A COMPARATIVE STUDY OF SEPIC, CUK AND ZETA CONVERTERS

Size: px
Start display at page:

Download "A COMPARATIVE STUDY OF SEPIC, CUK AND ZETA CONVERTERS"

Transcription

1 cientific Bulletin of the Electrical Engineering Faculty 2008 A OMPARATIVE TUY OF EPI, UK AN ZETA ONVERTER Florian ION, Gabriel PREUA 2 Abstract: In this paper a comparative study of - converters is presented. The EPI, uk and ZETA converters in applications are detailed. Also are presented the operating simulation for these converters. The results of simulations are compared with the measurements done for a ZETA converter with an output of 3.3V and different output currents. Keywords: - converters, EPI converter, uk converter, ZETA converter 2.. OPERATING PRINIPLE 2. Fundamental - onverters From the viewpoint of input and output voltages V and V o, the fundamental converters are: () step-down or buck converters, (2) step-up or boost converters, (3) step down/up or buck-boost converters. Figure shows the principle diagrams of these topologies.. INTROUTION It s well known that to have the maximum efficiency of the solar panels, the load must be connected to the solar panel through a - converter. The topologies and the operation of these converters are very well described in the literature. A classification of these converters is presented in []. The authors of [] consider the - converters in six decades: () classical/traditional converters, (2) multiple-quadrant converters, (3) switched component converters, (4) softswitching converters, (5) synchronous rectifier converters, (6) multiple energy-storage elements resonant converters. The classical/traditional converters are divided in five categories: () fundamental converters, (2) transformer-type converters, (3) developed converters, (4) voltage-lift converters, and (5) super-lift converters. The converters studied in this paper are classical developed converters well known in literature like converters in EPI (ingle Ended Primary Inductance onverter) topology, uk and ZETA (Positive Output Luo onverter). The developed-type converters derived from fundamental converters by addition of a low-pass filter. In [2] these converters are considered like a MATER converter switched by a PWM signal, and a LAVE converter achieved with passive components. Because the great usage of converters in the topologies mentioned above in applications, we found opportunity for a short presentation of operating principles, simulations and some experimental results in this work. The equations of main operating parameters, advantages and disadvantages of each topology are presented in chapter 2 of this paper. The simulations and the measurements are presented in chapter 3, and the final conclusions in chapter 4. a) b) c) Figure. Fundamental - onverters: a) buck converter, b) boost converter, c) buck-boost converter. In ideal operating conditions (no voltage loss on the switch, the average voltage across inductors L at steady state zero, no current loss on capacitors, and no voltage loss on diode at forward conduction) the equations of ratio V o /V are: for the buck converter (): V o = () where is the duty cycle of PWM signal of switch, with the meaning from equation (2), ton = (2) T o o o Valahia University/Electronic epartment, Targoviste, Romania, flion@valahia.ro 2 Valahia University/Electronic epartment, Targoviste, Romania, gpredusca@valahia.ro 7

2 cientific Bulletin of the Electrical Engineering Faculty 2008 where t ON is the conduction time of switch and T is the period of PWM signal. for the boost converter (3): V o = (3) V for the buck-boost converter (4): V o = V (4) In all these equations the internal resistance of power supply V was considered zero [3]. a) o o 2.2. eveloped - converters b) Figure 2 shows the topologies of developed - converters. These topologies have few similitudes: The equation of the transfer function of these converters is (4), the same with that one of buck-boost converter, if the conditions of ontinuous onduction Mode M are assured. These converters are used in different applications, such as with solar panels, in systems supplied with electrical energy where the output voltage V o of converter can be superior or inferior of the input voltage V of converter. The fundamental converters don t accept this situation. These converters are integrated in the MPPT of solar panels. The capacitor assures the galvanic insulation between input and output. The short-circuits or others breakdown of the load don t affect the power supply solar panels. The output voltage becomes zero if the PWM control signal of switch is missing. The diode can be replaced by a transistor switched synchronal with the main switch in the synchronous converters. The differences between these topologies are: EPI and uk converters became from the boost converter, and ZETA converter from the buck-boost converter. The ripple current in the load is greater for uk and ZETA converters than EPI, because the EPI converter has an inductor L 2 that smooth the current spikes. The switch of EPI ad uk converters is a N channel MO transistor that needs a Low ide driver, when the ZETA converter has a P channel MO transistor that needs a High ide driver. Because, these three topologies have many advantages mentioned above, these things make enable their integration in applications with a great efficiency of using the solar energy in solar panels with MPP trackers. c) Figure 2. eveloped - onverters: a) EPI converter, b) uk converter, c) ZETA converter 2.3 Integration of convertors in MPPT systems The perturb-and observe (PAO) method for the MPPT is an iterative approach. The MPP is obtained by making the derivate of power equal with zero in the feedback circuit that commands the duty cycle of switch. This is very useful because doesn t need the disconnection of panels from the load. Through this method can be reached good results if it is compared the instantaneous conductance of panel with the incremental conductance of panel the method is known as Incremental onductance Technique (IT) [4]. If it is considered the equivalent circuit of the solar panel like in Fig. 3, with v i the input voltage of panel and r i the equivalent input resistance of panel, P i the input power, P o the output power (5), the P = 0 means (6). 2 vi Pi = Po = (5) ri vi Vi = (6) ri 2Ri The method proposed in [4] resides in the connection of a EPI or uk converter between the solar panel and load. The converter works in continuous current mode (M) through inductor L Figure 2 a), but with discontinuous voltage (V) on the capacitor. The duty cycle of PWM signal of switch is adjusted in a proper way to achieve the input resistance of converter equal with the output resistance of solar panel. Figure 3 shows the equivalent circuit of solar panel and converter. o 8

3 cientific Bulletin of the Electrical Engineering Faculty 2008 Figure 3. Equivalent circuit of a solar panel and converter [4] The operating equations of EPI converter in V mode are the next: (7a) the voltage on capacitor, (7b) the voltage on diode. v I( d) T V ( t) = Vo, I ( t dt ) V o o, I 2 t, 0 < t < dt d T < t < dt dt < t < T (7a) v V o + v ( t), 0 < t < dt ( t) = (7b) 0, dt < t < T where I and I 2 are the inductor currents - assumed to be constant, dt is the conduction time of switch, d T is the conduction time of diode, and T is the period of PWM signal of switch - T =, f frequency of f PWM signal. The three sequences in one switching cycle are shown in Figure 4. Because the voltage of capacitor at d T I is v ( d T ) = V o, the duty cycle is d = ( d). I In the steady state the voltage on the inductor L 2 is zero. From this moment the output voltage V o is equal with the average voltage of diode (8). V o dt T = v ( t) dt I( d) d T = (8) 0 2 Moreover, the voltage stress on the switch is given by (9). In the same way can be determined the operating equations of uk and ZETA topologies. This is shown in [4]. I v stres = v ( T ) + Vo = ( d) T (9) 2 Figure 4. Operating principle of the EPI converter. a) equivalent circuits, b) theoretical waveforms [4] 3. imulations In this chapter it will be presented few representative waveforms of each topology. The simulations were done in OrA, in the next conditions: input voltage V =2V, output voltage V o =3.3V, load resistance R =3.3Ω, duty cycle =0.22, switching frequency f =500kHz, coupling capacitor =47μF, output capacitor o =00μF, inductors L =L 2 =6.2μH. 3. The EPI converter To simulate the operation of EPI converters it was used the diagram from Figure 2 a). In Figure 5 a), b), and c), is shown the output voltage V o, the ripple of 9

4 cientific Bulletin of the Electrical Engineering Faculty 2008 output voltage ΔV o, and the voltage stress V stress of switch. At steady state after.5ms, these values are: V 0 =3.5V, ΔV o =6mV pp, and V stress =6V s 0.5ms.0ms.5ms 2.0ms 2.5ms 3.0ms 3.5ms 4.0ms a) V o output voltage s 0.5ms.0ms.5ms 2.0ms 2.5ms 3.0ms 3.5ms 4.0ms a) V o output voltage -3.65V V ms ms ms.0000ms.0500ms.000ms b) ΔV o output ripple V 2.960ms 2.962ms 2.964ms 2.966ms 2.968ms 2.970ms 2.972ms 2.974ms 2.976ms 2.978ms b) ΔV o output ripple 5V 2 5V 5V us us us us 88.00us us us us V(M2:d) c) V stress voltage stress on switch 5V ms ms ms ms ms ms V(M2:d) c) V stress voltage stress on switch Figure 5. imulated waveforms of EPI converter: a) output voltage, b) output ripple, c) voltage stress of switch 3.2. The uk conveter To simulate the operation of uk converter it was used the diagram from Figure 2 b). Figure 6 a), b) and c) shows the waveforms of output voltage, output ripple and voltage stress of switch in the same conditions. At steady state after 0.5ms, these values are: V 0 =3.5V, ΔV o =28mV pp, and V stress =6V The ZETA converter To simulate the operation of ZETA converter it was used the diagram from Figure 2 c). Figure 7 a), b) and c) shows the waveforms of output voltage, output ripple and voltage stress of switch in the same conditions. At steady state after 0.5ms, these values are: V 0 =3.4V, ΔV o =26mV pp, and V stress =6V. Figure 6. imulated waveforms of uk converter: a) output voltage, b) output ripple, c) voltage stress of switch onclusions on simulations are in Table. Table. imulation Results Voltage Topology EPI uk ZETA V o [V] ΔV o [mv pp ] V stress [V] Experimental verifications An experiment has been performed using a ZETA topology on a LT622 a urrent Mode tep-own / converter of Linear Technology [5]. The schematic diagram is the typical application proposed by the producer and is shown in Figure 8 [6]. In Figure 9 are the waveforms in the next conditions: V =8.3V, V o =3.3V, R =20Ω (I o =65mA). The channels of oscilloscope represent: H V G PWM signal on the gate of MO transistor, H2 V drain voltage of MO transistor, H3 V voltage 20

5 cientific Bulletin of the Electrical Engineering Faculty 2008 on positive pin of capacitor, H4 ΔV o output voltage ripple. In Figure 0 are the waveforms in these conditions: V =4.9V, V o =3.4V, R =0Ω (I o =340mA). It can be observed other values for switching frequency and duty cycle of PWM signal systems where these conditions are reached very often like solar panels in different levels of solar radiation. The results of measurements are in Table 2. The circuit LT622 changes the switching frequency Figure 9, 0,, in a wide range from 265 khz to 024 khz. Also, the duty cycle of PWM signal in the gate of the MO transistor is changed according with the work conditions input and output voltage, and the output current, to insure a constant value of output voltage. The ripple of output voltage measured in real conditions is few times greater than that one obtained in ideal conditions of simulations. 0s 0.5ms.0ms.5ms 2.0ms 2.5ms 3.0ms 3.5ms 4.0ms V(R8:2) a) V o output voltage 3.62V 3.6V V 4.65ms 4.70ms 4.75ms 4.80ms 4.85ms 4.90ms 4.95ms 5.00ms V(R8:2) b) ΔV o output ripple 2 5V Figure 9. Waveforms of V G, V, V, ΔV o in conditions: V =8.3V, V o =3.3V, R =20Ω 5V 4.650ms 4.652ms 4.654ms 4.656ms 4.658ms 4.660ms V(M:s)- V(M:d) c) V stress voltage stress on switch Figure 7. imulated waveforms of ZETA converter: a) output voltage, b) output ripple, c) voltage stress of switch Figure 8. ZETA converter with LT622 [9] The experimental waveforms in the conditions: V =7.V, V o =3.4V, R =5Ω (I o =680mA) are shown in Figure. It can be seen that the ZETA converter build with the LT622 integrated circuit works well with input voltages less than output voltage and at an input voltage over the output voltage. This advantage can be used in Figure 0. Waveforms of V G, V, V, ΔV o in conditions: V =4.9V, V o =3.4V, R =0Ω 2

6 cientific Bulletin of the Electrical Engineering Faculty 2008 REFERENE Figure. Waveforms of V G, V, V, ΔV o in conditions: V =7,V, V o =3,4V, R =5Ω [] F. L. Luo, H. Ye, Advanced / onverters, R Press, [2]. Maniktala, lave onverters Power Auxiliary Outputs, EN Magazine, Elsevier, [3] P. onstantin, et al., Electronică industrială, Editura idactică şi Pedagogică, Bucureşti, 983. [4] H. -H. hung, et al., A Novel Maximum Power Point Tracking Technique for olar Panels Using a EPI or uk onverter, IEEE Transaction on Power Electronics, Vol. 8, No. 3, May [5] M. obre, F. Ion - supervisor, orecţia factorului de putere în convertoarele în comutaţie cu reţele de comutare de ordin zero, Proiect de diplomă, Universitatea Valahia, Târgovişte, iulie ***, LT622 Low Voltage Input urrent Mode tep- own / ontroller, ata heet, Linear Technology, 998. Table 2. Measurement results ZETA converter with LT622 with output voltage 3.3V Voltage V =8.3V, V =4.8V, V =3.2V, I o =65mA I o =65mA I o =65mA ΔV o [V pp ] f [khz] Voltage V =8.3V, V =4.9V, V =8.3V, V =7.V, I o =340mA I o =340mA I o =680mA I o =680mA ΔV o [V pp ] f [khz] ONLUION In this paper was presented a comparative study of - converters in EPI, uk and ZETA topologies. It was studied the fundamental converters and developed converters in the topologies mentioned above. The operation equations of main parameters were presented. Moreover, it was presented the simulations of these converters in the same work conditions. The waveforms that have seen on a ZETA converter with a constant output voltage and variable input voltage and load confirmed the simulations results of that converter. 22

Research Article Extra-High-Voltage DC-DC Boost Converters Topology with Simple Control Strategy

Research Article Extra-High-Voltage DC-DC Boost Converters Topology with Simple Control Strategy Modelling and imulation in Engineering Volume 8, Article ID 5934, 8 pages doi:.55/8/5934 Research Article Extra-High-Voltage D-D Boost onverters Topology with imple ontrol trategy P. anjeevikumar and K.

More information

CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM

CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM 63 CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM 3.1 INTRODUCTION The power output of the PV module varies with the irradiation and the temperature and the output

More information

Study on DC-DC Converters for a Pfc BLDC Motor Drive

Study on DC-DC Converters for a Pfc BLDC Motor Drive IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 81-88 www.iosrjournals.org Study on DC-DC Converters for a Pfc BLDC Motor Drive Baiju Antony 1,

More information

CHAPTER 3 MAXIMUM POWER TRANSFER THEOREM BASED MPPT FOR STANDALONE PV SYSTEM

CHAPTER 3 MAXIMUM POWER TRANSFER THEOREM BASED MPPT FOR STANDALONE PV SYSTEM 60 CHAPTER 3 MAXIMUM POWER TRANSFER THEOREM BASED MPPT FOR STANDALONE PV SYSTEM 3.1 INTRODUCTION Literature reports voluminous research to improve the PV power system efficiency through material development,

More information

Self Lifted SEPIC-Cuk Combination Converter

Self Lifted SEPIC-Cuk Combination Converter Self Lifted SEPIC-Cuk Combination Converter Anooja Shahul 1, Prof. Annie P Oommen 2, Prof. Benny Cherian 3 1 PG Scholar, 2,3 Professor, Department of Electrical and Electronics Engineering, Mar Athanasius

More information

IMPROVING THE VOLTAGE GAIN OF DC- DC BOOST CONVERTER BY COUPLED INDUCTOR

IMPROVING THE VOLTAGE GAIN OF DC- DC BOOST CONVERTER BY COUPLED INDUCTOR IMPROVING THE VOLTAGE GAIN OF DC- DC BOOST CONVERTER BY COUPLED INDUCTOR YENISETTI NEELIMA 1 1 ASST PROF CJIT JANGAON. Abstract The high gain DC-DC converter with coupling inductor is design to boost low

More information

Analysis of circuit and operation for DC DC converter based on silicon carbide

Analysis of circuit and operation for DC DC converter based on silicon carbide omputer Applications in Electrical Engineering Vol. 14 2016 DOI 10.21008/j.1508-4248.2016.0024 Analysis of circuit and operation for D D converter based on silicon carbide Łukasz J. Niewiara, Tomasz Tarczewski

More information

A Pv Fed Buck Boost Converter Combining Ky And Buck Converter With Feedback

A Pv Fed Buck Boost Converter Combining Ky And Buck Converter With Feedback International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 2 (February 2014), PP.84-88 A Pv Fed Buck Boost Converter Combining Ky

More information

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter 3.1 Introduction DC/DC Converter efficiently converts unregulated DC voltage to a regulated DC voltage with better efficiency and high power density.

More information

A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter

A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter A. K. Panda and Aroul. K Abstract--This paper proposes a zero-voltage transition (ZVT) PWM synchronous buck converter, which

More information

An Interleaved Flyback Inverter for Residential Photovoltaic Applications

An Interleaved Flyback Inverter for Residential Photovoltaic Applications An Interleaved Flyback Inverter for Residential Photovoltaic Applications Bunyamin Tamyurek and Bilgehan Kirimer ESKISEHIR OSMANGAZI UNIVERSITY Electrical and Electronics Engineering Department Eskisehir,

More information

TSTE25 Power Electronics. Lecture 6 Tomas Jonsson ISY/EKS

TSTE25 Power Electronics. Lecture 6 Tomas Jonsson ISY/EKS TSTE25 Power Electronics Lecture 6 Tomas Jonsson ISY/EKS 2016-11-15 2 Outline DC power supplies DC-DC Converter Step-down (buck) Step-up (boost) Other converter topologies (overview) Exercises 7-1, 7-2,

More information

Transformerless Buck-Boost Converter with Positive Output Voltage and Feedback

Transformerless Buck-Boost Converter with Positive Output Voltage and Feedback Transformerless Buck-Boost Converter with Positive Output Voltage and Feedback Aleena Paul K PG Student Electrical and Electronics Engineering Mar Athanasius College of Engineering Kerala, India Babu Paul

More information

CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER

CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER 17 CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER 2.1 GENERAL Designing an efficient DC to DC buck-boost converter is very much important for many real-time

More information

SIMULATION STUDIES OF HALF-BRIDGE ISOLATED DC/DC BOOST CONVERTER

SIMULATION STUDIES OF HALF-BRIDGE ISOLATED DC/DC BOOST CONVERTER POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Adam KRUPA* SIMULATION STUDIES OF HALF-BRIDGE ISOLATED DC/DC BOOST CONVERTER In order to utilize energy from low voltage

More information

CHAPTER-3 Design Aspects of DC-DC Boost Converter in Solar PV System by MPPT Algorithm

CHAPTER-3 Design Aspects of DC-DC Boost Converter in Solar PV System by MPPT Algorithm CHAPTER-3 Design Aspects of DC-DC Boost Converter in Solar PV System by MPPT Algorithm 44 CHAPTER-3 DESIGN ASPECTS OF DC-DC BOOST CONVERTER IN SOLAR PV SYSTEM BY MPPT ALGORITHM 3.1 Introduction In the

More information

Comparison of Voltage and Efficiency of a Modified SEPIC Converter without Magnetic Coupling and with Magnetic Coupling

Comparison of Voltage and Efficiency of a Modified SEPIC Converter without Magnetic Coupling and with Magnetic Coupling Comparison of Voltage and Efficiency of a Modified SEPIC Converter without Magnetic Coupling and with Magnetic Coupling Rutuja Daphale 1, Vijaykumar Kamble 2 1 PG Student, 2 Assistant Professor Power electronics

More information

BUCK-BOOST CONVERTER:

BUCK-BOOST CONVERTER: BUCK-BOOST CONVERTER: The buck boost converter is a type of DC-DC converter that has an output voltage magnitude that is either greater than or less than the input voltage magnitude. Two different topologies

More information

Improved Modification of the Closed-Loop-Controlled AC-AC Resonant Converter for Induction Heating

Improved Modification of the Closed-Loop-Controlled AC-AC Resonant Converter for Induction Heating Improved Modification of the losedoopontrolled AA Resonant onverter for Induction Heating Kirubakaran Dhandapani and Rama Reddy athi A singleswitch parallel resonant for induction heating is implemented.

More information

Modelling of Single Stage Inverter for PV System Using Optimization Algorithm

Modelling of Single Stage Inverter for PV System Using Optimization Algorithm TELKOMNIKA Indonesian Journal of Electrical Engineering Vol. 12, No. 9, September 2014, pp. 6579 ~ 6586 DOI: 10.11591/telkomnika.v12i9.6466 6579 Modelling of Single Stage Inverter for PV System Using Optimization

More information

A New Quadratic Boost Converter with PFC Applications

A New Quadratic Boost Converter with PFC Applications Proceedings of the th WSEAS International Conference on CICUITS, uliagmeni, Athens, Greece, July -, 6 (pp3-8) A New Quadratic Boost Converter with PFC Applications DAN LASCU, MIHAELA LASCU, IOAN LIE, MIHAIL

More information

AN INTERLEAVED HIGH STEP-DOWN CONVERSION RATIO BUCK CONVERTER WITH LOW SWITCH VOLTAGE STRESS

AN INTERLEAVED HIGH STEP-DOWN CONVERSION RATIO BUCK CONVERTER WITH LOW SWITCH VOLTAGE STRESS AN INTERLEAVED HIGH STEP-DOWN CONVERSION RATIO BUCK CONVERTER WITH LOW SWITCH VOLTAGE STRESS Jeema Jose 1, Jubin Eldho Paul 2 1PG Scholar, Department of Electrical and Electronics Engineering, Ilahia College

More information

HIGH STEP UP SWITCHED CAPACITOR INDUCTOR DC VOLTAGE REGULATOR

HIGH STEP UP SWITCHED CAPACITOR INDUCTOR DC VOLTAGE REGULATOR INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM4) 30-3, December, 204, Ernakulam,

More information

BIDIRECTIONAL CURRENT-FED FLYBACK-PUSH-PULL DC-DC CONVERTER

BIDIRECTIONAL CURRENT-FED FLYBACK-PUSH-PULL DC-DC CONVERTER BIDIRECTIONAL CURRENT-FED FLYBACK-PUSH-PULL DC-DC CONVERTER Eduardo Valmir de Souza and Ivo Barbi Power Electronics Institute - INEP Federal University of Santa Catarina - UFSC www.inep.ufsc.br eduardovs@inep.ufsc.br,

More information

Performance Analysis of Dc-Dc Converters and Comparative Study of Buck -Boost with SLLB Converter by Using SPV Based INC MPPT Technique

Performance Analysis of Dc-Dc Converters and Comparative Study of Buck -Boost with SLLB Converter by Using SPV Based INC MPPT Technique Performance Analysis of Dc-Dc Converters and Comparative Study of Buck -Boost with SLLB Converter by Using SPV Based INC MPPT Technique Afroz Pasha 1, Jayakumar.N 2, Thiruvonasundari.D 3 1M.Tech Student

More information

A New Averaged Switch Model Including Conduction Losses for PWM Converters Operating in Discontinuous Inductor Current Mode

A New Averaged Switch Model Including Conduction Losses for PWM Converters Operating in Discontinuous Inductor Current Mode FACTA UNIVERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 19, no. 2, August 2006, 219-230 A New Averaged Switch Model Including Conduction Losses for PWM Converters Operating in Discontinuous Inductor Current

More information

An Application of Soft Switching for Efficiency Improvement in ZVT-PWM Converters

An Application of Soft Switching for Efficiency Improvement in ZVT-PWM Converters An Application of Soft Switching for Efficiency Improvement in ZVT-PWM Converters 1 Shivaraj Kumar H.C, 2 Noorullah Sherif, 3 Gourishankar C 1,3 Asst. Professor, EEE SECAB.I.E.T Vijayapura 2 Professor,

More information

Design And Analysis Of Dc-Dc Converter For Photovoltaic (PV) Applications.

Design And Analysis Of Dc-Dc Converter For Photovoltaic (PV) Applications. IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 PP 53-60 www.iosrjen.org Design And Analysis Of Dc-Dc Converter For Photovoltaic (PV) Applications. Sangeetha U G 1 (PG Scholar,

More information

Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems

Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems T.

More information

Non-isolated DC-DC Converter with Soft-Switching Technique for Non-linear System K.Balakrishnanet al.,

Non-isolated DC-DC Converter with Soft-Switching Technique for Non-linear System K.Balakrishnanet al., International Journal of Power Control and Computation(IJPCSC) Vol 7. No.2 2015 Pp.47-53 gopalax Journals, Singapore available at : www.ijcns.com ISSN: 0976-268X -----------------------------------------------------------------------------------------------

More information

Control of buck-boost chopper type AC voltage regulator

Control of buck-boost chopper type AC voltage regulator International Journal of Research in Advanced Engineering and Technology ISSN: 2455-0876; Impact Factor: RJIF 5.44 www.engineeringresearchjournal.com Volume 2; Issue 3; May 2016; Page No. 52-56 Control

More information

Modified Buck-Boost Converter with High Step-up and Step-Down Voltage Ratio

Modified Buck-Boost Converter with High Step-up and Step-Down Voltage Ratio ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization Volume 6, Special Issue 5,

More information

Design and Implementation of Single-Stage Grid-Connected Flyback Microinverter Operates in DCM for Photovoltaic Applications

Design and Implementation of Single-Stage Grid-Connected Flyback Microinverter Operates in DCM for Photovoltaic Applications Design and Implementation of Single-Stage Grid-Connected Flyback Microinverter Operates in DCM for Photovoltaic Applications Turki K. Hassan 1 and Mustafa A. Fadel 2 1 PhD, Electrical Engineering Department,

More information

CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS

CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS 68 CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS 4.1 INTRODUCTION The main objective of this research work is to implement and compare four control methods, i.e., PWM

More information

Quasi Z-Source DC-DC Converter With Switched Capacitor

Quasi Z-Source DC-DC Converter With Switched Capacitor Quasi Z-Source DC-DC Converter With Switched Capacitor Anu Raveendran, Elizabeth Paul, Annie P. Ommen M.Tech Student, Mar Athanasius College of Engineering, Kothamangalam, Kerala anuraveendran2015@gmail.com

More information

A High Step-Up DC-DC Converter

A High Step-Up DC-DC Converter A High Step-Up DC-DC Converter Krishna V Department of Electrical and Electronics Government Engineering College Thrissur. Kerala Prof. Lalgy Gopy Department of Electrical and Electronics Government Engineering

More information

The Feedback PI controller for Buck-Boost converter combining KY and Buck converter

The Feedback PI controller for Buck-Boost converter combining KY and Buck converter olume 2, Issue 2 July 2013 114 RESEARCH ARTICLE ISSN: 2278-5213 The Feedback PI controller for Buck-Boost converter combining KY and Buck converter K. Sreedevi* and E. David Dept. of electrical and electronics

More information

Analysis and Simulation of Full-Bridge Boost Converter using Matlab

Analysis and Simulation of Full-Bridge Boost Converter using Matlab 64 Analysis and Simulation of Full-Bridge Boost Converter using Matlab O. Alavi, and S. Dolatabadi Abstract Improvement of high power and high performance applications causes attention to the DC-DC converter

More information

ON THE TRANSIENTS OPTIMIZATION AND THE POWER FACTOR CORRECTION OF THE STATIC CONVERTERS

ON THE TRANSIENTS OPTIMIZATION AND THE POWER FACTOR CORRECTION OF THE STATIC CONVERTERS U.P.B. Sci. Bull., Series C, Vol. 70, No. 1, 2008 ISSN 1454-234x ON THE TRANSIENTS OPTIMIZATION AND THE POWER FACTOR CORRECTION OF THE STATIC CONVERTERS N. FULGA 1, M. O. POPESCU 2, Claudia POPESCU 3 Obiectivul

More information

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org) A High Power Density Single Phase Pwm Rectifier with Active Ripple Energy Storage A. Guruvendrakumar 1 and Y. Chiranjeevi 2 1 Student (Power Electronics), EEE Department, Sathyabama University, Chennai,

More information

Soft Switched Resonant Converters with Unsymmetrical Control

Soft Switched Resonant Converters with Unsymmetrical Control IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 1 Ver. I (Jan Feb. 2015), PP 66-71 www.iosrjournals.org Soft Switched Resonant Converters

More information

Conventional Single-Switch Forward Converter Design

Conventional Single-Switch Forward Converter Design Maxim > Design Support > Technical Documents > Application Notes > Amplifier and Comparator Circuits > APP 3983 Maxim > Design Support > Technical Documents > Application Notes > Power-Supply Circuits

More information

Advances in Averaged Switch Modeling

Advances in Averaged Switch Modeling Advances in Averaged Switch Modeling Robert W. Erickson Power Electronics Group University of Colorado Boulder, Colorado USA 80309-0425 rwe@boulder.colorado.edu http://ece-www.colorado.edu/~pwrelect 1

More information

High Voltage-Boosting Converter with Improved Transfer Ratio

High Voltage-Boosting Converter with Improved Transfer Ratio Electrical and Electronic Engineering 2017, 7(2): 28-32 DOI: 10.5923/j.eee.20170702.04 High Voltage-Boosting Converter with Improved Transfer Ratio Rahul V. A. *, Denita D Souza, Subramanya K. Department

More information

Analysis of Utility Interactive Photovoltaic Generation System using a Single Power Static Inverter

Analysis of Utility Interactive Photovoltaic Generation System using a Single Power Static Inverter Asian J. Energy Environ., Vol. 5, Issue 2, (2004), pp. 115-137 Analysis of Utility Interactive Photovoltaic Generation System using a Single Power Static Inverter D. C. Martins*, R. Demonti, A. S. Andrade

More information

A High Voltage Gain DC-DC Boost Converter for PV Cells

A High Voltage Gain DC-DC Boost Converter for PV Cells Global Science and Technology Journal Vol. 3. No. 1. March 2015 Issue. Pp. 64 76 A High Voltage Gain DC-DC Boost Converter for PV Cells Md. Al Muzahid*, Md. Fahmi Reza Ansari**, K. M. A. Salam*** and Hasan

More information

Fig.1. A Block Diagram of dc-dc Converter System

Fig.1. A Block Diagram of dc-dc Converter System ANALYSIS AND SIMULATION OF BUCK SWITCH MODE DC TO DC POWER REGULATOR G. C. Diyoke Department of Electrical and Electronics Engineering Michael Okpara University of Agriculture, Umudike Umuahia, Abia State

More information

DC/DC Converters for High Conversion Ratio Applications

DC/DC Converters for High Conversion Ratio Applications DC/DC Converters for High Conversion Ratio Applications A comparative study of alternative non-isolated DC/DC converter topologies for high conversion ratio applications Master s thesis in Electrical Power

More information

High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit

High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit RESEARCH ARTICLE OPEN ACCESS High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit C. P. Sai Kiran*, M. Vishnu Vardhan** * M-Tech (PE&ED) Student, Department of EEE, SVCET,

More information

Design of a Wide Input Range DC-DC Converter Suitable for Lead-Acid Battery Charging

Design of a Wide Input Range DC-DC Converter Suitable for Lead-Acid Battery Charging ENGINEER - Vol. XXXXIV, No. 04, pp, [47-53], 2011 The Institution of Engineers, Sri Lanka Design of a Wide Input Range DC-DC Converter Suitable for Lead-Acid Battery Charging M.W.D.R. Nayanasiri and J.A.K.S.Jayasinghe,

More information

ANALYSIS OF SINGLE-PHASE Z-SOURCE INVERTER 1

ANALYSIS OF SINGLE-PHASE Z-SOURCE INVERTER 1 ANALYSIS OF SINGLE-PHASE Z-SOURCE INVERTER 1 K. N. Madakwar, 2 Dr. M. R. Ramteke VNIT-Nagpur Email: 1 kapil.madakwar@gmail.com, 2 mrr_vrce@rediffmail.com Abstract: This paper deals with the analysis of

More information

ZCS-PWM Converter for Reducing Switching Losses

ZCS-PWM Converter for Reducing Switching Losses IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 1 Ver. III (Jan. 2014), PP 29-35 ZCS-PWM Converter for Reducing Switching Losses

More information

Modeling and Stability Analysis of a New Transformer less Buck-Boost Converter for Solar Energy Application

Modeling and Stability Analysis of a New Transformer less Buck-Boost Converter for Solar Energy Application ISSN (Online 2395-2717 Engineering (IJEREEE Modeling and Stability Analysis of a New Transformer less Buck-Boost Converter for Solar Energy Application [1] V.Lalitha, [2] V.Venkata Krishna Reddy [1] PG

More information

MICROCONTROLLER BASED BOOST PID MUNAJAH BINTI MOHD RUBAEE

MICROCONTROLLER BASED BOOST PID MUNAJAH BINTI MOHD RUBAEE MICROCONTROLLER BASED BOOST PID MUNAJAH BINTI MOHD RUBAEE This thesis is submitted as partial fulfillment of the requirement for the award of Bachelor of Electrical Engineering (Power System) Faculty of

More information

In association with International Journal Scientific Research in Science and Technology

In association with International Journal Scientific Research in Science and Technology 1st International Conference on Applied Soft Computing Techniques 22 & 23.04.2017 In association with International Journal of Scientific Research in Science and Technology Design and implementation of

More information

Getting the Most From Your Portable DC/DC Converter: How To Maximize Output Current For Buck And Boost Circuits

Getting the Most From Your Portable DC/DC Converter: How To Maximize Output Current For Buck And Boost Circuits Getting the Most From Your Portable DC/DC Converter: How To Maximize Output Current For Buck And Boost Circuits Upal Sengupta, Texas nstruments ABSTRACT Portable product design requires that power supply

More information

A Feedback Resonant LED Driver with Capacitive Power Transfer for Lighting Applications

A Feedback Resonant LED Driver with Capacitive Power Transfer for Lighting Applications A Feedback Resonant LED Driver with Capacitive Power Transfer for Lighting Applications Shreedhar Mullur 1, B.P. Harish 2 1 PG Scholar, 2 Associate Professor, Department of Electrical Engineering, University

More information

1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside

1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside Highlights of the Chapter 4 1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside voltage. Some industry-generated papers recommend

More information

Designing buck chopper converter by sliding mode technique

Designing buck chopper converter by sliding mode technique International Research Journal of Applied and Basic Sciences 2014 Available online at www.irjabs.com ISSN 2251-838X / Vol, 8 (9): 1289-1296 Science Explorer Publications Designing buck chopper converter

More information

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 3 Ver. IV (May June 2017), PP 68-76 www.iosrjournals.org Sepic Topology Based High

More information

Development of Hybrid MPPT Algorithm for Maximum Power Harvesting under Partial Shading Conditions

Development of Hybrid MPPT Algorithm for Maximum Power Harvesting under Partial Shading Conditions Circuits and Systems, 206, 7, 6-622 Published Online June 206 in SciRes. http://www.scirp.org/journal/cs http://dx.doi.org/0.4236/cs.206.7840 Development of Hybrid MPPT Algorithm for Maximum Power Harvesting

More information

Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications

Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications Ranjan Sharma Technical University of Denmark ransharma@gmail.com Tonny

More information

A Single Switch DC-DC Converter for Photo Voltaic-Battery System

A Single Switch DC-DC Converter for Photo Voltaic-Battery System A Single Switch DC-DC Converter for Photo Voltaic-Battery System Anooj A S, Lalgy Gopi Dept Of EEE GEC, Thrissur ABSTRACT A photo voltaic-battery powered, single switch DC-DC converter system for precise

More information

Design and Implementation of Photovoltaic Inverter system using Multi-cell Interleaved Fly-back Topology

Design and Implementation of Photovoltaic Inverter system using Multi-cell Interleaved Fly-back Topology International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.14, pp 300-308, 2017 Design and Implementation of Photovoltaic Inverter system using Multi-cell

More information

CHAPTER 2 PHASE SHIFTED SERIES RESONANT DC TO DC CONVERTER

CHAPTER 2 PHASE SHIFTED SERIES RESONANT DC TO DC CONVERTER 30 CHAPTER 2 PHASE SHIFTED SERIES RESONANT DC TO DC CONVERTER 2.1 INTRODUCTION This chapter introduces the phase shifted series resonant converter (PSRC). Operation of the circuit is explained. Design

More information

CHAPTER 3 MODIFIED FULL BRIDGE ZERO VOLTAGE SWITCHING DC-DC CONVERTER

CHAPTER 3 MODIFIED FULL BRIDGE ZERO VOLTAGE SWITCHING DC-DC CONVERTER 53 CHAPTER 3 MODIFIED FULL BRIDGE ZERO VOLTAGE SWITCHING DC-DC CONVERTER 3.1 INTRODUCTION This chapter introduces the Full Bridge Zero Voltage Switching (FBZVSC) converter. Operation of the circuit is

More information

LED Driver Specifications

LED Driver Specifications Maxim > Design Support > Technical Documents > Reference Designs > Automotive > APP 4452 Maxim > Design Support > Technical Documents > Reference Designs > Display Drivers > APP 4452 Maxim > Design Support

More information

Research Article A New Capacitor-Less Buck DC-DC Converter for LED Applications

Research Article A New Capacitor-Less Buck DC-DC Converter for LED Applications Active and Passive Electronic Components Volume 17, Article ID 2365848, 5 pages https://doi.org/.1155/17/2365848 Research Article A New Capacitor-Less Buck DC-DC Converter for LED Applications Munir Al-Absi,

More information

Cal Poly SuPER System Photovoltaic Array Universal DC-DC Step Down Converter

Cal Poly SuPER System Photovoltaic Array Universal DC-DC Step Down Converter Cal Poly SuPER System Photovoltaic Array Universal DC-DC Step Down Converter A Thesis Presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the

More information

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER 1 Aravind Murali, 2 Mr.Benny.K.K, 3 Mrs.Priya.S.P 1 PG Scholar, 2 Associate Professor, 3 Assistant Professor Abstract - This paper proposes a highly efficient

More information

IN high-voltage/low-current applications, such as TV-

IN high-voltage/low-current applications, such as TV- IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO. 1, JANUARY 1999 177 A Three-Switch High-Voltage Converter Dongyan Zhou, Member, IEEE, Andzrej Pietkiewicz, and Slobodan Ćuk, Fellow, IEEE Abstract A

More information

A New 3-phase Buck-Boost Unity Power Factor Rectifier with Two Independently Controlled DC Outputs

A New 3-phase Buck-Boost Unity Power Factor Rectifier with Two Independently Controlled DC Outputs A New 3-phase Buck-Boost Unity Power Factor Rectifier with Two Independently Controlled DC Outputs Y. Nishida* 1, J. Miniboeck* 2, S. D. Round* 2 and J. W. Kolar* 2 * 1 Nihon University Energy Electronics

More information

Chapter 2 Buck PWM DC DC Converter

Chapter 2 Buck PWM DC DC Converter Chapter 2 Buck PWM DC DC Converter H. Wang, Power Management and High-speed I/O in CMOS Systems 1/25 Buck Circuit and Its equivalent circuits CCM: continuous conduction mode DCM: discontinuous conduction

More information

International Journal of Engineering Science Invention Research & Development; Vol. II Issue VIII February e-issn:

International Journal of Engineering Science Invention Research & Development; Vol. II Issue VIII February e-issn: ANALYSIS AND DESIGN OF SOFT SWITCHING BASED INTERLEAVED FLYBACK CONVERTER FOR PHOTOVOLTAIC APPLICATIONS K.Kavisindhu 1, P.Shanmuga Priya 2 1 PG Scholar, 2 Assistant Professor, Department of Electrical

More information

Maximum Power Extraction from A Small Wind Turbine Using 4-phase Interleaved Boost Converter

Maximum Power Extraction from A Small Wind Turbine Using 4-phase Interleaved Boost Converter Maximum Power Extraction from A Small Wind Turbine Using 4-phase Interleaved Boost Converter Liqin Ni Email: liqin.ni@huskers.unl.edu Dean J. Patterson Email: patterson@ieee.org Jerry L. Hudgins Email:

More information

Performance Evaluation of Conventional Controller for Positive Output Re Lift LUO Converter

Performance Evaluation of Conventional Controller for Positive Output Re Lift LUO Converter Performance Evaluation of Conventional Controller for Positive Output Re Lift LUO Converter Sivakumar.A 1, Ajin Sekhar.S.C, Ronal Marian.A 3,Sasikumar.M 4 P.G.Scholar, Dept of Power Electronics and Drives,

More information

Single Phase Bridgeless SEPIC Converter with High Power Factor

Single Phase Bridgeless SEPIC Converter with High Power Factor International Journal of Emerging Engineering Research and Technology Volume 2, Issue 6, September 2014, PP 117-126 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Single Phase Bridgeless SEPIC Converter

More information

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application Thomas Mathew.T PG Student, St. Joseph s College of Engineering, C.Naresh, M.E.(P.hd) Associate Professor, St.

More information

A Bidirectional Series-Resonant Converter For Energy Storage System in DC Microgrids

A Bidirectional Series-Resonant Converter For Energy Storage System in DC Microgrids IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 PP 01-09 www.iosrjen.org A Bidirectional Series-Resonant Converter For Energy Storage System in DC Microgrids Limsha T M 1,

More information

EXPERIMENT 4 SWITCHED MODE DC/DC CONVERSION USING BUCK CONVERTER

EXPERIMENT 4 SWITCHED MODE DC/DC CONVERSION USING BUCK CONVERTER Introduction: YEDITEPE UNIERSITY ENGINEERING & ARHITETURE FAULTY INDUSTRIAL ELETRONIS LABORATORY EE 432 INDUSTRIAL ELETRONIS EXPERIMENT 4 SWITHED MODE D/D ONERSION USING BUK ONERTER In this experiment,

More information

Impact of inductor current ringing in DCM on output voltage of DC-DC buck power converters

Impact of inductor current ringing in DCM on output voltage of DC-DC buck power converters ARCHIVES OF ELECTRICAL ENGINEERING VOL. 66(2), pp. 313-323 (2017) DOI 10.1515/aee-2017-0023 Impact of inductor current ringing in DCM on output voltage of DC-DC buck power converters MARCIN WALCZAK Department

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 6.3.5. Boost-derived isolated converters A wide variety of boost-derived isolated dc-dc converters

More information

Chapter 6 Soft-Switching dc-dc Converters Outlines

Chapter 6 Soft-Switching dc-dc Converters Outlines Chapter 6 Soft-Switching dc-dc Converters Outlines Classification of soft-switching resonant converters Advantages and disadvantages of ZCS and ZVS Zero-current switching topologies The resonant switch

More information

CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM

CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM 52 CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM 3.1 INTRODUCTION The power electronics interface, connected between a solar panel and a load or battery bus, is a pulse width modulated

More information

SIMULATION WITH THE BOOST TOPOLOGY ECE562: Power Electronics I COLORADO STATE UNIVERSITY. Modified in Fall 2011

SIMULATION WITH THE BOOST TOPOLOGY ECE562: Power Electronics I COLORADO STATE UNIVERSITY. Modified in Fall 2011 SIMULATION WITH THE BOOST TOPOLOGY ECE562: Power Electronics I COLORADO STATE UNIVERSITY Modified in Fall 2011 ECE 562 Boost Converter (NL5 Simulation) Laboratory 2 Page 1 PURPOSE: The purpose of this

More information

DESIGN AND IMPLEMENTATION OF SOLAR POWERED WATER PUMPING SYSTEM

DESIGN AND IMPLEMENTATION OF SOLAR POWERED WATER PUMPING SYSTEM DESIGN AND IMPLEMENTATION OF SOLAR POWERED WATER PUMPING SYSTEM P. Nisha, St.Joseph s College of Engineering, Ch-119 nishasjce@gmail.com,ph:9940275070 Ramani Kalpathi, Professor, St.Joseph s College of

More information

ANALYSIS OF ZVT DC-DC BUCK-BOOST CONVERTER

ANALYSIS OF ZVT DC-DC BUCK-BOOST CONVERTER ANALYSIS OF ZVT DC-DC BUCK-BOOST CONVERTER Rahul C R Department of EEE M A College of Engineering, Kerala, India Prof. Veena Mathew Department of EEE M A College of Engineering, Kerala, India Prof. Geethu

More information

Chapter 4 SOFT SWITCHED PUSH-PULL CONVERTER WITH OUTPUT VOLTAGE DOUBLER

Chapter 4 SOFT SWITCHED PUSH-PULL CONVERTER WITH OUTPUT VOLTAGE DOUBLER 61 Chapter 4 SOFT SWITCHED PUSH-PULL CONVERTER WITH OUTPUT VOLTAGE DOUBLER S.No. Name of the Sub-Title Page No. 4.1 Introduction 62 4.2 Single output primary ZVS push-pull Converter 62 4.3 Multi-Output

More information

A novel circuit topology of modified switched boost hybrid resonant inverter fitted induction heating equipment

A novel circuit topology of modified switched boost hybrid resonant inverter fitted induction heating equipment AHIVE OF EETIA ENGINEEING VO. 654, pp. 815-86 016 DOI 10.1515/aee-016-0057 A novel circuit topology of modified switched boost hybrid resonant inverter fitted induction heating equipment ANANYO BHATTAHAYA,

More information

Figure.1. Block of PV power conversion system JCHPS Special Issue 8: June Page 89

Figure.1. Block of PV power conversion system JCHPS Special Issue 8: June Page 89 Soft Switching Converter with High Voltage Gain for Solar Energy Applications S. Hema*, A. Arulmathy,V. Saranya, S. Yugapriya Department of EEE, Veltech, Chennai *Corresponding author: E-Mail: hema@veltechengg.com

More information

CONTENTS. Chapter 1. Introduction to Power Conversion 1. Basso_FM.qxd 11/20/07 8:39 PM Page v. Foreword xiii Preface xv Nomenclature

CONTENTS. Chapter 1. Introduction to Power Conversion 1. Basso_FM.qxd 11/20/07 8:39 PM Page v. Foreword xiii Preface xv Nomenclature Basso_FM.qxd 11/20/07 8:39 PM Page v Foreword xiii Preface xv Nomenclature xvii Chapter 1. Introduction to Power Conversion 1 1.1. Do You Really Need to Simulate? / 1 1.2. What You Will Find in the Following

More information

Analysis and Design of Soft Switched DC-DC Converters for Battery Charging Application

Analysis and Design of Soft Switched DC-DC Converters for Battery Charging Application ISSN (Online) : 239-8753 ISSN (Print) : 2347-67 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 24 24 International Conference on Innovations

More information

Improved Battery Charger Circuit Utilizing Reduced DC-link Capacitors

Improved Battery Charger Circuit Utilizing Reduced DC-link Capacitors Improved Battery Charger Circuit Utilizing Reduced DC-link Capacitors Vencislav Valchev 1, Plamen Yankov 1, Orlin Stanchev 1 1 Department of Electronics and Microelectronics, Technical University of Varna,

More information

PERFORMANCE ANALYSIS OF 2D CONVERTER BY COMBINING SR & KY CONVERTERS

PERFORMANCE ANALYSIS OF 2D CONVERTER BY COMBINING SR & KY CONVERTERS RESEARCH ARTICLE OPEN ACCESS PERFORMANCE ANALYSIS OF 2D CONVERTER BY COMBINING SR & KY CONVERTERS V. Manoj Kumar 1, G.V.S.S.N.S. Sarma 2 M. Tech (P.E), Dept. of EEE, Aurora s Engineering College, Bhongir,

More information

ZERO VOLTAGE TRANSITION SYNCHRONOUS RECTIFIER BUCK CONVERTER

ZERO VOLTAGE TRANSITION SYNCHRONOUS RECTIFIER BUCK CONVERTER International Journal of Electrical and Electronics Engineering Research (IJEEER) ISSN(P): 225-155X; ISSN(E): 2278-943X Vol. 4, Issue 3, Jun 214, 75-84 TJPRC Pvt. Ltd. ZERO VOLTAGE TRANSITION SYNCHRONOUS

More information

PV MICROINVERTER TOPOLOGY USING SOFT SWITCHING HALF- WAVE CYCLOCONVERTER

PV MICROINVERTER TOPOLOGY USING SOFT SWITCHING HALF- WAVE CYCLOCONVERTER PV MICROINVERTER TOPOLOGY USING SOFT SWITCHING HALF- WAVE CYCLOCONVERTER S. Divya 1, K. Abarna 1 and M. Sasikumar 2 1 Power Electronics and Drives, Jeppiaar Engineering College, Chennai, India 2 Department

More information

Design of a Fast and Non-Dissipative Equalization Method for Li-ion Battery Pack Tao yin-jiao1, a, Chen hai-jin1, b,*

Design of a Fast and Non-Dissipative Equalization Method for Li-ion Battery Pack Tao yin-jiao1, a, Chen hai-jin1, b,* 5th International onference on Advanced Materials and omputer Science (IAMS 2016) Design of a Fast and Non-Dissipative Equalization Method for Li-ion Battery Pack Tao yin-jiao1, a, hen hai-jin1, b,* 1

More information

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SIENES & RESEARH TEHNOLOGY Analysis and Implementation of Efficient BLD Motor Drive with Different onverter Systems Angeline Jayachandran *1, Mrs. G.R.P Lakshmi

More information

PSIM Simulation of a Buck Boost DC-DC Converter with Wide Conversion Range

PSIM Simulation of a Buck Boost DC-DC Converter with Wide Conversion Range PSIM Simulation of a Buck Boost DC-DC Converter with Wide Conversion Range Savitha S Department of EEE Adi Shankara Institute of Engineering and Technology Kalady, Kerala, India Vibin C Thomas Department

More information

3.1 ignored. (a) (b) (c)

3.1 ignored. (a) (b) (c) Problems 57 [2] [3] [4] S. Modeling, Analysis, and Design of Switching Converters, Ph.D. thesis, California Institute of Technology, November 1976. G. WESTER and R. D. MIDDLEBROOK, Low-Frequency Characterization

More information