circuit Duration sec Storage Temperature Range C to +5 C Junction Temperature (T J ) C to +5 C Lead Temperature Range (Soldering, sec) C Operating Temperature Range C to +5 C Thermal Resistance -Lead PDIP (N) JA = 9 C/W JC = 37 C/W -Lead SOIC (RW) JA = 9 C/W JC = 7 C/W NOTES Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. q JA is specified for worst-case mounting conditions, i.e., q JA is specified for device in socket for PDIP; q JA is specified for device soldered to printed circuit board for SOIC package. CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as V readily accumulate on the human body and test equipment and can discharge without detection. Although the SSM9 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. WARNING! ESD SENSITIVE DEVICE Typical Performance Characteristics THD + N %.... G = G = G = G = 5V V S V 7Vrms V O Vrms R L BW = khz k k k TPC. Typical THD + Noise vs. Gain RTI, VOLTAGE NOISE DENSITY nv/ Hz T A = 5 C V S = 5V G =. k k TPC. Voltage Noise Density vs. Frequency 3

4 SSM9 RTI VOLTAGE NOISE DENSITY nv/ Hz. GAIN V S = 5V f = khz OR khz TPC 3. RTI Voltage Noise Density vs. Gain k IMPEDANCE k k k TPC. Output Impedance vs. Frequency M PEAK-TO-PEAK VOLTAGE V R L = k V S = 5V GAIN GAIN = k k k TPC 5. Maximum Output Swing vs. Frequency M OUTPUT VOLTAGE V V S = 5V G G = INPUT SWING (V IN+ V IN ) V 3 f = khz OUTPUT SWING (V OUT+ V OUT ) V 5 5 k k LOAD RESISTANCE k 3 SUPPLY VOLTAGE (V + V ) V 3 SUPPLY VOLTAGE (V + V ) V TPC. Output Voltage vs. Load Resistance TPC 7. Input Voltage Range vs. Supply Voltage TPC. Output Voltage Range vs. Supply Voltage CMRR db V CM = mv V S = 5V T A = 5 C G = G = G = G = k k k FREQUENCY Hz TPC 9. CMRR vs. Frequency +PSRR db V CM = mv V S = 5V G = k k G = G = G = k TPC. Positive PSRR vs. Frequency PSRR db G = V S = mv V S = 5V G = G = G = k k k TPC. Negative PSRR vs. Frequency

5 SSM9..35 V+/V = 5V.. T A = 5 C V+/V = 5V.3 V IOS mv.5..5 V IOS mv...3 V OOS mv TEMPERATURE C TPC. V IOS vs. Temperature SUPPLY VOLTAGE (V CC V EE ) V TPC 3. V IOS vs. Supply Voltage TEMPERATURE C TPC. V OOS vs. Temperature 3 T A = 5 C 5 V+/V = 5V 5 T A = 5 C V OOS mv I B A 3 I B+ OR I B I B A SUPPLY VOLTAGE (V CC V EE ) V TPC 5. V OOS vs. Supply Voltage TEMPERATURE C TPC. I B vs. Temperature 3 SUPPLY VOLTAGE (V CC V EE ) V TPC 7. I B vs. Supply Voltage SUPPLY CURRENT ma V+/V = V V+/V = 5V V+/V = 5V V+/V = V SUPPLY CURRENT ma T A = 5 C I+ I SUPPLY CURRENT ma TEMPERATURE C TPC. Supply Current vs. Temperature SUPPLY VOLTAGE (V CC V EE ) V TPC 9. Supply Current vs. Supply Voltage 5 5 SUPPLY VOLTAGE V TPC. I SY vs. Supply Voltage 5

6 SSM9 +IN V+ V S = 5V T A = 5 C IN V OUT G = (+IN) ( IN) = R G k R G + R G SSM9 OUT R G REFERENCE Figure. Basic Circuit Connections V VOLTAGE GAIN db GAIN The SSM9 only requires a single external resistor to set the voltage gain. The voltage gain, G, is: kw G = + R G and the external gain resistor, R G, is: k R = W G G For convenience, Table I lists various values of R G for common gain levels. Table I. Values of R G for Various Gain Levels R G ( ) A V db NC.7 k 3.. k The voltage gain can range from to 35. A gain set resistor is not required for unity gain applications. Metal film or wire-wound resistors are recommended for best results. The total gain accuracy of the SSM9 is determined by the tolerance of the external gain set resistor, R G, combined with the gain equation accuracy of the SSM9. Total gain drift combines the mismatch of the external gain set resistor drift with that of the internal resistors ( ppm/ C typ). Bandwidth of the SSM9 is relatively independent of gain, as shown in Figure. For a voltage gain of, the SSM9 has a small-signal bandwidth of khz. At unity gain, the bandwidth of the SSM9 exceeds MHz. k k k M M Figure. Bandwidth for Various Values of Gain NOISE PERFORMANCE The SSM9 is a very low noise audio preamplifier exhibiting a typical voltage noise density of only nv/ Hz at khz. The exceptionally low noise characteristics of the SSM9 are in part achieved by operating the input transistors at high collector currents since the voltage noise is inversely proportional to the square root of the collector current. Current noise, however, is directly proportional to the square root of the collector current. As a result, the outstanding voltage noise performance of the SSM9 is obtained at the expense of current noise performance. At low preamplifier gains, the effect of the SSM9 voltage and current noise is insignificant. The total noise of an audio preamplifier channel can be calculated by: E = e + ( i R ) + e n n n S t where: E n = total input referred noise e n = amplifier voltage noise i n = amplifier current noise R S = source resistance e t = source resistance thermal noise For a microphone preamplifier, using a typical microphone impedance of 5 W, the total input referred noise is: En = ( nv Hz ) + ( pa / Hz 5 W ) + (. nv / Hz ) = 93. nv/ khz where: e n = nv/ khz, SSM9 e n i n = pa/ khz, SSM9 i n R S = 5 W, microphone source impedance e t =. nv/ khz, microphone thermal noise This total noise is extremely low and makes the SSM9 virtually transparent to the user.

7 SSM9 INPUTS The SSM9 has protection diodes across the base emitter junctions of the input transistors. These prevent accidental avalanche breakdown, which could seriously degrade noise performance. Additional clamp diodes are also provided to prevent the inputs from being forced too far beyond the supplies. TRANSDUCER TRANSDUCER (INVERTING) (NONINVERTING) a. Single-Ended R R SSM9 SSM9 b. Pseudo-Differential Although the SSM9 inputs are fully floating, care must be exercised to ensure that both inputs have a dc bias connection capable of maintaining them within the input common-mode range. The usual method of achieving this is to ground one side of the transducer as in Figure 3a. An alternative way is to float the transducer and use two resistors to set the bias point as in Figure 3b. The value of these resistors can be up to kw, but they should be kept as small as possible to limit common-mode pickup. Noise contribution by resistors is negligible since it is attenuated by the transducer s impedance. Balanced transducers give the best noise immunity and interface directly as in Figure 3c. For stability, it is required to put an RF bypass capacitor directly across the inputs, as shown in Figures 3 and. This capacitor should be placed as close as possible to the input terminals. Good RF practice should also be followed in layout and power supply bypassing, since the SSM9 uses very high bandwidth devices. REFERENCE TERMINAL The output signal is specified with respect to the reference terminal, which is normally connected to analog ground. The reference may also be used for offset correction or level shifting. A reference source resistance will reduce the common-mode rejection by the ratio of 5 kw/r REF. If the reference source resistance is W, then the CMR will be reduced to 7 db (5 kw/ W = 7 db). TRANSDUCER c. True Differential SSM9 Figure 3. Three Ways of Interfacing Transducers for High Noise Immunity COMMON-MODE REJECTION Ideally, a microphone preamplifier responds to only the difference between the two input signals and rejects common-mode voltages and noise. In practice, there is a small change in output voltage when both inputs experience the same common-mode voltage change; the ratio of these voltages is called the common-mode gain. Common-mode rejection (CMR) is the logarithm of the ratio of differential-mode gain to common-mode gain, expressed in db. PHANTOM POWERING A typical phantom microphone powering circuit is shown in Figure. Z to Z provide transient overvoltage protection for the SSM9 whenever microphones are plugged in or unplugged. +V +IN R5 C3 7 F C R3.k % R.k % R k R k Z Z C pf IN C V C, C: F TO 7 F, 3V, TANTALUM OR ELECTROLYTIC Z Z: V, /W Z3 Z R G +V R G SSM9 R G V OUT Figure. SSM9 in Phantom Powered Microphone Circuit 7

8 SSM9 BUS SUMMING AMPLIFIER In addition to its use as a microphone preamplifier, the SSM9 can be used as a very low noise summing amplifier. Such a circuit is particularly useful when many medium impedance outputs are summed together to produce a high effective noise gain. The principle of the summing amplifier is to ground the SSM9 inputs. Under these conditions, Pins and are ac virtual grounds sitting about.55 V below ground. To remove the.55 V offset, the circuit of Figure 5 is recommended. A forms a servo amplifier feeding the SSM9 inputs. This places Pins l and at a true dc virtual ground. R in conjunction with C removes the voltage noise of A, and in fact just about any operational amplifier will work well here since it is removed from the signal path. If the dc offset at Pins l and is not too critical, then the servo loop can be replaced by the diode biasing scheme of Figure 5. If ac coupling is used throughout, then Pins and 3 may be directly grounded. + IN IN R.k C R3.33 F 33k A R 5.k C F SSM9 TO PINS AND 3 IN Figure 5. Bus Summing Amplifier V V OUT R5 k PRINTED IN U.S.A.

9 SSM9 OUTLINE DIMENSIONS. (.).35 (9.7).355 (9.). (5.33) MAX.5 (3.).3 (3.3).5 (.9). (.5). (.). (.3). (.5) BSC 5. (7.).5 (.35). (.).5 (.3) MIN SEATING PLANE.5 (.3) MIN. (.5) MAX.5 (.3) GAUGE PLANE.35 (.).3 (7.7).3 (7.).3 (.9) MAX.95 (.95).3 (3.3).5 (.9). (.3). (.5). (.).7 (.7). (.5).5 (.) COMPLIANT TO JEDEC STANDARDS MS- CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS. Figure. -Lead Plastic Dual In-Line Package [PDIP] Narrow Body (N-) Dimensions shown in inches and (millimeters) 7-A.5 (.3). (.397) 9 7. (.99) 7. (.93).5 (.93). (.3937).3 (.). (.39) COPLANARITY.7 (.5) BSC.5 (.3).35 (.95)..5 (.) SEATING PLANE.33 (.3).3 (.). (.79).75 (.95).5 (.9) 5.7 (.5). (.57) COMPLIANT TO JEDEC STANDARDS MS-3-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 7. -Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-) Dimensions shown in millimeters and (inches) B 9

10 SSM9 5. (.9). (.9). (.57) 3. (.97) 5. (.) 5. (.).5 (.9). (.) COPLANARITY. SEATING PLANE.7 (.5) BSC.75 (.).35 (.53).5 (.).3 (.).5 (.9).7 (.7).5 (.9).5 (.99).7 (.5). (.57) 5 COMPLIANT TO JEDEC STANDARDS MS--AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure. -Lead Standard Small Outline Package [SOIC_N] Narrow Body (RN-) Dimensions shown in millimeters and (inches) 7-A ORDERING GUIDE Model Temperature Range Package Description Package Option SSM9BNZ C to +5 C -Lead PDIP N- SSM9BRNZ C to +5 C -Lead SOIC_N R- SSM9BRNZRL C to +5 C -Lead SOIC_N, REEL R- SSM9BRWZ C to +5 C -Lead SOIC_W RW- SSM9BRWZRL C to +5 C -Lead SOIC_W, REEL RW- Z = RoHS Compliant Part REVISION HISTORY / Rev. to Rev. A Updated Outline Dimensions... 9 Changes to Ordering Guide... /3 Revision : Initial Version 3 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D7--/(A)

OBSOLETE. Self-Contained Audio Preamplifier SSM2017 REV. B

OBSOLETE. Self-Contained Audio Preamplifier SSM2017 REV. B a FEATURES Excellent Noise Performance: 950 pv/ Hz or 1.5 db Noise Figure Ultralow THD: < 0.01% @ G = 100 Over the Full Audio Band Wide Bandwidth: 1 MHz @ G = 100 High Slew Rate: 17 V/ s typ Unity Gain

More information

Dual Low Power Operational Amplifier, Single or Dual Supply OP221

Dual Low Power Operational Amplifier, Single or Dual Supply OP221 a FEATURES Excellent TCV OS Match, 2 V/ C Max Low Input Offset Voltage, 15 V Max Low Supply Current, 55 A Max Single Supply Operation, 5 V to 3 V Low Input Offset Voltage Drift,.75 V/ C High Open-Loop

More information

6 db Differential Line Receiver

6 db Differential Line Receiver a FEATURES High Common-Mode Rejection DC: 9 db typ Hz: 9 db typ khz: 8 db typ Ultralow THD:.% typ @ khz Fast Slew Rate: V/ s typ Wide Bandwidth: 7 MHz typ (G = /) Two Gain Levels Available: G = / or Low

More information

High Accuracy 8-Pin Instrumentation Amplifier AMP02

High Accuracy 8-Pin Instrumentation Amplifier AMP02 a FEATURES Low Offset Voltage: 100 V max Low Drift: 2 V/ C max Wide Gain Range 1 to 10,000 High Common-Mode Rejection: 115 db min High Bandwidth (G = 1000): 200 khz typ Gain Equation Accuracy: 0.5% max

More information

150 μv Maximum Offset Voltage Op Amp OP07D

150 μv Maximum Offset Voltage Op Amp OP07D 5 μv Maximum Offset Voltage Op Amp OP7D FEATURES Low offset voltage: 5 µv max Input offset drift:.5 µv/ C max Low noise:.25 μv p-p High gain CMRR and PSRR: 5 db min Low supply current:. ma Wide supply

More information

High Common-Mode Rejection. Differential Line Receiver SSM2141 REV. B FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

High Common-Mode Rejection. Differential Line Receiver SSM2141 REV. B FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection a FEATURES High Common-Mode Rejection DC: 100 db typ 60 Hz: 100 db typ 20 khz: 70 db typ 40 khz: 62 db typ Low Distortion: 0.001% typ Fast Slew Rate: 9.5 V/ s typ Wide Bandwidth: 3 MHz typ Low Cost Complements

More information

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599 Dual, Ultralow Distortion, Ultralow Noise Op Amp FEATURES Low noise: 1 nv/ Hz at 1 khz Low distortion: 5 db THD @ khz

More information

OP SPECIFICATIONS ELECTRICAL CHARACTERISTICS (V S = ± V, T A = C, unless otherwise noted.) OPA/E OPF OPG Parameter Symbol Conditions Min Typ Max Min T

OP SPECIFICATIONS ELECTRICAL CHARACTERISTICS (V S = ± V, T A = C, unless otherwise noted.) OPA/E OPF OPG Parameter Symbol Conditions Min Typ Max Min T a FEATURES Excellent Speed:. V/ms Typ Fast Settling (.%): ms Typ Unity-Gain Stable High-Gain Bandwidth: MHz Typ Low Input Offset Voltage: mv Max Low Offset Voltage Drift: mv/ C Max High Gain: V/mV Min

More information

OBSOLETE. High-Speed, Dual Operational Amplifier OP271 REV. A. Figure 1. Simplified Schematic (One of the two amplifiers is shown.

OBSOLETE. High-Speed, Dual Operational Amplifier OP271 REV. A. Figure 1. Simplified Schematic (One of the two amplifiers is shown. a FEATURES Excellent Speed:. V/ms Typ Fast Settling (.%): ms Typ Unity-Gain Stable High-Gain Bandwidth: MHz Typ Low Input Offset Voltage: mv Max Low Offset Voltage Drift: mv/ C Max High Gain: V/mV Min

More information

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5

More information

AD864/AD8642/AD8643 TABLE OF CONTENTS Specifications... 3 Electrical Characteristics... 3 Absolute Maximum Ratings... 5 ESD Caution... 5 Typical Perfo

AD864/AD8642/AD8643 TABLE OF CONTENTS Specifications... 3 Electrical Characteristics... 3 Absolute Maximum Ratings... 5 ESD Caution... 5 Typical Perfo FEATURES Low supply current: 25 µa max Very low input bias current: pa max Low offset voltage: 75 µv max Single-supply operation: 5 V to 26 V Dual-supply operation: ±2.5 V to ±3 V Rail-to-rail output Unity-gain

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from V to V Dual Supply Capability from. V to 8 V Excellent Load Drive

More information

Ultraprecision Operational Amplifier OP177

Ultraprecision Operational Amplifier OP177 Ultraprecision Operational Amplifier FEATURES Ultralow offset voltage TA = 25 C, 25 μv maximum Outstanding offset voltage drift 0. μv/ C maximum Excellent open-loop gain and gain linearity 2 V/μV typical

More information

Improved Second Source to the EL2020 ADEL2020

Improved Second Source to the EL2020 ADEL2020 Improved Second Source to the EL ADEL FEATURES Ideal for Video Applications.% Differential Gain. Differential Phase. db Bandwidth to 5 MHz (G = +) High Speed 9 MHz Bandwidth ( db) 5 V/ s Slew Rate ns Settling

More information

Precision Micropower Single Supply Operational Amplifier OP777

Precision Micropower Single Supply Operational Amplifier OP777 a FEATURES Low Offset Voltage: 1 V Max Low Input Bias Current: 1 na Max Single-Supply Operation: 2.7 V to 3 V Dual-Supply Operation: 1.35 V to 15 V Low Supply Current: 27 A/Amp Unity Gain Stable No Phase

More information

Dual Picoampere Input Current Bipolar Op Amp AD706

Dual Picoampere Input Current Bipolar Op Amp AD706 Dual Picoampere Input Current Bipolar Op Amp FEATURES High DC Precision V Max Offset Voltage.5 V/ C Max Offset Drift 2 pa Max Input Bias Current.5 V p-p Voltage Noise,. Hz to Hz 75 A Supply Current Available

More information

Matched Monolithic Quad Transistor MAT04

Matched Monolithic Quad Transistor MAT04 a FEATURES Low Offset Voltage: 200 V max High Current Gain: 400 min Excellent Current Gain Match: 2% max Low Noise Voltage at 100 Hz, 1 ma: 2.5 nv/ Hz max Excellent Log Conformance: rbe = 0.6 max Matching

More information

Very Low Distortion, Precision Difference Amplifier AD8274

Very Low Distortion, Precision Difference Amplifier AD8274 Very Low Distortion, Precision Difference Amplifier AD8274 FEATURES Very low distortion.2% THD + N (2 khz).% THD + N ( khz) Drives Ω loads Excellent gain accuracy.3% maximum gain error 2 ppm/ C maximum

More information

Precision, Low Power, Micropower Dual Operational Amplifier OP290

Precision, Low Power, Micropower Dual Operational Amplifier OP290 a FEATURES Single-/Dual-Supply Operation, 1. V to 3 V,. V to 1 V True Single-Supply Operation; Input and Output Voltage Ranges Include Ground Low Supply Current (Per Amplifier), A Max High Output Drive,

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load

More information

Ultralow Offset Voltage Operational Amplifier OP07

Ultralow Offset Voltage Operational Amplifier OP07 Ultralow Offset Voltage Operational Amplifier OP07 FEATURES Low VOS: 75 μv maximum Low VOS drift:.3 μv/ C maximum Ultrastable vs. time:.5 μv per month maximum Low noise: 0.6 μv p-p maximum Wide input voltage

More information

Precision, Low Power, Micropower Dual Operational Amplifier OP290

Precision, Low Power, Micropower Dual Operational Amplifier OP290 Precision, Low Power, Micropower Dual Operational Amplifier OP9 FEATURES Single-/dual-supply operation:. V to 3 V, ±.8 V to ±8 V True single-supply operation; input and output voltage Input/output ranges

More information

Dual Precision, Low Cost, High Speed BiFET Op Amp AD712-EP

Dual Precision, Low Cost, High Speed BiFET Op Amp AD712-EP Dual Precision, Low Cost, High Speed BiFET Op Amp FEATURES Supports defense and aerospace applications (AQEC standard) Military temperature range ( 55 C to +125 C) Controlled manufacturing baseline One

More information

Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD8641/AD8642/AD8643

Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD8641/AD8642/AD8643 Data Sheet Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD864/AD8642/AD8643 FEATURES Low supply current: 25 μa max Very low input bias current: pa max Low offset voltage: 75 μv max Single-supply

More information

Low Cost, General Purpose High Speed JFET Amplifier AD825

Low Cost, General Purpose High Speed JFET Amplifier AD825 a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:

More information

Dual Picoampere Input Current Bipolar Op Amp AD706. Data Sheet. Figure 1. Input Bias Current vs. Temperature

Dual Picoampere Input Current Bipolar Op Amp AD706. Data Sheet. Figure 1. Input Bias Current vs. Temperature Data Sheet Dual Picoampere Input Current Bipolar Op Amp Rev. F Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by

More information

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822 Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp FEATURES True Single-Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single-Supply Capability from 3 V to 36

More information

Single and Dual, Ultralow Distortion, Ultralow Noise Op Amps AD8597/AD8599 PIN CONFIGURATIONS FEATURES APPLICATIONS

Single and Dual, Ultralow Distortion, Ultralow Noise Op Amps AD8597/AD8599 PIN CONFIGURATIONS FEATURES APPLICATIONS Single and Dual, Ultralow Distortion, Ultralow Noise Op Amps FEATURES Low noise:. nv/ Hz at khz Low distortion: db THD @ khz Input noise,. Hz to Hz:

More information

Dual Low Offset, Low Power Operational Amplifier OP200

Dual Low Offset, Low Power Operational Amplifier OP200 Dual Low Offset, Low Power Operational Amplifier OP200 FEATURES Low input offset voltage: 75 μv maximum Low offset voltage drift, over 55 C < TA < +25 C 0.5 μv/ C maximum Low supply current (per amplifier):

More information

Quad Picoampere Input Current Bipolar Op Amp AD704

Quad Picoampere Input Current Bipolar Op Amp AD704 a FEATURES High DC Precision 75 V Max Offset Voltage V/ C Max Offset Voltage Drift 5 pa Max Input Bias Current.2 pa/ C Typical I B Drift Low Noise.5 V p-p Typical Noise,. Hz to Hz Low Power 6 A Max Supply

More information

Quad Matched 741-Type Operational Amplifiers OP11

Quad Matched 741-Type Operational Amplifiers OP11 a FEATURES Guaranteed V OS : 5 V Max Guaranteed Matched CMRR: 94 db Min Guaranteed Matched V OS : 75 V Max LM148/LM348 Direct Replacement Low Noise Silicon-Nitride Passivation Internal Frequency Compensation

More information

Ultralow Offset Voltage Operational Amplifier OP07

Ultralow Offset Voltage Operational Amplifier OP07 FEATURES Low VOS: 5 μv maximum Low VOS drift:. μv/ C maximum Ultrastable vs. time:.5 μv per month maximum Low noise:. μv p-p maximum Wide input voltage range: ± V typical Wide supply voltage range: ± V

More information

Dual Picoampere Input Current Bipolar Op Amp AD706

Dual Picoampere Input Current Bipolar Op Amp AD706 Dual Picoampere Input Current Bipolar Op Amp FEATURES High DC Precision V Max Offset Voltage.5 V/ C Max Offset Drift 2 pa Max Input Bias Current.5 V p-p Voltage Noise,. Hz to Hz 75 A Supply Current Available

More information

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628 High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628 FEATURES FUNCTIONAL BLOCK DIAGRAM High common-mode input voltage range ±20 V at VS = ±5 V Gain range 0. to 00 Operating temperature

More information

Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8274 FUNCTIONAL BLOCK DIAGRAM +V S FEATURES APPLICATIONS GENERAL DESCRIPTION

Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8274 FUNCTIONAL BLOCK DIAGRAM +V S FEATURES APPLICATIONS GENERAL DESCRIPTION Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8273 FEATURES ±4 V HBM ESD Very low distortion.25% THD + N (2 khz).15% THD + N (1 khz) Drives 6 Ω loads Two gain settings Gain of

More information

15 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP

15 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP 5 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP FEATURES Supports defense and aerospace applications (AQEC standard) Military temperature range ( 55 C to +25 C) Controlled manufacturing baseline

More information

Micropower Precision CMOS Operational Amplifier AD8500

Micropower Precision CMOS Operational Amplifier AD8500 Micropower Precision CMOS Operational Amplifier AD85 FEATURES Supply current: μa maximum Offset voltage: mv maximum Single-supply or dual-supply operation Rail-to-rail input and output No phase reversal

More information

Ultralow Offset Voltage Dual Op Amp AD708

Ultralow Offset Voltage Dual Op Amp AD708 Ultralow Offset Voltage Dual Op Amp FEATURES Very high dc precision 30 μv maximum offset voltage 0.3 μv/ C maximum offset voltage drift 0.35 μv p-p maximum voltage noise (0. Hz to 0 Hz) 5 million V/V minimum

More information

Rail-to-Rail, High Output Current Amplifier AD8397

Rail-to-Rail, High Output Current Amplifier AD8397 Rail-to-Rail, High Output Current Amplifier FEATURES Dual operational amplifier Voltage feedback Wide supply range from 3 V to 24 V Rail-to-rail output Output swing to within.5 V of supply rails High linear

More information

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482 Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP22/OP42 FEATURES High slew rate: 9 V/µs Wide bandwidth: 4 MHz Low supply current: 2 µa/amplifier max Low offset voltage: 3 mv max Low bias

More information

OBSOLETE. Low Cost Quad Voltage Controlled Amplifier SSM2164 REV. 0

OBSOLETE. Low Cost Quad Voltage Controlled Amplifier SSM2164 REV. 0 a FEATURES Four High Performance VCAs in a Single Package.2% THD No External Trimming 12 db Gain Range.7 db Gain Matching (Unity Gain) Class A or AB Operation APPLICATIONS Remote, Automatic, or Computer

More information

Precision, 16 MHz CBFET Op Amp AD845

Precision, 16 MHz CBFET Op Amp AD845 a FEATURES Replaces Hybrid Amplifiers in Many Applications AC PERFORMANCE: Settles to 0.01% in 350 ns 100 V/ s Slew Rate 12.8 MHz Min Unity Gain Bandwidth 1.75 MHz Full Power Bandwidth at 20 V p-p DC PERFORMANCE:

More information

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676 FEATURES Very low voltage noise 2.8 nv/ Hz @ khz Rail-to-rail output swing Low input bias current: 2 na maximum Very low offset voltage: 2 μv typical Low input offset drift:.6 μv/ C maximum Very high gain:

More information

Low Cost, Precision JFET Input Operational Amplifiers ADA4000-1/ADA4000-2/ADA4000-4

Low Cost, Precision JFET Input Operational Amplifiers ADA4000-1/ADA4000-2/ADA4000-4 Low Cost, Precision JFET Input Operational Amplifiers ADA-/ADA-/ADA- FEATURES High slew rate: V/μs Fast settling time Low offset voltage:.7 mv maximum Bias current: pa maximum ± V to ±8 V operation Low

More information

250 MHz, General Purpose Voltage Feedback Op Amps AD8047/AD8048

250 MHz, General Purpose Voltage Feedback Op Amps AD8047/AD8048 5 MHz, General Purpose Voltage Feedback Op Amps AD8/AD88 FEATURES Wide Bandwidth AD8, G = + AD88, G = + Small Signal 5 MHz 6 MHz Large Signal ( V p-p) MHz 6 MHz 5.8 ma Typical Supply Current Low Distortion,

More information

Low Power, Precision, Auto-Zero Op Amps AD8538/AD8539 FEATURES Low offset voltage: 13 μv maximum Input offset drift: 0.03 μv/ C Single-supply operatio

Low Power, Precision, Auto-Zero Op Amps AD8538/AD8539 FEATURES Low offset voltage: 13 μv maximum Input offset drift: 0.03 μv/ C Single-supply operatio Low Power, Precision, Auto-Zero Op Amps FEATURES Low offset voltage: 3 μv maximum Input offset drift:.3 μv/ C Single-supply operation: 2.7 V to 5.5 V High gain, CMRR, and PSRR Low input bias current: 25

More information

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier AD8230

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier AD8230 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier AD FEATURES Resistor programmable gain range: to Supply voltage range: ± V to ± V, + V to + V Rail-to-rail input and output Maintains performance

More information

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD8276

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD8276 Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD87 FEATURES Wide input range Rugged input overvoltage protection Low supply current: μa maximum Low power dissipation:. mw at VS

More information

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps AD9631/AD9632

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps AD9631/AD9632 a Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps / FEATURES Wide Bandwidth, G = +, G = +2 Small Signal 32 MHz 25 MHz Large Signal (4 V p-p) 75 MHz 8 MHz Ultralow Distortion (SFDR), Low Noise

More information

Quad Low Offset, Low Power Operational Amplifier OP400

Quad Low Offset, Low Power Operational Amplifier OP400 Quad Low Offset, Low Power Operational Amplifier OP4 FEATURES Low input offset voltage 5 μv max Low offset voltage drift over 55 C to 25 C,.2 pv/ C max Low supply current (per amplifier) 725 μa max High

More information

Low Cost, Low Power Video Op Amp AD818

Low Cost, Low Power Video Op Amp AD818 Low Cost, Low Power Video Op Amp FEATURES Low Cost Excellent Video Performance 55 MHz. db Bandwidth (Gain = +2).% and.5 Differential Gain and Phase Errors High Speed 3 MHz Bandwidth (3 db, G = +2) MHz

More information

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084 Low Cost JFET Input Operational Amplifiers ADTL/ADTL FEATURES TL/TL compatible Low input bias current: pa maximum Offset voltage 5.5 mv maximum (ADTLA/ADTLA) 9 mv maximum (ADTLJ/ADTLJ) ±5 V operation Low

More information

Ultraprecision Operational Amplifier OP177

Ultraprecision Operational Amplifier OP177 Ultraprecision Operational Amplifier FEATURES Ultralow offset voltage TA = 5 C, 5 μv maximum Outstanding offset voltage drift. μv/ C maximum Excellent open-loop gain and gain linearity V/μV typical CMRR:

More information

16 V, 4 MHz RR0 Amplifiers AD8665/AD8666/AD8668

16 V, 4 MHz RR0 Amplifiers AD8665/AD8666/AD8668 6 V, MHz RR Amplifiers AD8665/AD8666/AD8668 FEATURES Offset voltage:.5 mv max Low input bias current: pa max Single-supply operation: 5 V to 6 V Dual-supply operation: ±.5 V to ±8 V Low noise: 8 nv/ Hz

More information

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084 Preliminary Technical Data FEATURES TL082 / TL08 compatible Low input bias current: 0 pa max Offset voltage: 5mV max (ADTL082A/ADTL08A) 9 mv max (ADTL082/ADTL08) ±5 V to ±5 V operation Low noise: 5 nv/

More information

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676 Ultraprecision, 36 V, 2. nv/ Hz Dual Rail-to-Rail Output Op Amp AD676 FEATURES Very low voltage noise: 2. nv/ Hz @ khz Rail-to-rail output swing Low input bias current: 2 na maximum Very low offset voltage:

More information

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482 Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482 FEATURES High slew rate: 9 V/μs Wide bandwidth: 4 MHz Low supply current: 2 μa/amplifier maximum Low offset voltage: 3 mv maximum

More information

Dual, Current Feedback Low Power Op Amp AD812

Dual, Current Feedback Low Power Op Amp AD812 a FEATURES Two Video Amplifiers in One -Lead SOIC Package Optimized for Driving Cables in Video Systems Excellent Video Specifications (R L = ): Gain Flatness. db to MHz.% Differential Gain Error. Differential

More information

High Voltage, Current Shunt Monitor AD8215

High Voltage, Current Shunt Monitor AD8215 High Voltage, Current Shunt Monitor AD825 FEATURES ±4 V HBM ESD High common-mode voltage range 2 V to +65 V operating 3 V to +68 V survival Buffered output voltage Wide operating temperature range 8-Lead

More information

Precision Instrumentation Amplifier AD524

Precision Instrumentation Amplifier AD524 Precision Instrumentation Amplifier AD54 FEATURES Low noise: 0.3 μv p-p at 0. Hz to 0 Hz Low nonlinearity: 0.003% (G = ) High CMRR: 0 db (G = 000) Low offset voltage: 50 μv Low offset voltage drift: 0.5

More information

AD8613/AD8617/AD8619. Low Cost Micropower, Low Noise CMOS Rail-to-Rail, Input/Output Operational Amplifiers PIN CONFIGURATIONS FEATURES APPLICATIONS

AD8613/AD8617/AD8619. Low Cost Micropower, Low Noise CMOS Rail-to-Rail, Input/Output Operational Amplifiers PIN CONFIGURATIONS FEATURES APPLICATIONS Low Cost Micropower, Low Noise CMOS Rail-to-Rail, Input/Output Operational Amplifiers FEATURES Offset voltage: 2.2 mv maximum Low input bias current: pa maximum Single-supply operation:.8 V to 5 V Low

More information

High-Speed, Low-Power Dual Operational Amplifier AD826

High-Speed, Low-Power Dual Operational Amplifier AD826 a FEATURES High Speed: MHz Unity Gain Bandwidth 3 V/ s Slew Rate 7 ns Settling Time to.% Low Power: 7. ma Max Power Supply Current Per Amp Easy to Use: Drives Unlimited Capacitive Loads ma Min Output Current

More information

Single-Supply 42 V System Difference Amplifier AD8205

Single-Supply 42 V System Difference Amplifier AD8205 Single-Supply 42 V System Difference Amplifier FEATURES Ideal for current shunt applications High common-mode voltage range 2 V to +65 V operating 5 V to +68 V survival Gain = 50 Wide operating temperature

More information

CMOS Switched-Capacitor Voltage Converters ADM660/ADM8660

CMOS Switched-Capacitor Voltage Converters ADM660/ADM8660 CMOS Switched-Capacitor Voltage Converters ADM66/ADM866 FEATURES ADM66: Inverts or Doubles Input Supply Voltage ADM866: Inverts Input Supply Voltage ma Output Current Shutdown Function (ADM866) 2.2 F or

More information

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628 High Common-Mode Voltage, Programmable Gain Difference Amplifier FEATURES High common-mode input voltage range ±2 V at VS = ± V Gain range. to Operating temperature range: 4 C to ±8 C Supply voltage range

More information

Zero Drift, Unidirectional Current Shunt Monitor AD8219

Zero Drift, Unidirectional Current Shunt Monitor AD8219 Zero Drift, Unidirectional Current Shunt Monitor FEATURES High common-mode voltage range 4 V to 8 V operating.3 V to +85 V survival Buffered output voltage Gain = 6 V/V Wide operating temperature range:

More information

AD8218 REVISION HISTORY

AD8218 REVISION HISTORY Zero Drift, Bidirectional Current Shunt Monitor FEATURES High common-mode voltage range 4 V to 8 V operating.3 V to 85 V survival Buffered output voltage Gain = 2 V/V Wide operating temperature range:

More information

High Common-Mode Voltage Programmable Gain Difference Amplifier AD628

High Common-Mode Voltage Programmable Gain Difference Amplifier AD628 High Common-Mode Voltage Programmable Gain Difference Amplifier FEATURES High common-mode input voltage range ±12 V at VS = ±15 V Gain range.1 to 1 Operating temperature range: 4 C to ±85 C Supply voltage

More information

Quad 7 ns Single Supply Comparator AD8564

Quad 7 ns Single Supply Comparator AD8564 Quad 7 ns Single Supply Comparator AD8564 FEATURES 5 V single-supply operation 7 ns propagation delay Low power Separate input and output sections TTL/CMOS logic-compatible outputs Wide output swing TSSOP,

More information

High Speed, G = +2, Low Cost, Triple Op Amp ADA4862-3

High Speed, G = +2, Low Cost, Triple Op Amp ADA4862-3 High Speed,, Low Cost, Triple Op Amp ADA4862-3 FEATURES Ideal for RGB/HD/SD video Supports 8i/72p resolution High speed 3 db bandwidth: 3 MHz Slew rate: 75 V/μs Settling time: 9 ns (.5%). db flatness:

More information

Low Cost Low Power Instrumentation Amplifier AD620

Low Cost Low Power Instrumentation Amplifier AD620 Low Cost Low Power Instrumentation Amplifier AD60 FEATURES Easy to use Gain set with one external resistor (Gain range to 0,000) Wide power supply range (±.3 V to ±8 V) Higher performance than 3 op amp

More information

Description. Output Stage. 5k (10k) - + 5k (10k)

Description. Output Stage. 5k (10k) - + 5k (10k) THAT Corporation Low Noise, High Performance Audio Preamplifier IC FEATURES Low Noise: 1 nv/hz input noise (60dB gain) 34 nv/hz input noise (0dB gain) (1512) Low THD+N (full audio bandwidth): 0.001% 40dB

More information

Quad Low Offset, Low Power Operational Amplifier OP400

Quad Low Offset, Low Power Operational Amplifier OP400 FEATURES Low input offset voltage: 5 µv maximum Low offset voltage drift over 55 C to 25 C:.2 μv/ C maximum Low supply current (per amplifier): 725 µa maximum High open-loop gain: 5 V/mV minimum Input

More information

Quad Picoampere Input Current Bipolar Op Amp AD704

Quad Picoampere Input Current Bipolar Op Amp AD704 a FEATURES High DC Precision 75 V Max Offset Voltage V/ C Max Offset Voltage Drift 5 pa Max Input Bias Current.2 pa/ C Typical I B Drift Low Noise.5 V p-p Typical Noise,. Hz to Hz Low Power 6 A Max Supply

More information

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD820

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD820 Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD82 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5 V

More information

Dual Picoampere Input Current Bipolar Op Amp AD706

Dual Picoampere Input Current Bipolar Op Amp AD706 a FEATURE HIGH DC PRECISION V max Offset Voltage.6 V/ C max Offset Drift pa max Input Bias Current LOW NOISE. V p-p Voltage Noise,. Hz to Hz LOW POWER A Supply Current Available in -Lead Plastic Mini-DlP,

More information

High Common-Mode Voltage Difference Amplifier AD629

High Common-Mode Voltage Difference Amplifier AD629 a FEATURES Improved Replacement for: INAP and INAKU V Common-Mode Voltage Range Input Protection to: V Common Mode V Differential Wide Power Supply Range (. V to V) V Output Swing on V Supply ma Max Power

More information

High Voltage, Current Shunt Monitor AD8215

High Voltage, Current Shunt Monitor AD8215 FEATURES ±4 V human body model (HBM) ESD High common-mode voltage range V to +6 V operating 3 V to +68 V survival Buffered output voltage Wide operating temperature range 8-Lead SOIC: 4 C to + C Excellent

More information

Low Cost Instrumentation Amplifier AD622

Low Cost Instrumentation Amplifier AD622 a FEATURES Easy to Use Low Cost Solution Higher Performance than Two or Three Op Amp Design Unity Gain with No External Resistor Optional Gains with One External Resistor (Gain Range 2 to ) Wide Power

More information

Dual, Low Power Video Op Amp AD828

Dual, Low Power Video Op Amp AD828 a FEATURES Excellent Video Performance Differential Gain and Phase Error of.% and. High Speed MHz db Bandwidth (G = +) V/ s Slew Rate ns Settling Time to.% Low Power ma Max Power Supply Current High Output

More information

270 MHz, 400 μa Current Feedback Amplifier AD8005

270 MHz, 400 μa Current Feedback Amplifier AD8005 Data Sheet 27 MHz, μa Current Feedback Amplifier AD85 FEATURES Ultralow power μa power supply current ( mw on ±5 VS) Specified for single supply operation High speed 27 MHz, 3 db bandwidth (G = +) 7 MHz,

More information

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers AD8510/AD8512

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers AD8510/AD8512 a FEATURES Fast Settling Time: 5 ns to.1% Low Offset Voltage: V Max Low TcV OS : 1 V/ C Typ Low Input Bias Current: 25 pa Typ Dual-Supply Operation: 5 V to 15 V Low Noise: 8 nv/ Hz Low Distortion:.5% No

More information

Quad 150 MHz Rail-to-Rail Amplifier AD8044

Quad 150 MHz Rail-to-Rail Amplifier AD8044 a FEATURES Single AD84 and Dual AD842 Also Available Fully Specified at + V, +5 V, and 5 V Supplies Output Swings to Within 25 mv of Either Rail Input Voltage Range Extends 2 mv Below Ground No Phase Reversal

More information

AD MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOS Programmable Gain Instrumentation Amplifier. Preliminary Technical Data FEATURES

AD MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOS Programmable Gain Instrumentation Amplifier. Preliminary Technical Data FEATURES Preliminary Technical Data 0 MHz, 20 V/μs, G =, 0, 00, 000 i CMOS Programmable Gain Instrumentation Amplifier FEATURES Small package: 0-lead MSOP Programmable gains:, 0, 00, 000 Digital or pin-programmable

More information

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD82 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5 V

More information

+5 V Powered RS-232/RS-422 Transceiver AD7306

+5 V Powered RS-232/RS-422 Transceiver AD7306 a FEATURES RS-3 and RS- on One Chip Single + V Supply. F Capacitors Short Circuit Protection Excellent Noise Immunity Low Power BiCMOS Technology High Speed, Low Skew RS- Operation C to + C Operations

More information

4 MHz, 7 nv/ Hz, Low Offset and Drift, High Precision Amplifier ADA EP

4 MHz, 7 nv/ Hz, Low Offset and Drift, High Precision Amplifier ADA EP Enhanced Product FEATURES Low offset voltage and low offset voltage drift Maximum offset voltage: 9 µv at TA = 2 C Maximum offset voltage drift:.2 µv/ C Moisture sensitivity level (MSL) rated Low input

More information

High Voltage, Low Noise, Low Distortion, Unity-Gain Stable, High Speed Op Amp ADA4898-1/ADA4898-2

High Voltage, Low Noise, Low Distortion, Unity-Gain Stable, High Speed Op Amp ADA4898-1/ADA4898-2 FEATURES Ultralow noise.9 nv/ Hz.4 pa/ Hz. nv/ Hz at Hz Ultralow distortion: 93 dbc at 5 khz Wide supply voltage range: ±5 V to ±6 V High speed 3 db bandwidth: 65 MHz (G = +) Slew rate: 55 V/µs Unity gain

More information

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544 General-Purpose CMOS Rail-to-Rail Amplifiers AD854/AD8542/AD8544 FEATURES Single-supply operation: 2.7 V to 5.5 V Low supply current: 45 μa/amplifier Wide bandwidth: MHz No phase reversal Low input currents:

More information

Audio, Dual-Matched NPN Transistor MAT12

Audio, Dual-Matched NPN Transistor MAT12 Data Sheet FEATURES Very low voltage noise: nv/ Hz maximum at 00 Hz Excellent current gain match: 0.5% typical Low offset voltage (VOS): 200 μv maximum Outstanding offset voltage drift: 0.03 μv/ C typical

More information

Single-Supply, 42 V System Difference Amplifier AD8206

Single-Supply, 42 V System Difference Amplifier AD8206 Single-Supply, 42 V System Difference Amplifier FEATURES Ideal for current shunt applications High common-mode voltage range 2 V to +65 V operating 25 V to +75 V survival Gain = 20 Wide operating temperature

More information

Low Cost, DC to 500 MHz, 92 db Logarithmic Amplifier AD8307

Low Cost, DC to 500 MHz, 92 db Logarithmic Amplifier AD8307 Low Cost, DC to 500 MHz, 9 db Logarithmic Amplifier AD807 FEATURES Complete multistage logarithmic amplifier 9 db dynamic range: 75 dbm to +7 dbm to 90 dbm using matching network Single supply of.7 V minimum

More information

200 ma Output Current High-Speed Amplifier AD8010

200 ma Output Current High-Speed Amplifier AD8010 a FEATURES 2 ma of Output Current 9 Load SFDR 54 dbc @ MHz Differential Gain Error.4%, f = 4.43 MHz Differential Phase Error.6, f = 4.43 MHz Maintains Video Specifications Driving Eight Parallel 75 Loads.2%

More information

Zero-Drift, High Voltage, Bidirectional Difference Amplifier AD8207

Zero-Drift, High Voltage, Bidirectional Difference Amplifier AD8207 Zero-Drift, High Voltage, Bidirectional Difference Amplifier FEATURES Ideal for current shunt applications EMI filters included μv/ C maximum input offset drift High common-mode voltage range 4 V to +65

More information

High Speed, Low Power Dual Op Amp AD827

High Speed, Low Power Dual Op Amp AD827 a FEATURES High Speed 50 MHz Unity Gain Stable Operation 300 V/ms Slew Rate 120 ns Settling Time Drives Unlimited Capacitive Loads Excellent Video Performance 0.04% Differential Gain @ 4.4 MHz 0.198 Differential

More information

TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... 2 Specifications... 3 Absolute Maximum

TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... 2 Specifications... 3 Absolute Maximum FEATURES Offset voltage: 2.5 mv maximum Single-supply operation: 2.7 V to 5.5 V Low noise: 8 nv/ Hz Wide bandwidth: 24 MHz Slew rate: V/μs Short-circuit output current: 2 ma No phase reversal Low input

More information

Low Power, Wide Supply Range, Low Cost Difference Amplifiers, G = ½, 2 AD8278/AD8279

Low Power, Wide Supply Range, Low Cost Difference Amplifiers, G = ½, 2 AD8278/AD8279 Low Power, Wide Supply Range, Low Cost Difference Amplifiers, G = ½, 2 /AD8279 FEATURES Wide input range beyond supplies Rugged input overvoltage protection Low supply current: 2 μa maximum (per amplifier)

More information

ADA485-/ADA485- TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... Specifications... 3 Spe

ADA485-/ADA485- TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... Specifications... 3 Spe NC NC NC NC 5 6 7 8 6 NC 4 PD 3 PD FEATURES Ultralow power-down current: 5 na/amplifier maximum Low quiescent current:.4 ma/amplifier High speed 75 MHz, 3 db bandwidth V/μs slew rate 85 ns settling time

More information

Low Noise, Matched Dual PNP Transistor MAT03

Low Noise, Matched Dual PNP Transistor MAT03 a FEATURES Dual Matched PNP Transistor Low Offset Voltage: 100 V Max Low Noise: 1 nv/ Hz @ 1 khz Max High Gain: 100 Min High Gain Bandwidth: 190 MHz Typ Tight Gain Matching: 3% Max Excellent Logarithmic

More information

Precision, Very Low Noise, Low Input Bias Current Operational Amplifiers

Precision, Very Low Noise, Low Input Bias Current Operational Amplifiers Data Sheet Precision, Very Low Noise, Low Input Bias Current Operational Amplifiers AD8671/AD8672/AD8674 FEATURES Very low noise: 2.8 nv/ Hz, 77 nv p-p Wide bandwidth: 1 MHz Low input bias current: 12

More information