Microwave Characterization and Modeling of Multilayered Cofired Ceramic Waveguides

Size: px
Start display at page:

Download "Microwave Characterization and Modeling of Multilayered Cofired Ceramic Waveguides"

Transcription

1 Microwave Characterization and Modeling of Multilayered Cofired Ceramic Waveguides Microwave Characterization and Modeling of Multilayered Cofired Ceramic Waveguides Daniel Stevens and John Gipprich Northrop Grumman Corporation Electronic Sensors and Systems Division P.O. Box 1521, MS 3K11 Baltimore, Maryland Phone: Fax: Abstract This paper examines, with the aid of an Electromagnetic (EM) Field Solver (High Frequency Structure Simulator, HFSS 1 ) the performance of via sidewall rectangular waveguide structures in a cofired ceramic substrate, and compares the modeled results to the modeled performance of a conventional solid conductor waveguide. The comparisons are made on the basis of insertion loss, reflection loss, and waveguide cutoff frequency. In addition, HFSS simulations were performed to determine the crosstalk between two adjacent waveguides that share a common metal via fence sidewall, as well as two adjacent waveguides with separate, closely spaced, via sidewalls. In order to facilitate testing, a transition from stripline to cofired ceramic waveguide was developed. Finally, the authors present measured results of a via sidewall rectangular waveguide structure fabricated as a Low Temperature Cofired Ceramic (LTCC) substrate, which demonstrate very good agreement with the modeled performance. Key words: Waveguide, W/G resonators, X-band, LTCC, and EM Simulation. 1. Introduction Cofired ceramics have found increasing acceptance in the packaging of various microwave integrated circuits. One reason for this increased usage is that the electrical properties of cofired ceramics have reached the point that microwave transmission lines and other planar microwave structures (such as couplers and filters) can be fabricated with reasonably low Radio Frequency (RF) losses. Due to the way cofired ceramics are processed and fabricated, these microwave transmission line circuits and structures have been limited primarily to planar configurations. These structures are typically realized as strip transmission lines, such as microstrip lines, coplanar waveguides, and buried striplines. However, the RF losses of these strip transmission lines, while reaching tolerable levels, are still much higher than that of most traditional microwave substrates (such as Duroid 2 and ceramics). In this paper, the researchers investigate the feasibility of using waveguide structures in cofired ceramics since such structures, due to their wider conductors, offer lower RF losses than strip transmission lines, particularly at higher microwave and millimeter wave frequencies. This difference in loss becomes even more significant for applications requiring a small ground plane spacing. Figure 1 shows a comparison of rectangular waveguide and 50 ohm stripline loss for various ground plane spacings. 43

2 Intl. Journal of Microcircuits and Electronic Packaging 1.2 Freq=10 GHz, ger=6, r=6, Tand=0.002, Rho= Stripline 0.2 Waveguide Figure 1. Loss (db/in) vs ground plane spacing (mils). Figure 2B. Simulation of solid conductor W/G. 2. Conventional Rectangular Waveguide Conventional rectangular waveguide 3 consists of four solid conductor walls, a top and a bottom conductor, and two vertical sidewall conductors. A typical rectangular waveguide, of horizontal dimension A, vertical dimension B, and length L, is shown in Figure 2A. A ceramic filled waveguide of g r = 6.1, A = 0.25, B = 0.10, and L = 0.70 has a cutoff frequency for the dominant TE 10 mode of 9.6 GHz, allowing propagation of Ku Band frequencies (12-18 GHz) with minimal RF losses. The next higher order mode, the TE 20, is cutoff for frequencies below 19.3 GHz. Figure 2B shows an EM simulation of the frequency response of a solid conductor waveguide with these dimensions. B L 3. Cofired Ceramic Rectangular Waveguide A rectangular waveguide may be constructed in cofired ceramic with two parallel planar conductors serving as the top and the bottom waveguide conductors, connected together with two metal filled via fences that serve as the sidewalls of the waveguide. Figure 3A shows this construction. If the spacing of the vias within the via fence is less than the 1/10 of the guide wavelength, then a negligible amount of the RF signal escapes the guide structure, resulting in low RF transmission losses. If the via spacings are too large, then a significant potential difference can develop across adjacent vias resulting in radiation outside the guide structure. Figure 3B shows an EM simulation of the frequency response of the via sidewall waveguide with g r = 6.1, A = 0.25, B = 0.10, and L = The via diameter is and the via spacing within the via fence is 0.03 (center to center), or approximately 1/10 the guide wavelength. The frequency response of the via sidewall waveguide agrees closely with that of the solid sidewall waveguide of Figure 2B. It was found that a spacing of 0.25" between the inside edges of the sidewall via fences produced the same cutoff frequency as the solid conductor waveguide. A Figure 2A. Solid conductor waveguide model. Figure 3A. Via sidewall waveguide model. 44

3 Microwave Characterization and Modeling of Multilayered Cofired Ceramic Waveguides The simulation for Figure 3A used radiation boundaries placed at the outer sides of the ceramic substrate in order to absorb any signal energy escaping the waveguide structure. Figure 3C shows a plot of the magnitude of the electric field as the wave propagates along the guide. It can be seen that the fields are well contained by the via fence sidewalls. copper. Figure 4A shows the model of the solid sidewall waveguide resonator, and Figure 4B shows the resonant response. Figure 4A. Solid wall W/G resonator model. Figure 3B. Simulation of via sidewall W/G. Figure 4B. Solid wall W/G resonator simulation. Figures 5A and 5B show the model and response of the via sidewall waveguide resonator using diameter vias spaced 0.02 apart. An additional set of simulations were also performed to the above parameters except with a reduced waveguide height, B, of 0.02". Figure 3C. E of via sidewall waveguide. 4. Via Sidewall Rectangular Waveguide RF Losses In order to quantify the effect of a via sidewalls on the RF losses of a cofired ceramic waveguide, a half-wavelength resonator4 was characterized for a solid conductor waveguide and the via sidewall waveguide. The resonators were designed for a resonant frequency of 10 GHz using A = 0.36", B = 0.18", gr = 6.1, and an iris spacing of 0.32". The iris opening selected was 0.04". The simulation used a dielectric loss of and a metal resistivity three times that of Figure 5A. Via sidewall W/G resonator model. 45

4 Intl. Journal of Microcircuits and Electronic Packaging 5. Crosstalk Between Two Adjacent Waveguides Figure 5B. Via sidewall W/G resonator simulation. Table 1 summarizes the resonator simulation results, including the resonant frequency, the 3dB bandwidth, the loss, the unloaded Q, and the attenuation in db/inch. Equations (1) and (2) were used for the calculation of unloaded Q and attenuation. From Table 1, it can be seen that the via sidewalls add little, if any, to the RF losses for vias spaced less than one-tenth the guide wavelength. In this Table, Tand = 0.002, and Rho = 3 copper. Crosstalk between adjacent transmission lines is an important issue for RF assemblies packaged in cofired ceramics. The ability to obtain at least 40 db of isolation is frequently necessary for many applications. For strip transmission lines, it is common practice to enclose RF signal conductors within via fences, or to place a via fence between two adjacent conductors, in order to provide the needed isolation. For even higher isolation, a double via fence can be used, as well as separating adjacent conductors electrically far apart to reduce coupling. The HFSS model shown in Figure 6A was examined to determine the crosstalk between adjacent waveguide structures using a common via fence sidewall. This waveguide has dimensions of A = 0.25", B = 0.10", a length of 0.50" and an g r = 6.1. The via diameter is 0.006" and via spacings of 0.02, 0.04 and 0.06 were simulated. Table 1. Summary of waveguide resonator simulation results. Wall type B dim. F RES, GHz B 3dB, MHz Fc Q U Atten (db/in) Solid Via Solid Via Q U =Q L /(1- S 21 ) (1) Figure 6A. Common via sidewall crosstalk model. where Q L =F RES /B 3dB and Attenuation = 8.686p / Q U L, (in db per unit length) (2) Figure 5C shows the loss of the waveguide for various spacing of the vias used to construct the waveguide sidewalls for an X-band structure. It can be readily seen that a via spacing up to 30 mils (center to center) provides similar loss to a solid sidewall waveguide (that is a spacing = 0 mils). Figure 6B. Common via fence crosstalk simulation. Figure 7A shows a similar model except it uses two separate via fences, separated 0.02" apart, between the adjacent waveguides. Simulation results are shown in Figures 6B and 7B, for the common via sidewall and the separate via sidewall models, respectively. For a 0.02 via spacing, the common via fence sidewall provides approximately Figure 5C. W/G loss vs sidewall via spacing. The International Journal of Microcircuits and Electronic Packaging, Volume 22, 50 Number db isolation 1, First between Quarter adjacent 1999 (ISSN waveguides ) while 46

5 Microwave Characterization and Modeling of Multilayered Cofired Ceramic Waveguides the separate via fence sidewall provides approximately 80 db isolation 5. Figure 8A. Stripline to W/G transition model. Figure 7A. Separate via sidewall crosstalk model. The height of the top quarterwave waveguide was subsequently increased to B = 0.05" in order to raise its impedance and thereby minimize its effect on the frequency response of the matched transition. Figure 8B shows the response of the matched transition. Figure 7B. Separate via fence crosstalk simulation. Figure 8B. Stripline to W/G transition model. 6. Cofired Ceramic Waveguide Prototype A stripline to waveguide transition was designed to facilitate testing of a via sidewall waveguide structure. A waveguide height of B = 0.011" was chosen since it would provide a sufficiently high loss that could be accurately measured. An E-plane probe transition was attempted, however this proved very unefficient in coupling to the reduced height waveguide. Instead, an end-feed transition from stripline to waveguide was developed. In this transition, the stripline conductor is connected directly to the common center conductor of two stacked waveguides. Figure 8A shows the stripline to waveguide transition. If the stripline ground plane spacing is made equal to twice the waveguide height, then the ground plane step discontinuity at the stripline to waveguide junction is eliminated. In order to couple the signal into the lower waveguide, a short was placed in the top waveguide a quarter of the guide wavelength from the stripline to waveguide junction. A prototype via sidewall rectangular waveguide was fabricated in Low Temperature Cofired Ceramic (LTCC) in order to validate the performance of the proposed waveguide structure. A rectangular waveguide with dimensions A = 0.36" and B = 0.011" was built using 0.006" diameter vias spaced 0.02" apart for the sidewalls. Figure 9A shows the layout of the LTCC test substrate used for the prototype waveguide. The test circuit is a length of reduced height waveguide 2.0 inches long with two transitions to stripline at each end. Figure 9A. Prototype LTCC W/G w/transitions. 47

6 Intl. Journal of Microcircuits and Electronic Packaging Figure 9B shows the simulated performance and Figure 9C shows the measured response. The measured insertion loss is less than db over an 8.0 to 12.0 GHz frequency band and measured -1.2 db at 10 GHz. This value agrees closely to the simulated value of db based on the material properties of the LTCC material. References 1. High Frequency Structure Simulator (HFSS), Hewlett Packard Company, Westlake, California. 2. Duroid, Rogers Corp., Chandler, Arizona. 3. Samuel Laio, Microwave Devices and Circuits, pp , Prentice Hall, G. L. Mathaei, L. Young, and E.M.T Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures, pg. 243, Artech House, Dedham, Massachusetts, H. Uchimura, T. Takenoshita, and M. Fuji, Development of the Laminated Waveguide, IEEE MTT-S Digest, pp , About the authors Figure 9B. Prototype LTCC W/G simulation. S21 S11, S22 Daniel Stevens received his B.S. Degree from the Georgia Institute of Technology in He joined the Westinghouse Electric Corporation in Baltimore, Maryland in 1983, where he has worked in the area of high power solid state microwave transmitter design for airborne radar applications. In 1996, he joined Northrop Grumman s Electronic Sensors and Systems Division in Baltimore as a Senior engineer and is currently involved in the active aperture T/R module development Group. Figure 9C. Measured data for prototype W/G. 7. Summary and Conclusion Based on the results of the modeled and measured performance, the researchers have concluded that the waveguide structure with via fences serving as sidewalls is an acceptable alternate transmission line structure to strip transmission lines for cofired ceramic substrates. These waveguide structures can be embedded into multilayer cofired ceramic assemblies without significant crosstalk, and efficiently transitioned to other transmission line structures. In addition, these waveguide structures, due to relatively wider conductor widths, result in lower RF losses when compared to strip transmission lines with similar ground plane spacing. Similar results have been recently reported 5 for higher frequency waveguide structures. John Gipprich joined Westinghouse Electric Corporation in Baltimore, Maryland in 1959, as a participant in the Westinghouse/Johns Hopkins Work Study Program. He received his B. S. and M. S. Degrees in Electrical Engineering from Johns Hopkins University, in 1965 and 1971, respectively. Since 1963, Mr. Gipprich has worked in the antenna and microwave areas and has been involved in microwave circuit and subsystems design. In 1996, he joined the Northrop Grumman Electronic Sensors and Systems Division in Baltimore. Currently, he is an Advisory engineer in the active aperture module engineering Department and is responsible for T/R module development and microwave multilayer cicuit designs. Mr. Gipprich is a member of IMAPS, IMAPS National Technical Committee, and IEEE/MTT-S. In 1987, he served as Chairman of the Baltimore IEEE AP-MT Chapter. 48

LENGTH REDUCTION OF EVANESCENT-MODE RIDGE WAVEGUIDE BANDPASS FILTERS

LENGTH REDUCTION OF EVANESCENT-MODE RIDGE WAVEGUIDE BANDPASS FILTERS Progress In Electromagnetics Research, PIER 40, 71 90, 2003 LENGTH REDUCTION OF EVANESCENT-MODE RIDGE WAVEGUIDE BANDPASS FILTERS T. Shen Advanced Development Group Hughes Network Systems Germantown, MD

More information

L-BAND COPLANAR SLOT LOOP ANTENNA FOR INET APPLICATIONS

L-BAND COPLANAR SLOT LOOP ANTENNA FOR INET APPLICATIONS L-BAND COPLANAR SLOT LOOP ANTENNA FOR INET APPLICATIONS Jeyasingh Nithianandam Electrical and Computer Engineering Department Morgan State University, 500 Perring Parkway, Baltimore, Maryland 5 ABSTRACT

More information

Designs of Substrate Integrated Waveguide (SIW) and Its Transition to Rectangular Waveguide. Ya Guo

Designs of Substrate Integrated Waveguide (SIW) and Its Transition to Rectangular Waveguide. Ya Guo Designs of Substrate Integrated Waveguide (SIW) and Its Transition to Rectangular Waveguide by Ya Guo A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements

More information

AN L-BAND TAPERED-RIDGE SIW-TO-CPW TRANSITION

AN L-BAND TAPERED-RIDGE SIW-TO-CPW TRANSITION J.N. Smith, Graduate Student Member IEEE, T. Stander, Senior Member IEEE University of Pretoria, Pretoria, South Africa e-mail: jamessmith@ieee.org; tinus.stander@ieee.org AN L-BAND TAPERED-RIDGE SIW-TO-CPW

More information

Efficient Band Pass Filter Design for a 25 GHz LTCC Multichip Module using Hybrid Optimization

Efficient Band Pass Filter Design for a 25 GHz LTCC Multichip Module using Hybrid Optimization Efficient Band Pass Filter Design for a 25 GHz LTCC Multichip Module using Hybrid Optimization W. Simon, R. Kulke, A. Lauer, M. Rittweger, P. Waldow, I. Wolff INSTITUTE OF MOBILE AND SATELLITE COMMUNICATION

More information

A Broadband GCPW to Stripline Vertical Transition in LTCC

A Broadband GCPW to Stripline Vertical Transition in LTCC Progress In Electromagnetics Research Letters, Vol. 60, 17 21, 2016 A Broadband GCPW to Stripline Vertical Transition in LTCC Bo Zhang 1, *,DongLi 1, Weihong Liu 1,andLinDu 2 Abstract Vertical transition

More information

Design of Compact Stacked-Patch Antennas in LTCC multilayer packaging modules for Wireless Applications

Design of Compact Stacked-Patch Antennas in LTCC multilayer packaging modules for Wireless Applications Design of Compact Stacked-Patch Antennas in LTCC multilayer packaging modules for Wireless Applications R. L. Li, G. DeJean, K. Lim, M. M. Tentzeris, and J. Laskar School of Electrical and Computer Engineering

More information

Broadband Rectangular Waveguide to GCPW Transition

Broadband Rectangular Waveguide to GCPW Transition Progress In Electromagnetics Research Letters, Vol. 46, 107 112, 2014 Broadband Rectangular Waveguide to GCPW Transition Jun Dong 1, *, Tao Yang 1, Yu Liu 1, Ziqiang Yang 1, and Yihong Zhou 2 Abstract

More information

THROUGHOUT the last several years, many contributions

THROUGHOUT the last several years, many contributions 244 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 6, 2007 Design and Analysis of Microstrip Bi-Yagi and Quad-Yagi Antenna Arrays for WLAN Applications Gerald R. DeJean, Member, IEEE, Trang T. Thai,

More information

with a Suspended Stripline Feeding

with a Suspended Stripline Feeding Wide Band and High Gain Planar Array with a Suspended Stripline Feeding Network N. Daviduvitz, U. Zohar and R. Shavit Dept. of Electrical and Computer Engineering Ben Gurion University i of the Negev,

More information

Practical Measurements of Dielectric Constant and Loss for PCB Materials at High Frequency

Practical Measurements of Dielectric Constant and Loss for PCB Materials at High Frequency 8 th Annual Symposium on Signal Integrity PENN STATE, Harrisburg Center for Signal Integrity Practical Measurements of Dielectric Constant and Loss for PCB Materials at High Frequency Practical Measurements

More information

A HIGH-POWER LOW-LOSS MULTIPORT RADIAL WAVEGUIDE POWER DIVIDER

A HIGH-POWER LOW-LOSS MULTIPORT RADIAL WAVEGUIDE POWER DIVIDER Progress In Electromagnetics Research Letters, Vol. 31, 189 198, 2012 A HIGH-POWER LOW-LOSS MULTIPORT RADIAL WAVEGUIDE POWER DIVIDER X.-Q. Li *, Q.-X. Liu, and J.-Q. Zhang School of Physical Science and

More information

Vol. 55 No. 7. Founded in 1958 mwjournal.com. July 2012

Vol. 55 No. 7. Founded in 1958 mwjournal.com. July 2012 Vol. 55 No. 7 Founded in 1958 mwjournal.com July 212 Comparing Microstrip and CPW Performance By building a better electromagnetic (EM) simulation model, which includes the effects of a PCB s metal surface

More information

Vol. 58 No. 7. July MVP NI AWR Design Environment. Founded in 1958

Vol. 58 No. 7. July MVP NI AWR Design Environment. Founded in 1958 Vol. 58 No. 7 July 215.com MVP NI AWR Design Environment Founded in 1958 98 MICROWAVE JOURNAL JULY 215 Managing Circuit Materials at mmwave Frequencies John Coonrod Rogers Corp., Chandler, Ariz. This article

More information

100 Genesys Design Examples

100 Genesys Design Examples [Type here] [Type here] [Type here] 100 Genesys Design Examples A Design Approach using (Genesys): Chapter 2: Transmission Line Components Ali Behagi 100 Genesys Design Examples A Design Approach using

More information

Measured Return Loss and Predicted Interference Level of PCB Integrated Filtering Antenna at Millimeter-Wave

Measured Return Loss and Predicted Interference Level of PCB Integrated Filtering Antenna at Millimeter-Wave JOURNAL OF THE KOREA ELECTROMAGNETIC ENGINEERING SOCIETY, VOL. 5, NO. 3, SEP. 2005 JKEES 2005-5-3-07 Measured Return Loss and Predicted Interference Level of PCB Integrated Filtering Antenna at Millimeter-Wave

More information

Introduction: Planar Transmission Lines

Introduction: Planar Transmission Lines Chapter-1 Introduction: Planar Transmission Lines 1.1 Overview Microwave integrated circuit (MIC) techniques represent an extension of integrated circuit technology to microwave frequencies. Since four

More information

EMDS for ADS Momentum

EMDS for ADS Momentum EMDS for ADS Momentum ADS User Group Meeting 2009, Böblingen, Germany Prof. Dr.-Ing. Frank Gustrau Gustrau, Dortmund User Group Meeting 2009-1 Univ. of Applied Sciences and Arts (FH Dortmund) Presentation

More information

Mm-wave characterisation of printed circuit boards

Mm-wave characterisation of printed circuit boards Mm-wave characterisation of printed circuit boards Dmitry Zelenchuk 1, Vincent Fusco 1, George Goussetis 1, Antonio Mendez 2, David Linton 1 ECIT Research Institute: Queens University of Belfast, UK 1

More information

Design and Matching of a 60-GHz Printed Antenna

Design and Matching of a 60-GHz Printed Antenna Application Example Design and Matching of a 60-GHz Printed Antenna Using NI AWR Software and AWR Connected for Optenni Figure 1: Patch antenna performance. Impedance matching of high-frequency components

More information

Benchmarking of LTCC Circuits up to 40GHz and Comparison with EM Simulation

Benchmarking of LTCC Circuits up to 40GHz and Comparison with EM Simulation CARTS Europe 28 2-23 October Helsinki, Finland Benchmarking of LTCC Circuits up to 4GHz and Comparison with EM Simulation D.E.J. Humphrey, B.Verner, V. Napijalo TDK Electronics Ireland 322 Lake Drive,

More information

Analysis of a Co-axial Fed Printed Antenna for WLAN Applications

Analysis of a Co-axial Fed Printed Antenna for WLAN Applications Analysis of a Co-axial Fed Printed Antenna for WLAN Applications G.Aneela 1, K.Sairam Reddy 2 1,2 Dept. of Electronics & Communication Engineering ACE Engineering College, Ghatkesar, Hyderabad, India.

More information

A Compact Band-selective Filter and Antenna for UWB Application

A Compact Band-selective Filter and Antenna for UWB Application PIERS ONLINE, VOL. 3, NO. 7, 7 153 A Compact Band-selective Filter and Antenna for UWB Application Yohan Jang, Hoon Park, Sangwook Jung, and Jaehoon Choi Department of Electrical and Computer Engineering,

More information

QUADRI-FOLDED SUBSTRATE INTEGRATED WAVEG- UIDE CAVITY AND ITS MINIATURIZED BANDPASS FILTER APPLICATIONS

QUADRI-FOLDED SUBSTRATE INTEGRATED WAVEG- UIDE CAVITY AND ITS MINIATURIZED BANDPASS FILTER APPLICATIONS Progress In Electromagnetics Research C, Vol. 23, 1 14, 2011 QUADRI-FOLDED SUBSTRATE INTEGRATED WAVEG- UIDE CAVITY AND ITS MINIATURIZED BANDPASS FILTER APPLICATIONS C. A. Zhang, Y. J. Cheng *, and Y. Fan

More information

Design, Optimization, Fabrication, and Measurement of an Edge Coupled Filter

Design, Optimization, Fabrication, and Measurement of an Edge Coupled Filter SYRACUSE UNIVERSITY Design, Optimization, Fabrication, and Measurement of an Edge Coupled Filter Project 2 Colin Robinson Thomas Piwtorak Bashir Souid 12/08/2011 Abstract The design, optimization, fabrication,

More information

The Effect of Radiation Losses on High Frequency PCB Performance. John Coonrod Rogers Corporation Advanced Circuit Materials Division

The Effect of Radiation Losses on High Frequency PCB Performance. John Coonrod Rogers Corporation Advanced Circuit Materials Division he Effect of adiation osses on High Frequency PCB Performance John Coonrod ogers Corporation Advanced Circuit Materials Division he Effect of adiation osses on High Frequency PCB Performance Basic concepts

More information

The Effects of PCB Fabrication on High-Frequency Electrical Performance

The Effects of PCB Fabrication on High-Frequency Electrical Performance The Effects of PCB Fabrication on High-Frequency Electrical Performance John Coonrod, Rogers Corporation Advanced Circuit Materials Division Achieving optimum high-frequency printed-circuit-board (PCB)

More information

Inset Fed Microstrip Patch Antenna for X-Band Applications

Inset Fed Microstrip Patch Antenna for X-Band Applications Inset Fed Microstrip Patch Antenna for X-Band Applications Pradeep H S Dept.of ECE, Siddaganga Institute of Technology, Tumakuru, Karnataka. Abstract Microstrip antennas play an important role in RF Communication.

More information

The Effects of PCB Fabrication on High-Frequency Electrical Performance

The Effects of PCB Fabrication on High-Frequency Electrical Performance As originally published in the IPC APEX EXPO Conference Proceedings. The Effects of PCB Fabrication on High-Frequency Electrical Performance John Coonrod, Rogers Corporation Advanced Circuit Materials

More information

Department of Electrical Engineering University of North Texas

Department of Electrical Engineering University of North Texas Name: Shabuktagin Photon Khan UNT ID: 10900555 Instructor s Name: Professor Hualiang Zhang Course Name: Antenna Theory and Design Course ID: EENG 5420 Email: khan.photon@gmail.com Department of Electrical

More information

Design and Simulation of a Quarter Wavelength Gap Coupled Microstrip Patch Antenna

Design and Simulation of a Quarter Wavelength Gap Coupled Microstrip Patch Antenna Design and Simulation of a Quarter Wavelength Gap Coupled Microstrip Patch Antenna Sanjay M. Palhade 1, S. P. Yawale 2 1 Department of Physics, Shri Shivaji College, Akola, India 2 Department of Physics,

More information

Improvement of Antenna Radiation Efficiency by the Suppression of Surface Waves

Improvement of Antenna Radiation Efficiency by the Suppression of Surface Waves Journal of Electromagnetic Analysis and Applications, 2011, 3, 79-83 doi:10.4236/jemaa.2011.33013 Published Online March 2011 (http://www.scirp.org/journal/jemaa) 79 Improvement of Antenna Radiation Efficiency

More information

Rectangular Patch Antenna to Operate in Flame Retardant 4 Using Coaxial Feeding Technique

Rectangular Patch Antenna to Operate in Flame Retardant 4 Using Coaxial Feeding Technique International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 3 (2017) pp. 399-407 Research India Publications http://www.ripublication.com Rectangular Patch Antenna to Operate

More information

Bandwidth Enhancement in Microstrip Rectangular Patch Antenna using Defected Ground plane

Bandwidth Enhancement in Microstrip Rectangular Patch Antenna using Defected Ground plane Bandwidth Enhancement in Microstrip Rectangular Patch Antenna using Defected Ground plane Sudarshan Kumar Jain Assistant Professor (Electronics & Communication) Jagannath University, Jaipur Abstract A

More information

Optimization of Wafer Level Test Hardware using Signal Integrity Simulation

Optimization of Wafer Level Test Hardware using Signal Integrity Simulation June 7-10, 2009 San Diego, CA Optimization of Wafer Level Test Hardware using Signal Integrity Simulation Jason Mroczkowski Ryan Satrom Agenda Industry Drivers Wafer Scale Test Interface Simulation Simulation

More information

Chapter 4 Transmission Line Transformers and Hybrids Introduction

Chapter 4 Transmission Line Transformers and Hybrids Introduction RF Electronics Chapter4: Transmission Line Transformers and Hybrids Page Chapter 4 Transmission Line Transformers and Hybrids Introduction s l L Figure. Transmission line parameters. For a transmission

More information

THE GENERALIZED CHEBYSHEV SUBSTRATE INTEGRATED WAVEGUIDE DIPLEXER

THE GENERALIZED CHEBYSHEV SUBSTRATE INTEGRATED WAVEGUIDE DIPLEXER Progress In Electromagnetics Research, PIER 73, 29 38, 2007 THE GENERALIZED CHEBYSHEV SUBSTRATE INTEGRATED WAVEGUIDE DIPLEXER Han S. H., Wang X. L., Fan Y., Yang Z. Q., and He Z. N. Institute of Electronic

More information

Three Dimensional Transmission Lines and Power Divider Circuits

Three Dimensional Transmission Lines and Power Divider Circuits Three Dimensional Transmission Lines and Power Divider Circuits Ali Darwish*, Amin Ezzeddine** *American University in Cairo, P.O. Box 74 New Cairo 11835, Egypt. Telephone 20.2.2615.3057 adarwish@aucegypt.edu

More information

Design a U-sloted Microstrip Antenna for Indoor and Outdoor Wireless LAN

Design a U-sloted Microstrip Antenna for Indoor and Outdoor Wireless LAN ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Design a U-sloted Microstrip Antenna for Indoor and Outdoor Wireless LAN 1 T.V. Padmavathy, 2 T.V. Arunprakash,

More information

A DUAL-PORTED, DUAL-POLARIZED SPHERICAL NEAR-FIELD PROBE

A DUAL-PORTED, DUAL-POLARIZED SPHERICAL NEAR-FIELD PROBE A DUAL-PORTED, DUAL-POLARIZED SPHERICAL NEAR-FIELD PROBE by J. R. Jones and D. P. Hardin Scientific-Atlanta, Inc. Spherical near-field testing of antennas requires the acquisition of a great volume of

More information

Design of Crossbar Mixer at 94 GHz

Design of Crossbar Mixer at 94 GHz Wireless Sensor Network, 2015, 7, 21-26 Published Online March 2015 in SciRes. http://www.scirp.org/journal/wsn http://dx.doi.org/10.4236/wsn.2015.73003 Design of Crossbar Mixer at 94 GHz Sanjeev Kumar

More information

Design and Simulation of Folded Arm Miniaturized Microstrip Low Pass Filter

Design and Simulation of Folded Arm Miniaturized Microstrip Low Pass Filter 813 Design and Simulation of Folded Arm Miniaturized Microstrip Low Pass 1 Inder Pal Singh, 2 Praveen Bhatt 1 Shinas College of Technology P.O. Box 77, PC 324, Shinas, Oman 2 Samalkha Group of Institutions,

More information

E-SHAPED STACKED BROADBAND PATCH ANTENNA

E-SHAPED STACKED BROADBAND PATCH ANTENNA International Journal of Electronics and Computer Science Engineering 278 Available Online at www.ijecse.org ISSN- 2277-1956 E-SHAPED STACKED BROADBAND PATCH ANTENNA Bharat Rochani 1, Rajesh Kumar Raj

More information

Effect of Open Stub Slots for Enhancing the Bandwidth of Rectangular Microstrip Antenna

Effect of Open Stub Slots for Enhancing the Bandwidth of Rectangular Microstrip Antenna International Journal of Electronics Engineering, 3 (2), 2011, pp. 221 226 Serials Publications, ISSN : 0973-7383 Effect of Open Stub Slots for Enhancing the Bandwidth of Rectangular Microstrip Antenna

More information

[Makrariya* et al., 5(8): August, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Makrariya* et al., 5(8): August, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY FIVE POLE OPTIMUM DISTRIBUTED HIGH PASS MICROWAVE FILTER: DESIGN ANALYSIS AND SIMULATION ON MICROSTRIP AT 2.4 GHZ Atul Makrariya*,

More information

High-Power Directional Couplers with Excellent Performance That You Can Build

High-Power Directional Couplers with Excellent Performance That You Can Build High-Power Directional Couplers with Excellent Performance That You Can Build Paul Wade W1GHZ 2010 w1ghz@arrl.net A directional coupler is used to sample the RF energy travelling in a transmission line

More information

IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 7, /$ IEEE

IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 7, /$ IEEE IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 7, 2008 369 Design and Development of a Novel Compact Soft-Surface Structure for the Front-to-Back Ratio Improvement and Size Reduction of a Microstrip

More information

A WIDEBAND RECTANGULAR MICROSTRIP ANTENNA WITH CAPACITIVE FEEDING

A WIDEBAND RECTANGULAR MICROSTRIP ANTENNA WITH CAPACITIVE FEEDING A WIDEBAND RECTANGULAR MICROSTRIP ANTENNA WITH CAPACITIVE FEEDING Hind S. Hussain Department of Physics, College of Science, Al-Nahrain University, Baghdad, Iraq E-Mail: hindalrawi@yahoo.com ABSTRACT A

More information

MODIFIED MILLIMETER-WAVE WILKINSON POWER DIVIDER FOR ANTENNA FEEDING NETWORKS

MODIFIED MILLIMETER-WAVE WILKINSON POWER DIVIDER FOR ANTENNA FEEDING NETWORKS Progress In Electromagnetics Research Letters, Vol. 17, 11 18, 2010 MODIFIED MILLIMETER-WAVE WILKINSON POWER DIVIDER FOR ANTENNA FEEDING NETWORKS F. D. L. Peters, D. Hammou, S. O. Tatu, and T. A. Denidni

More information

New Microstrip-to-CPS Transition for Millimeter-wave Application

New Microstrip-to-CPS Transition for Millimeter-wave Application New Microstrip-to-CPS Transition for Millimeter-wave Application Kyu Hwan Han 1,, Benjamin Lacroix, John Papapolymerou and Madhavan Swaminathan 1, 1 Interconnect and Packaging Center (IPC), SRC Center

More information

Planar Transmission Line Technologies

Planar Transmission Line Technologies Planar Transmission Line Technologies CMB Polarization Technology Workshop NIST/Boulder Edward J. Wollack Observational Cosmology Laboratory NASA Goddard Space Flight Center Greenbelt, Maryland Overview

More information

COMPACT DESIGN AND SIMULATION OF LOW PASS MICROWAVE FILTER ON MICROSTRIP TRANSMISSION LINE AT 2.4 GHz

COMPACT DESIGN AND SIMULATION OF LOW PASS MICROWAVE FILTER ON MICROSTRIP TRANSMISSION LINE AT 2.4 GHz International Journal of Management, IT & Engineering Vol. 7 Issue 7, July 2017, ISSN: 2249-0558 Impact Factor: 7.119 Journal Homepage: Double-Blind Peer Reviewed Refereed Open Access International Journal

More information

Antenna Theory and Design

Antenna Theory and Design Antenna Theory and Design Antenna Theory and Design Associate Professor: WANG Junjun 王珺珺 School of Electronic and Information Engineering, Beihang University F1025, New Main Building wangjunjun@buaa.edu.cn

More information

Modeling of a Patch- Antenna

Modeling of a Patch- Antenna Master Thesis Modeling of a Patch- Antenna by Yingbin Wu Supervised by Prof. Dr. -Ing. K. Solbach 24.05.2007 Content Introduction Modeling of disk-loaded monopoles Modeling of a Patch-Antenna Conclusion

More information

COMPACT PLANAR MICROSTRIP CROSSOVER FOR BEAMFORMING NETWORKS

COMPACT PLANAR MICROSTRIP CROSSOVER FOR BEAMFORMING NETWORKS Progress In Electromagnetics Research C, Vol. 33, 123 132, 2012 COMPACT PLANAR MICROSTRIP CROSSOVER FOR BEAMFORMING NETWORKS B. Henin * and A. Abbosh School of ITEE, The University of Queensland, QLD 4072,

More information

Designing Edge-coupled Microstrip Band-Pass Filters Using in Microwave Office TM

Designing Edge-coupled Microstrip Band-Pass Filters Using in Microwave Office TM Designing Edge-coupled Microstrip Band-Pass Filters Using in Microwave Office TM Peter Martin RFShop, 129 Harte St, Brisbane, Q4068, Australia Email: peter@rfshop.webcentral.com.au Microwave Office TM

More information

DESIGN AND ANALYSIS OF MICROSTRIP FED SLOT ANTENNA FOR SMALL SATELLITE APPLICATIONS

DESIGN AND ANALYSIS OF MICROSTRIP FED SLOT ANTENNA FOR SMALL SATELLITE APPLICATIONS I J I T E ISSN: 2229-7367 3(1-2), 2012, pp. 353-358 DESIGN AND ANALYSIS OF MICROSTRIP FED SLOT ANTENNA FOR SMALL SATELLITE APPLICATIONS ELAMARAN P. 1 & ARUN V. 2 1 M.E-Communication systems, Anna University

More information

A Review on Substrate Integrated Waveguide and its Microstrip Interconnect

A Review on Substrate Integrated Waveguide and its Microstrip Interconnect IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) ISSN: 2278-2834, ISBN: 2278-8735. Volume 3, Issue 5 (Sep. Oct.. 2012), PP 36-40 A Review on Substrate Integrated Waveguide and its

More information

Design of Microstrip Coupled Line Bandpass Filter Using Synthesis Technique

Design of Microstrip Coupled Line Bandpass Filter Using Synthesis Technique Design of Microstrip Coupled Line Bandpass Filter Using Synthesis Technique 1 P.Priyanka, 2 Dr.S.Maheswari, 1 PG Student, 2 Professor, Department of Electronics and Communication Engineering Panimalar

More information

Series Micro Strip Patch Antenna Array For Wireless Communication

Series Micro Strip Patch Antenna Array For Wireless Communication Series Micro Strip Patch Antenna Array For Wireless Communication Ashish Kumar 1, Ridhi Gupta 2 1,2 Electronics & Communication Engg, Abstract- The concept of Microstrip Antenna Array with high efficiency

More information

CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND APPLICATIONS

CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND APPLICATIONS Journal of Engineering Science and Technology Vol. 11, No. 2 (2016) 267-277 School of Engineering, Taylor s University CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND

More information

The Design of Microstrip Six-Pole Quasi-Elliptic Filter with Linear Phase Response Using Extracted-Pole Technique

The Design of Microstrip Six-Pole Quasi-Elliptic Filter with Linear Phase Response Using Extracted-Pole Technique IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 2, FEBRUARY 2001 321 The Design of Microstrip Six-Pole Quasi-Elliptic Filter with Linear Phase Response Using Extracted-Pole Technique

More information

Lines and Slotlines. Microstrip. Third Edition. Ramesh Garg. Inder Bahl. Maurizio Bozzi ARTECH HOUSE BOSTON LONDON. artechhouse.

Lines and Slotlines. Microstrip. Third Edition. Ramesh Garg. Inder Bahl. Maurizio Bozzi ARTECH HOUSE BOSTON LONDON. artechhouse. Microstrip Lines and Slotlines Third Edition Ramesh Garg Inder Bahl Maurizio Bozzi ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface xi Microstrip Lines I: Quasi-Static Analyses, Dispersion Models,

More information

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios Microwave Science and Technology Volume 13, Article ID 56734, 1 pages http://dx.doi.org/1.1155/13/56734 Research Article Compact and Wideband Parallel-Strip 18 Hybrid Coupler with Arbitrary Power Division

More information

CPW-fed Wideband Antenna with U-shaped Ground Plane

CPW-fed Wideband Antenna with U-shaped Ground Plane I.J. Wireless and Microwave Technologies, 2014, 5, 25-31 Published Online November 2014 in MECS(http://www.mecs-press.net) DOI: 10.5815/ijwmt.2014.05.03 Available online at http://www.mecs-press.net/ijwmt

More information

COMPARSION OF MICRO STRIP RECTANGULAR & SQUARE PATCH ANTENNA for 5GHZ

COMPARSION OF MICRO STRIP RECTANGULAR & SQUARE PATCH ANTENNA for 5GHZ COMPARSION OF MICRO STRIP RECTANGULAR & SQUARE PATCH ANTENNA for 5GHZ 1 VIVEK SARTHAK, 2 PANKAJ PATEL 1 Department of Electronics and Communication Engineering, DCRUST Murthal, IGI Sonepat, Haryana 2 Assistant

More information

Substrate-Integrated Waveguides in Glass Interposers with Through-Package-Vias

Substrate-Integrated Waveguides in Glass Interposers with Through-Package-Vias Substrate-Integrated Waveguides in Glass Interposers with Through-Package-Vias Jialing Tong, Venky Sundaram, Aric Shorey +, and Rao Tummala 3D Systems Packaging Research Center Georgia Institute of Technology,

More information

AS DEMANDS for high-speed multimedia data communications

AS DEMANDS for high-speed multimedia data communications 804 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 29, NO. 4, NOVEMBER 2006 A Fully Embedded 60-GHz Novel BPF for LTCC System-in-Package Applications Young Chul Lee, Member, IEEE, and Chul Soon Park, Member,

More information

MICROSTRIP AND WAVEGUIDE PASSIVE POWER LIMITERS WITH SIMPLIFIED CONSTRUCTION

MICROSTRIP AND WAVEGUIDE PASSIVE POWER LIMITERS WITH SIMPLIFIED CONSTRUCTION Journal of Microwaves and Optoelectronics, Vol. 1, No. 5, December 1999. 14 MICROSTRIP AND WAVEGUIDE PASSIVE POWER IMITERS WITH SIMPIFIED CONSTRUCTION Nikolai V. Drozdovski & ioudmila M. Drozdovskaia ECE

More information

Chapter 5 DESIGN AND IMPLEMENTATION OF SWASTIKA-SHAPED FREQUENCY RECONFIGURABLE ANTENNA ON FR4 SUBSTRATE

Chapter 5 DESIGN AND IMPLEMENTATION OF SWASTIKA-SHAPED FREQUENCY RECONFIGURABLE ANTENNA ON FR4 SUBSTRATE Chapter 5 DESIGN AND IMPLEMENTATION OF SWASTIKA-SHAPED FREQUENCY RECONFIGURABLE ANTENNA ON FR4 SUBSTRATE The same geometrical shape of the Swastika as developed in previous chapter has been implemented

More information

EMBEDDED MICROSTRIP LINE TO STRIPLINE VERTICAL TRANSITION USING LTCC TECHNIQUE

EMBEDDED MICROSTRIP LINE TO STRIPLINE VERTICAL TRANSITION USING LTCC TECHNIQUE EMBEDDED MICROSTRIP LINE TO STRIPLINE VERTICAL TRANSITION USING LTCC TECHNIQUE Beeresha R S, A M Khan, Manjunath Reddy H V, Ravi S 4 Research Scholar, Department of Electronics, Mangalore University, Karnataka,

More information

Microwave PCB Structure Considerations: Microstrip vs. Grounded Coplanar Waveguide. John Coonrod, Rogers Corporation

Microwave PCB Structure Considerations: Microstrip vs. Grounded Coplanar Waveguide. John Coonrod, Rogers Corporation John Coonrod, Rogers Corporation 1 GCPW also known as Conductor Backed Coplanar Waveguide (CBCPW) 2 The key to understanding differences of microstrip and GCPW is looking at the fields Microstrip: Most

More information

A. A. Kishk and A. W. Glisson Department of Electrical Engineering The University of Mississippi, University, MS 38677, USA

A. A. Kishk and A. W. Glisson Department of Electrical Engineering The University of Mississippi, University, MS 38677, USA Progress In Electromagnetics Research, PIER 33, 97 118, 2001 BANDWIDTH ENHANCEMENT FOR SPLIT CYLINDRICAL DIELECTRIC RESONATOR ANTENNAS A. A. Kishk and A. W. Glisson Department of Electrical Engineering

More information

Reza Zoughi and Timothy Vaughan. Electrical Engineering Department Colorado State University Ft. Collins, CO INTRODUCTION

Reza Zoughi and Timothy Vaughan. Electrical Engineering Department Colorado State University Ft. Collins, CO INTRODUCTION DESIGN AND ANALYSIS OF AN ARRAY OF SQUARE MICROSTRIP PATCHES FOR NONDESTRUCTIVE MEASUREMENT OF INNER MATERIAL PROPERTIES OF VARIOUS STRUCTURES USING SWEPT MICROWAVE FREQUENCIES Reza Zoughi and Timothy

More information

VERTICAL TRANSITION IN MULTILAYER MILLIMETER WAVE MODULE USING CIRCULAR CAVITY

VERTICAL TRANSITION IN MULTILAYER MILLIMETER WAVE MODULE USING CIRCULAR CAVITY Progress In Electromagnetics Research M, Vol. 5, 91 100, 2008 VERTICAL TRANSITION IN MULTILAYER MILLIMETER WAVE MODULE USING CIRCULAR CAVITY D. Wu, Y. Fan, M. Zhao, and Y. Zhang School of Electronic Engineering

More information

A Novel Dual-Band SIW Filter with High Selectivity

A Novel Dual-Band SIW Filter with High Selectivity Progress In Electromagnetics Research Letters, Vol. 6, 81 88, 216 A Novel Dual-Band SIW Filter with High Selectivity Yu-Dan Wu, Guo-Hui Li *, Wei Yang, and Tong Mou Abstract A novel dual-band substrate

More information

Modeling and Simulation of Via Conductor Losses in Co-fired Ceramic Substrates Used In Transmit/Receive Radar Modules

Modeling and Simulation of Via Conductor Losses in Co-fired Ceramic Substrates Used In Transmit/Receive Radar Modules Modeling and Simulation of Via Conductor Losses in Co-fired Ceramic Substrates Used In Transmit/Receive Radar Modules 4/5/16 Rick Sturdivant, CTO 310-980-3039 rick@rlsdesigninc.com Edwin K.P. Chong, Professor

More information

Index Terms Microstrip patch antenna, Quarter wave inset feed, Coaxial cable feed, Gain, Bandwidth, Directivity, Radiation pattern.

Index Terms Microstrip patch antenna, Quarter wave inset feed, Coaxial cable feed, Gain, Bandwidth, Directivity, Radiation pattern. PERFORMANCE ANALYSIS OF RECTANGULAR PATCH ANTENNA USING QUARTER WAVE FEED LINE AND COAXIAL FEED LINE METHODS FOR C- BAND RADAR BASED APPLICATIONS Dr.H.C.Nagaraj 1, Dr.T.S.Rukmini 2, Mr.Prasanna Paga 3,

More information

Microwave Bandpass Filters Using Couplings With Defected Ground Structures

Microwave Bandpass Filters Using Couplings With Defected Ground Structures Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 26 63 Microwave Bandpass Filters Using Couplings With Defected Ground Structures

More information

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION 43 CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION 2.1 INTRODUCTION This work begins with design of reflectarrays with conventional patches as unit cells for operation at Ku Band in

More information

SUBSTRATE integrated waveguide (SIW), also called

SUBSTRATE integrated waveguide (SIW), also called IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 4, APRIL 2006 1431 Measurement of Frequency-Dependent Equivalent Width of Substrate Integrated Waveguide Chao-Hsiung Tseng, Member, IEEE,

More information

A Millimeter Wave Center-SIW-Fed Antenna For 60 GHz Wireless Communication

A Millimeter Wave Center-SIW-Fed Antenna For 60 GHz Wireless Communication A Millimeter Wave Center-SIW-Fed Antenna For 60 GHz Wireless Communication M. Karami, M. Nofersti, M.S. Abrishamian, R.A. Sadeghzadeh Faculty of Electrical and Computer Engineering K. N. Toosi University

More information

Broadband transition between substrate integrated waveguide and rectangular waveguide based on ridged steps

Broadband transition between substrate integrated waveguide and rectangular waveguide based on ridged steps This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Electronics Express, Vol.* No.*,*-* Broadband transition between substrate integrated

More information

Design and Analysis of Novel Compact Inductor Resonator Filter

Design and Analysis of Novel Compact Inductor Resonator Filter Design and Analysis of Novel Compact Inductor Resonator Filter Gye-An Lee 1, Mohamed Megahed 2, and Franco De Flaviis 1. 1 Department of Electrical and Computer Engineering University of California, Irvine

More information

Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna

Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna Active and Passive Electronic Components Volume 28, Article ID 42, pages doi:1./28/42 Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna Onofrio Losito Department of Innovation

More information

CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA

CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA 5.1 INTRODUCTION This chapter deals with the design of L-band printed dipole antenna (operating frequency of 1060 MHz). A study is carried out to obtain 40 % impedance

More information

3D-SOP MILLIMETER-WAVE FUNCTIONS FOR HIGH DATA RATE WIRELESS SYSTEMS USING LTCC AND LCP TECHNOLOGIES

3D-SOP MILLIMETER-WAVE FUNCTIONS FOR HIGH DATA RATE WIRELESS SYSTEMS USING LTCC AND LCP TECHNOLOGIES Proceedings of IPACK2005 ASME InterPACK '05 July 17-22, San Francisco, California, USA IPACK2005-73127 3D-SOP MILLIMETER-WAVE FUNCTIONS FOR HIGH DATA RATE WIRELESS SYSTEMS USING LTCC AND LCP TECHNOLOGIES

More information

Design of Rectangular-Cut Circular Disc UWB Antenna with Band-Notched Characteristics

Design of Rectangular-Cut Circular Disc UWB Antenna with Band-Notched Characteristics Design of Rectangular-Cut Circular Disc UWB Antenna with Band-Notched Characteristics Swapnil Thorat PICT, Pune-411043,India Email:swapnil.world01@gmail.com Raj Kumar DIAT (Deemed University), Girinagar,

More information

DESIGN AND STUDY OF INSET FEED SQUARE MICROSTRIP PATCH ANTENNA FOR S-BAND APPLICATION

DESIGN AND STUDY OF INSET FEED SQUARE MICROSTRIP PATCH ANTENNA FOR S-BAND APPLICATION DESIGN AND STUDY OF INSET FEED SQUARE MICROSTRIP PATCH ANTENNA FOR S-BAND APPLICATION 1 Priya Upadhyay, 2 Richa Sharma 1 M-tech Electronics and Communication, Department of ECE, Ajay Kumar Garg Engineering

More information

Designing of Rectangular Microstrip Patch Antenna for C-Band Application

Designing of Rectangular Microstrip Patch Antenna for C-Band Application International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Designing of Rectangular Microstrip Patch Antenna for C-Band Application Vinay Jhariya 1, Prof. Prashant Jain 2 1,2 Department of

More information

Design and Improved Performance of Rectangular Micro strip Patch Antenna for C Band Application

Design and Improved Performance of Rectangular Micro strip Patch Antenna for C Band Application RESEARCH ARTICLE OPEN ACCESS Design and Improved Performance of Rectangular Micro strip Patch Antenna for C Band Application Vinay Jhariya*, Prof. Prashant Jain** *(Department of Electronics & Communication

More information

Compact Narrow Band Non-Degenerate Dual-Mode Microstrip Filter with Etched Square Lattices

Compact Narrow Band Non-Degenerate Dual-Mode Microstrip Filter with Etched Square Lattices J. Electromagnetic Analysis & Applications, 2010, 2: 98-103 doi:10.4236/jemaa.2010.22014 Published Online February 2010 (www.scirp.org/journal/jemaa) Compact Narrow Band Non-Degenerate Dual-Mode Microstrip

More information

Dielectric Filled Printed Gap Waveguide for Millimeter Wave Applications

Dielectric Filled Printed Gap Waveguide for Millimeter Wave Applications Dielectric Filled Printed Gap Waveguide for Millimeter Wave Applications Jing Zhang A Thesis In the Department of Electrical and Computer Engineering Presented in Partial Fulfillment of the Requirements

More information

Design and Analysis of Microstrip Bandstop Filter based on Defected Ground Structure

Design and Analysis of Microstrip Bandstop Filter based on Defected Ground Structure Design and Analysis of Microstrip Bandstop Filter based on Defected Ground Structure Alpesh D. Vala, Amit V. Patel, Alpesh Patel V. T. Patel Department of Electronics & Communication Engineering, Chandubhai

More information

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System Wireless Engineering and Technology, 2013, 4, 59-63 http://dx.doi.org/10.4236/wet.2013.41009 Published Online January 2013 (http://www.scirp.org/journal/wet) 59 Design and Development of a 2 1 Array of

More information

High Permittivity Design of Rectangular and Cylindrical Dielectric Resonator Antenna for C-Band Applications

High Permittivity Design of Rectangular and Cylindrical Dielectric Resonator Antenna for C-Band Applications , pp.34-41 http://dx.doi.org/10.14257/astl.2017.147.05 High Permittivity Design of Rectangular and Cylindrical Dielectric Resonator Antenna for C-Band Applications Dr.K.Srinivasa Naik 1, Darimisetti Sai

More information

Broadband Circular Polarized Antenna Loaded with AMC Structure

Broadband Circular Polarized Antenna Loaded with AMC Structure Progress In Electromagnetics Research Letters, Vol. 76, 113 119, 2018 Broadband Circular Polarized Antenna Loaded with AMC Structure Yi Ren, Xiaofei Guo *,andchaoyili Abstract In this paper, a novel broadband

More information

Single-Feed Triangular Slotted Microstrip Bowtie Antenna for Quad-bands Applications

Single-Feed Triangular Slotted Microstrip Bowtie Antenna for Quad-bands Applications IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 11, Issue 5, Ver. III (Sep.-Oct.2016), PP 22-27 www.iosrjournals.org Single-Feed Triangular

More information

A Wideband Magneto-Electric Dipole Antenna with Improved Feeding Structure

A Wideband Magneto-Electric Dipole Antenna with Improved Feeding Structure ADVANCED ELECTROMAGNETICS, VOL. 5, NO. 2, AUGUST 2016 ` A Wideband Magneto-Electric Dipole Antenna with Improved Feeding Structure Neetu Marwah 1, Ganga P. Pandey 2, Vivekanand N. Tiwari 1, Sarabjot S.

More information

A MODIFIED FRACTAL RECTANGULAR CURVE DIELECTRIC RESONATOR ANTENNA FOR WIMAX APPLICATION

A MODIFIED FRACTAL RECTANGULAR CURVE DIELECTRIC RESONATOR ANTENNA FOR WIMAX APPLICATION Progress In Electromagnetics Research C, Vol. 12, 37 51, 2010 A MODIFIED FRACTAL RECTANGULAR CURVE DIELECTRIC RESONATOR ANTENNA FOR WIMAX APPLICATION R. K. Gangwar and S. P. Singh Department of Electronics

More information