The B7 Discrete Operational Amplifier Author: Tamas G. Kohalmi 7/5/2004

Size: px
Start display at page:

Download "The B7 Discrete Operational Amplifier Author: Tamas G. Kohalmi 7/5/2004"

Transcription

1 The B7 Discrete Operational Amplifier Author: Tamas G. Kohalmi 7/5/2004 Table of Contents Part 1... pages 2-4 Part 2 pages 5-7

2 Part 1. This document describes a simple discrete operational amplifier that I have partly designed and completely built. The circuit was inspired by Nelson Pass article on DIY Opamps. I am grateful that there are people like Nelson taking time out of their schedules to share some of their knowledge and experiences with others. Also, I want to acknowledge Douglas Self who has made years worth of experience available on the web as learning material for others. And I want to thank PRR at the Lab who has helped fixing some of the problems with the design. The purpose of this circuit is to be used in low gain type circuits such as make up gain for an equalizer or a compressor. My goals for a discrete opamp were the following: Be easy and quick to build Use easily obtainable and low cost parts Operate in Class-A mode as much as possible with a 600 ohm load Have a high headroom and run off +-24V rails Provide 6dB to 26dB gain with a bandwidth of 100kHz Be stable at x2 gain in non-inverting mode First, I started with a PSICE simulation of the circuit. I aimed to set bias points for components and ensure a decent bandwidth using the simulation. After that I set out to build the circuit on a breadboard. Measurements proved that most parameters were within 20% of the predicted values of the simulation. The opamp itself is rather simple. It consists of three distinct sections: Differential amplifier on the input formed by Q1 and Q2 Voltage amplifier, Q3 Push-pull followers, Q4 and Q5 The two JFETs serve as constant current sources and are used due to their simplicity. It doesn't get much simpler than a FET and a resistor, but it provides fairly good stability. It took about an hour to build and a several hours to tune it. The parts for this opamp cost about $3 and most of the parts were obtained from Mouser Electronics. Since the parts used are currently available from many different sources I have given little thought to possible substitutions. The MPSA18 pair on the input are very high gain and low noise devices and I would not use anything else there. Other parts may be more freely swapped while retaining similar performance. I will add a few words here on the details of the circuit. The first JFET, J2, should be set to provide 4mA to the differential pair. The 330 ohm resistor between the source and the negative power supply is a good guideline, but depending on the characteristics of the FET. The second JFET, J3, should be set to provide between 7ma and 8ma. Again the 100 ohm resistor is just a starting point. You can take the JFET and a resistor (or a potentiometer) and hook them up as they are shown in the circuit, gate to negative rail, source to resistor that connects to the negative rail. Then connect the drain to the positive rail through a milliamp-meter setting the voltage at 24V rail to rail. Change the value of

3 the resistor to get the current you need. (Smaller resistor more current, larger resistor less current.) For the output transistors I picked the BC639/BC640 because they can take a little more current and dissipate a bit more heat than the average TO-92 cased transistor. They have high current gain and are relatively fast when compared to higher current devices like the BD130/BD140. The output transistors can dissipate 1W only, and they MUST be attached to heatsinks. You can see in the background of the breadboard picture the little flag looking metal bits. When building them on a PCB it is best to make sure D1 touches Q4 and D2 touches Q5. The output transistors pass from 10 to 15mA. I tested with a 600 ohm transformer and the opamp was able to swing +-21V into it before clipping, using 24V power supplies. With the transformer attached it will do about +10dB and stay in Class-A. When terminating the opamp with a 2k resistor and a mixer input it can swing 23dB and stay in Class-A all the time. There are several ways to kill this opamp. Two of the most common ones would be connecting the output to ground directly or connecting only one rail for more than a few seconds. There is no short circuit protection in it at all. (not yet) So far I have used the opamp in non-inverting mode with a 2k ohm feedback resistor and a 2k reverse log potentiometer that connects to ground through a 3300uF capacitor. I had to add a 100pF capacitor across the feedback resistor to preserve high frequency stability. I was pleasantly surprised how well a little circuit like this performed on the bench after a day s worth of fiddling with it. I would recommend it as a general purpose opamp for lighter duty tasks in the audio chain. The opamps should consume 20 to 30mA on each rail. A drastic deviation from that means something is going wrong. The following page shows the current circuit. If anything needs further experimenting it is the phase compensation network, C1 and R7 to make the circuit more tolerant. On my bench the opamp was stable, but I am uncertain how robust it may be.

4 Eventually the opamp will find its place onto a PCB where some more fine tuning may take place. You need to have a low interference environment otherwise you can be mislead by strange things happening with your circuit (as I have been). The opamp assembled on a breadboard:

5 Part 2. This is a follow up section for the first part. Some changes were applied to the original circuit: Lowered the differential input pair current from 4ma to 1.75ma. That brings the input current noise down to around 1.5pA at 1KHz from 3pA. The noise voltage is around 4nV/sqrt(Hz) at 1KHz. The slew rate is still pretty high at 24V/uS using a 33pF compensation capacitor. Note: dropping the current to 300uA would result in just 0.4pA current noise at 1KHz and the voltage noise would remain around 4nV. However, the slew rate of the input would drop to 11V/uS when using a 27pF compensation capacitor. Increased the emitter feedback resistors on the input pair from 22 to 100 ohm to reduce the current gain. This helps with the stabilization of the opamp and it helps reduce distortion in the input pair due to matching error. Replaced the output emitter follower transistors with higher dissipation transistors, the MJE181 and the MJE171, in case the output is accidentally shorted for a long time. These transistors can dissipate 12W instead of the 1W of the originals. Added two diodes to the output for short circuit protection. The next page shows the schematic of the new version of the opamp:

6 Also, I tried adjusting the emitter degeneration resistor of Q3 to a lower value to get more gain at that stage, but under 150 ohms it caused more instability in the form of a large overshoot and a slight ringing so I just left the value at 168 ohms. Currently, the overshoot at x2 gain is very small and there is no ringing at all. I think I have met all of my design goals that I set out to accomplish in the beginning. Some issues have surfaced, one of them being the higher than usual DC offset on the output of the opamp. Capacitor coupling is necessary at the output due to the high offset, but it is not large enough to effect the headroom. It effects clipping so when the circuit is driven to clip it does it so somewhat asymmetrically. The next page show the test circuit that was utilized to develop the opamp.

7 The following test circuit was used to test the opamp. Lower values of the feedback resistor such as 5k or 2 k work as well: In conclusion, I would recommend using this opamp in lower impedance circuits. When driving a 600 ohm output transformer I you should use the MJE181/171 transistor pair on the output. If you do not plan to drive a transformer the BC639/640 pair works extremely well. Cheers, Tamas

EE 332 Design Project

EE 332 Design Project EE 332 Design Project Variable Gain Audio Amplifier TA: Pohan Yang Students in the team: George Jenkins Mohamed Logman Dale Jackson Ben Alsin Instructor s Comments: Lab Grade: Introduction The goal of

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

EE 501 Lab 10 Output Amplifier Due: December 10th, 2015

EE 501 Lab 10 Output Amplifier Due: December 10th, 2015 EE 501 Lab 10 Output Amplifier Due: December 10th, 2015 Objective: Get familiar with output amplifier. Design an output amplifier driving small resistor load. Design an output amplifier driving large capacitive

More information

LSJ689. Linear Systems. Application Note. By Bob Cordell. Three Decades of Quality Through Innovation

LSJ689. Linear Systems. Application Note. By Bob Cordell. Three Decades of Quality Through Innovation Three Decades of Quality Through Innovation P-Channel Dual JFETs Make High-Performance Complementary Input Stages Possible Linear Systems Lower Current Noise Lower Bias Current Required LSJ689 Application

More information

SGA-SOA-1 Documentation A Discrete Operational Amplifier For Audio Use

SGA-SOA-1 Documentation A Discrete Operational Amplifier For Audio Use Documentation A Discrete Operational Amplifier For Audio Use Samuel Groner, November 27, 2008 1 Introduction This document introduces a discrete operational amplifier specifically designed for audio applications.

More information

Low Cost, General Purpose High Speed JFET Amplifier AD825

Low Cost, General Purpose High Speed JFET Amplifier AD825 a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:

More information

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

More information

60-100W Hi-Fi Power Amplifier. Rod Elliott (ESP) PCBs are available for this project. Click the image for details.

60-100W Hi-Fi Power Amplifier. Rod Elliott (ESP) PCBs are available for this project. Click the image for details. Page 1 of 6 Elliott Sound Products Project 3A Introduction 60-100W Hi-Fi Power Amplifier Rod Elliott (ESP) PCBs are available for this project. Click the image for details. Update - 24 Jul 2003. OnSemi

More information

JFET 101, a Tutorial Look at the Junction Field Effect Transistor 8May 2007, edit 2April2016, Wes Hayward, w7zoi

JFET 101, a Tutorial Look at the Junction Field Effect Transistor 8May 2007, edit 2April2016, Wes Hayward, w7zoi JFET 101, a Tutorial Look at the Junction Field Effect Transistor 8May 2007, edit 2April2016, Wes Hayward, w7zoi FETs are popular among experimenters, but they are not as universally understood as the

More information

Optimization of an OTA Based Sine Waveshaper

Optimization of an OTA Based Sine Waveshaper 1 Optimization of an OTA Based Sine Waveshaper openmusiclabs February, 017 I. INTRODUCTION The most common analog Voltage Controlled Oscillator (VCO) cores are sawtooth and triangle wave generators. This

More information

Minimalist Discrete Hi-Fi Preamp

Minimalist Discrete Hi-Fi Preamp Minimalist Discrete Hi-Fi Preamp Rod Elliott (ESP) Introduction A preamp designed for the minimalist, and having no frills at all is the design goal for this project. It is designed as a preamp for the

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point. Exam 3 Name: Score /65 Question 1 Unless stated otherwise, each question below is 1 point. 1. An engineer designs a class-ab amplifier to deliver 2 W (sinusoidal) signal power to an resistive load. Ignoring

More information

The Pearl II Phono Stage. By Wayne Colburn. Introduction

The Pearl II Phono Stage. By Wayne Colburn. Introduction The Pearl II Phono Stage By Wayne Colburn Introduction Here is the long awaited sequel to the Pearl phono stage, named after my maternal Grandmother who was good with a sling shot, played piano and organ

More information

Emitter Coupled Differential Amplifier

Emitter Coupled Differential Amplifier Emitter Coupled Differential Amplifier Returning to the transistor, a very common and useful circuit is the differential amplifier. It's basic circuit is: Vcc Q1 Q2 Re Vee To see how this circuit works,

More information

Linear IC s and applications

Linear IC s and applications Questions and Solutions PART-A Unit-1 INTRODUCTION TO OP-AMPS 1. Explain data acquisition system Jan13 DATA ACQUISITION SYSYTEM BLOCK DIAGRAM: Input stage Intermediate stage Level shifting stage Output

More information

LM2900 LM3900 LM3301 Quad Amplifiers

LM2900 LM3900 LM3301 Quad Amplifiers LM2900 LM3900 LM3301 Quad Amplifiers General Description The LM2900 series consists of four independent dual input internally compensated amplifiers which were designed specifically to operate off of a

More information

Op Amp Booster Designs

Op Amp Booster Designs Op Amp Booster Designs Although modern integrated circuit operational amplifiers ease linear circuit design, IC processing limits amplifier output power. Many applications, however, require substantially

More information

HIGH POWER DUAL OPERATIONAL AMPLIFIER

HIGH POWER DUAL OPERATIONAL AMPLIFIER MILPRF8 CERTIFIED M.S.KENNEDY CORP. HIGH POWER DUAL OPERATIONAL AMPLIFIER 707 Dey Road Liverpool, N.Y. 088 () 7067 FEATURES: Space Efficient Dual Power Amplifier Low Cost High oltage Operation: 0 Low Quiescent

More information

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

NOT RECOMMENDED FOR NEW DESIGNS

NOT RECOMMENDED FOR NEW DESIGNS M.S.KENNEDY CORP. HIGH POWER DUAL OPERATIONAL AMPLIFIER ISO900 CERTIFIED BY DSCC 0 707 Dey Road Liverpool, N.Y. 3088 (3) 7067 FEATURES: Operates In Class AB Or Class C Mode MILPRF383 CERTIFIED Low Cost

More information

Discrete Op-Amp Kit MitchElectronics 2019

Discrete Op-Amp Kit MitchElectronics 2019 Discrete Op-Amp Kit MitchElectronics 2019 www.mitchelectronics.co.uk CONTENTS Introduction 3 Schematic 4 How It Works 5 Materials 9 Construction 10 Important Information 11 Page 2 INTRODUCTION Even if

More information

PA94. High Voltage Power Operational Amplifiers PA94 DESCRIPTION

PA94. High Voltage Power Operational Amplifiers PA94 DESCRIPTION P r o d u c t I n n o v a t i o n FFr ro o m High Voltage Power Operational Amplifiers FEATURES HIGH VOLTAGE 900V (±450V) HIGH SLEW RATE 500V/µS HIGH OUTPUURRENT 0mA PROGRAMMABLE CURRENT LIMIT APPLICATIONS

More information

Figure 2 shows the actual schematic for the power supply and one channel.

Figure 2 shows the actual schematic for the power supply and one channel. Pass Laboratories Aleph 3 Service Manual rev 0 2/1/96 Aleph 3 Service Manual. The Aleph 3 is a stereo 30 watt per channel audio power amplifier which operates in single-ended class A mode. The Aleph 3

More information

CHARACTERIZATION OF OP-AMP

CHARACTERIZATION OF OP-AMP EXPERIMENT 4 CHARACTERIZATION OF OP-AMP OBJECTIVES 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals. 2. To list the amplifier stages in a typical op-amp

More information

The Aleph 2 is a monoblock 100 watt audio power amplifier which operates in single-ended class A mode.

The Aleph 2 is a monoblock 100 watt audio power amplifier which operates in single-ended class A mode. Pass Laboratories Aleph 2 Service Manual Rev 0 2/1/96 Aleph 2 Service Manual. The Aleph 2 is a monoblock 100 watt audio power amplifier which operates in single-ended class A mode. The Aleph 2 has only

More information

Common-Source Amplifiers

Common-Source Amplifiers Lab 2: Common-Source Amplifiers Introduction The common-source stage is the most basic amplifier stage encountered in CMOS analog circuits. Because of its very high input impedance, moderate-to-high gain,

More information

For the filter shown (suitable for bandpass audio use) with bandwidth B and center frequency f, and gain A:

For the filter shown (suitable for bandpass audio use) with bandwidth B and center frequency f, and gain A: Basic Op Amps The operational amplifier (Op Amp) is useful for a wide variety of applications. In the previous part of this article basic theory and a few elementary circuits were discussed. In order to

More information

ECE4902 C Lab 7

ECE4902 C Lab 7 ECE902 C2012 - Lab MOSFET Differential Amplifier Resistive Load Active Load PURPOSE: The primary purpose of this lab is to measure the performance of the differential amplifier. This is an important topology

More information

LF442 Dual Low Power JFET Input Operational Amplifier

LF442 Dual Low Power JFET Input Operational Amplifier LF442 Dual Low Power JFET Input Operational Amplifier General Description The LF442 dual low power operational amplifiers provide many of the same AC characteristics as the industry standard LM1458 while

More information

High Voltage Power Operational Amplifiers EQUIVALENT SCHEMATIC R1 R2 C1 R3 Q6 4 CC1 5 CC2 Q8 Q12 3 I Q Q16. +V s

High Voltage Power Operational Amplifiers EQUIVALENT SCHEMATIC R1 R2 C1 R3 Q6 4 CC1 5 CC2 Q8 Q12 3 I Q Q16. +V s PA9 PA9 High Voltage Power Operational Amplifiers FEATURES HIGH VOLTAGE 4V (±5V) LOW QUIESCENT CURRENT ma HIGH OUTPUT CURRENT 0mA PROGRAMMABLE CURRENT LIMIT HIGH SLEW RATE 300V/µs APPLICATIONS PIEZOELECTRIC

More information

Using LME49810 to Build a High-Performance Power Amplifier Part I

Using LME49810 to Build a High-Performance Power Amplifier Part I Using LME49810 to Build a High-Performance Power Amplifier Part I Panson Poon Introduction Although switching or Class-D amplifiers are gaining acceptance to audiophile community, linear amplification

More information

The Aleph 5 is a stereo 60 watt audio power amplifier which operates in single-ended class A mode.

The Aleph 5 is a stereo 60 watt audio power amplifier which operates in single-ended class A mode. Pass Laboratories Aleph 5 Service Manual Rev 0 9/20/96 Aleph 5 Service Manual. The Aleph 5 is a stereo 60 watt audio power amplifier which operates in single-ended class A mode. The Aleph 5 has only two

More information

Application Notes High Performance Audio Amplifiers

Application Notes High Performance Audio Amplifiers High Performance Audio Amplifiers Exicon Lateral MOSFETs These audio devices are capable of very high standards of amplification, with low distortion and very fast slew rates. They are free from secondary

More information

A 3-STAGE 5W AUDIO AMPLIFIER

A 3-STAGE 5W AUDIO AMPLIFIER ECE 2201 PRELAB 7x BJT APPLICATIONS A 3-STAGE 5W AUDIO AMPLIFIER UTILIZING NEGATIVE FEEDBACK INTRODUCTION Figure P7-1 shows a simplified schematic of a 3-stage audio amplifier utilizing three BJT amplifier

More information

Miniproject: AM Radio

Miniproject: AM Radio Objective UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE05 Lab Experiments Miniproject: AM Radio Until now, the labs have focused

More information

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS UNITII CHARACTERISTICS OF OPAMP 1. What is an opamp? List its functions. The opamp is a multi terminal device, which internally is quite complex. It is a direct coupled high gain amplifier consisting of

More information

Model 25A Manual. Introduction:

Model 25A Manual. Introduction: Model 25A Manual Introduction: The Model 25A drive electronics is a high voltage push-pull linear power amplifier capable of output voltage swings in the order of 145v P-P, push-pull. The Model 25A provides

More information

Physics 364, Fall 2014, Lab #12 (transistors I: emitter follower) Monday, October 13 (section 401); Tuesday, October 14 (section 402)

Physics 364, Fall 2014, Lab #12 (transistors I: emitter follower) Monday, October 13 (section 401); Tuesday, October 14 (section 402) Physics 364, Fall 2014, Lab #12 Name: (transistors I: emitter follower) Monday, October 13 (section 401); Tuesday, October 14 (section 402) Course materials and schedule are at positron.hep.upenn.edu/p364

More information

Summer 2015 Examination

Summer 2015 Examination Summer 2015 Examination Subject Code: 17445 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

Lab 1 - Revisited. Oscilloscope demo IAP Lecture 2 1

Lab 1 - Revisited. Oscilloscope demo IAP Lecture 2 1 Lab 1 - Revisited Display signals on scope Measure the time, frequency, voltage visually and with the scope Voltage measurement* Build simple circuits on a protoboard.* Oscilloscope demo 6.091 IAP Lecture

More information

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier LF353 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Table of contents 1. Design 1.1. The Differential Amplifier 1.2. Level Shifter 1.3. Power Amplifier 2. Characteristics 3. The Opamp without NFB 4. Linear Amplifiers 4.1. The Non-Inverting

More information

DISCRETE DIFFERENTIAL AMPLIFIER

DISCRETE DIFFERENTIAL AMPLIFIER DISCRETE DIFFERENTIAL AMPLIFIER This differential amplifier was specially designed for use in my VK-1 audio oscillator and VK-2 distortion meter where the requirements of ultra-low distortion and ultra-low

More information

UNIT I. Operational Amplifiers

UNIT I. Operational Amplifiers UNIT I Operational Amplifiers Operational Amplifier: The operational amplifier is a direct-coupled high gain amplifier. It is a versatile multi-terminal device that can be used to amplify dc as well as

More information

Application Note CDIAN003

Application Note CDIAN003 Application Note CDIAN003 CDI GaN Bias Board User s Guide Revision 4.0 February 20, 2015 Quick Start Guide Shown below are the essential connections, controls, and indicators for the GaN Bias Control Board.

More information

Balanced Line Driver & Receiver

Balanced Line Driver & Receiver Balanced Line Driver & Receiver Rod Elliott (ESP) Introduction Sometimes, you just can't get rid of that %$#*& hum, no matter what you do. Especially with long interconnects (such as to a powered sub-woofer),

More information

El-Cheapo - A Really Simple Power Amplifier

El-Cheapo - A Really Simple Power Amplifier El-Cheapo - A Really Simple Power Amplifier Rod Elliott - ESP (Semi-Original Design) "Semi-Original Design" - What is that supposed to mean? Well, many years ago, there was an amplifier circuit in a magazine

More information

LF442 Dual Low Power JFET Input Operational Amplifier

LF442 Dual Low Power JFET Input Operational Amplifier LF442 Dual Low Power JFET Input Operational Amplifier General Description The LF442 dual low power operational amplifiers provide many of the same AC characteristics as the industry standard LM1458 while

More information

4 Transistors. 4.1 IV Relations

4 Transistors. 4.1 IV Relations 4 Transistors Due date: Sunday, September 19 (midnight) Reading (Bipolar transistors): HH sections 2.01-2.07, (pgs. 62 77) Reading (Field effect transistors) : HH sections 3.01-3.03, 3.11-3.12 (pgs. 113

More information

INDIANA UNIVERSITY, DEPT. OF PHYSICS, P400/540 LABORATORY FALL Laboratory #5: More Transistor Amplifier Circuits

INDIANA UNIVERSITY, DEPT. OF PHYSICS, P400/540 LABORATORY FALL Laboratory #5: More Transistor Amplifier Circuits INDIANA UNIVERSITY, DEPT. OF PHYSICS, P400/540 LABORATORY FALL 2008 Laboratory #5: More Transistor Amplifier Circuits Goal: Use and measure the behavior of transistor circuits used to implement different

More information

Medium Power 137kHz Linear Power Amplifier G4JNT Sept 2010

Medium Power 137kHz Linear Power Amplifier G4JNT Sept 2010 Medium Power 137kHz Linear Power Amplifier G4JNT Sept 2010 This project was conceived on the back of an envelope after running a WSPR beacon thorough my 600 Watt switch mode Power Amplifier, and setting

More information

Lab 2: Common Base Common Collector Design Exercise

Lab 2: Common Base Common Collector Design Exercise CSUS EEE 109 Lab - Section 01 Lab 2: Common Base Common Collector Design Exercise Author: Bogdan Pishtoy / Lab Partner: Roman Vermenchuk Lab Report due March 26 th Lab Instructor: Dr. Kevin Geoghegan 2016-03-25

More information

Operation and Maintenance Manual

Operation and Maintenance Manual WeiKedz 0-30V 2mA-3A Adjustable DC Regulated Power Supply DIY Kit Operation and Maintenance Manual The WeiKedz Adjustable DC Regulated Power Supply provides continuously variable output voltage between

More information

APPLICATION NOTE AN-009. GaN Essentials. AN-009: Bias Sequencing and Temperature Compensation for GaN HEMTs

APPLICATION NOTE AN-009. GaN Essentials. AN-009: Bias Sequencing and Temperature Compensation for GaN HEMTs GaN Essentials AN-009: Bias Sequencing and Temperature Compensation for GaN HEMTs NITRONEX CORPORATION 1 OCTOBER 2008 GaN Essentials: Bias Sequencing and Temperature Compensation of GaN HEMTs 1. Table

More information

G6ALU 20W FET PA Construction Information

G6ALU 20W FET PA Construction Information G6ALU 20W FET PA Construction Information The requirement This amplifier was designed specifically to complement the Pic-A-Star transceiver developed by Peter Rhodes G3XJP. From the band pass filter an

More information

ULTRA HIGH VOLTAGE DUAL OPERATIONAL AMPLIFIER

ULTRA HIGH VOLTAGE DUAL OPERATIONAL AMPLIFIER MILPRF8 CERTIFIED M.S.KENNEDY CORP. 6 707 Dey Road Liverpool, N.Y. 088 () 7067 FEATURES: Internally Compensated For Gains > 0 V/V Monolithic MOS Technology High Voltage Operation : 0V Low Quiescent Current

More information

CHAPTER 7 HARDWARE IMPLEMENTATION

CHAPTER 7 HARDWARE IMPLEMENTATION 168 CHAPTER 7 HARDWARE IMPLEMENTATION 7.1 OVERVIEW In the previous chapters discussed about the design and simulation of Discrete controller for ZVS Buck, Interleaved Boost, Buck-Boost, Double Frequency

More information

3-Stage Transimpedance Amplifier

3-Stage Transimpedance Amplifier 3-Stage Transimpedance Amplifier ECE 3400 - Dr. Maysam Ghovanloo Garren Boggs TEAM 11 Vasundhara Rawat December 11, 2015 Project Specifications and Design Approach Goal: Design a 3-stage transimpedance

More information

A 40 MHz Programmable Video Op Amp

A 40 MHz Programmable Video Op Amp A 40 MHz Programmable Video Op Amp Conventional high speed operational amplifiers with bandwidths in excess of 40 MHz introduce problems that are not usually encountered in slower amplifiers such as LF356

More information

A GOOD REGENERATIVE RECEIVER WITH SIMPLE FINE TUNING (2008)

A GOOD REGENERATIVE RECEIVER WITH SIMPLE FINE TUNING (2008) A GOOD REGENERATIVE RECEIVER WITH SIMPLE FINE TUNING (2008) A good SSB-CW-AM regenerative receiver with a fine tuning by moving the wooden stick with a grounded piece of PCB towards the coil. A good regenerative

More information

Lab Project EE348L. Spring 2005

Lab Project EE348L. Spring 2005 Lab Project EE348L Spring 2005 B. Madhavan Spring 2005 B. Madhavan Page 1 of 7 EE348L, Spring 2005 1 Lab Project 1.1 Introduction Based on your understanding of band pass filters and single transistor

More information

3 Circuit Theory. 3.2 Balanced Gain Stage (BGS) Input to the amplifier is balanced. The shield is isolated

3 Circuit Theory. 3.2 Balanced Gain Stage (BGS) Input to the amplifier is balanced. The shield is isolated Rev. D CE Series Power Amplifier Service Manual 3 Circuit Theory 3.0 Overview This section of the manual explains the general operation of the CE power amplifier. Topics covered include Front End Operation,

More information

ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier

ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier Objective Design, simulate and test a two-stage operational amplifier Introduction Operational amplifiers (opamp) are essential components of

More information

Designing Microphone Preamplifiers. Steve Green 24th AES UK Conference June 2011

Designing Microphone Preamplifiers. Steve Green 24th AES UK Conference June 2011 Designing Microphone Preamplifiers Steve Green 24th AES UK Conference June 2011 This presentation is an abbreviated version of a tutorial given at the 2010 AES Conference in San Francisco. The complete

More information

Laboratory 8 Operational Amplifiers and Analog Computers

Laboratory 8 Operational Amplifiers and Analog Computers Laboratory 8 Operational Amplifiers and Analog Computers Introduction Laboratory 8 page 1 of 6 Parts List LM324 dual op amp Various resistors and caps Pushbutton switch (SPST, NO) In this lab, you will

More information

Experiment 1: Amplifier Characterization Spring 2019

Experiment 1: Amplifier Characterization Spring 2019 Experiment 1: Amplifier Characterization Spring 2019 Objective: The objective of this experiment is to develop methods for characterizing key properties of operational amplifiers Note: We will be using

More information

EE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load

EE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load EE4902 C200 - Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load PURPOSE: The primary purpose of this lab is to measure the

More information

High speed power op amps are ideal candidates for all types of deflection uses. High current, high speed models are ideal for electromagnetic

High speed power op amps are ideal candidates for all types of deflection uses. High current, high speed models are ideal for electromagnetic 1 High speed power op amps are ideal candidates for all types of deflection uses. High current, high speed models are ideal for electromagnetic deflection. Models with rapid slew rates and extended supply

More information

EE431 Lab 1 Operational Amplifiers

EE431 Lab 1 Operational Amplifiers Feb. 10, 2015 Report all measured data and show all calculations Introduction The purpose of this laboratory exercise is for the student to gain experience with measuring and observing the effects of common

More information

PowerAmp Design. PowerAmp Design PAD541 COMPACT POWER OP AMP

PowerAmp Design. PowerAmp Design PAD541 COMPACT POWER OP AMP PowerAmp Design COMPACT POWER OP AMP Rev E KEY FEATURES LOW COST HIGH VOLTAGE 00 VOLTS HIGH OUTPUT CURRENT 5 AMPS 50 WATT DISSIPATION CAPABILITY 00 WATT OUTPUT CAPABILITY 0.63 HEIGHT SIP DESIGN APPLICATIONS

More information

PA92. High Voltage Power Operational Amplifiers PA92

PA92. High Voltage Power Operational Amplifiers PA92 PA9 High Voltage Power Operational Amplifiers FEATURES HIGH VOLTAGE V (±V) LOW QUIESCENT CURRENT ma HIGH OUTPUT CURRENT A PROGRAMMABLE CURRENT LIMIT APPLICATIONS PIEZOELECTRIC POSITIONING HIGH VOLTAGE

More information

The ROSE 80 CW Transceiver (Part 1 of 3)

The ROSE 80 CW Transceiver (Part 1 of 3) Build a 5 watt, 80 meter QRP CW Transceiver!!! Page 1 of 10 The ROSE 80 CW Transceiver (Part 1 of 3) Build a 5 watt, 80 meter QRP CW Transceiver!!! (Designed by N1HFX) A great deal of interest has been

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Reading Horowitz & Hill handout Notes, Chapter 9 Introduction and Objective In this lab we will examine op-amps. We will look at a few of their vast number of uses and also investigate

More information

6.101 Final Project Theremin. Pedro Brito David Gomez Patrick McCabe May 12, 2016

6.101 Final Project Theremin. Pedro Brito David Gomez Patrick McCabe May 12, 2016 6.101 Final Project Theremin Pedro Brito David Gomez Patrick McCabe May 12, 2016 1 Abstract The goal of this project is to create a theremin. A theremin is a musical instrument that is played without physical

More information

EE43 43/100 Fall Final Project: 1: Audio Amplifier, Part Part II II. Part 2: Audio Amplifier. Lab Guide

EE43 43/100 Fall Final Project: 1: Audio Amplifier, Part Part II II. Part 2: Audio Amplifier. Lab Guide EE 3/00 EE FINAL PROJECT PROJECT:AN : AUDIO AUDIO AMPLIFIER AMPLIFIER Part : Audio Amplifier Lab Guide In this lab we re going to extend what you did last time. We re going to use your AC to DC converter

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019.101 Introductory Analog Electronics Laboratory Laboratory No. READING ASSIGNMENT

More information

Opamp Based Power Amplifier

Opamp Based Power Amplifier Introduction Opamp Based Power Amplifier Rohit Balkishan This is a contributed project from Rohit Balkishan, who has built it, and thought that it would make a nice simple project for others. This is a

More information

Hello, and welcome to the TI Precision Labs video discussing comparator applications, part 4. In this video we will discuss several extra features

Hello, and welcome to the TI Precision Labs video discussing comparator applications, part 4. In this video we will discuss several extra features Hello, and welcome to the TI Precision Labs video discussing comparator applications, part 4. In this video we will discuss several extra features that are integrated into some comparators to help simplify

More information

LBI-30398N. MAINTENANCE MANUAL MHz PHASE LOCK LOOP EXCITER 19D423249G1 & G2 DESCRIPTION TABLE OF CONTENTS. Page. DESCRIPTION...

LBI-30398N. MAINTENANCE MANUAL MHz PHASE LOCK LOOP EXCITER 19D423249G1 & G2 DESCRIPTION TABLE OF CONTENTS. Page. DESCRIPTION... MAINTENANCE MANUAL 138-174 MHz PHASE LOCK LOOP EXCITER 19D423249G1 & G2 LBI-30398N TABLE OF CONTENTS DESCRIPTION...Front Cover CIRCUIT ANALYSIS... 1 MODIFICATION INSTRUCTIONS... 4 PARTS LIST AND PRODUCTION

More information

VU And PPM Audio Metering

VU And PPM Audio Metering Introduction VU And PPM Audio Metering Rod Elliott (ESP) VU (Volume Unit) meters are still the mainstay of audio metering systems. The Peak Programme Meter (PPM) was originally developed by the BBC to

More information

Construction notes for the symmetrical 400 watt amplifier

Construction notes for the symmetrical 400 watt amplifier Construction notes for the symmetrical 400 watt amplifier Introduction The symmetrical amplifier is an update of one of my designs, which appeared in the Australian electronics magazine Silicon Chip in

More information

Phy 335, Unit 4 Transistors and transistor circuits (part one)

Phy 335, Unit 4 Transistors and transistor circuits (part one) Mini-lecture topics (multiple lectures): Phy 335, Unit 4 Transistors and transistor circuits (part one) p-n junctions re-visited How does a bipolar transistor works; analogy with a valve Basic circuit

More information

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample Pearson BTEC Level 4 Higher Nationals in Engineering (RQF) Unit 22: Electronic Circuits and Devices Unit Workbook 1 in a series of 4 for this unit Learning Outcome 1 Operational Amplifiers Page 1 of 23

More information

11. Audio Amp. LM386 Low Power Amplifier:

11. Audio Amp. LM386 Low Power Amplifier: EECE208 INTRO TO EE LAB Dr. Charles Kim 11. Audio Amp Objectives: The main purpose of this laboratory exercise is to design an audio amplifier based on the LM386 Low Voltage Audio Power Amplifier chip

More information

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. LM2900 LM3900 LM3301 Quad Amplifiers General Description The LM2900 series

More information

AMP CAMP AMP #1. Introduction. Requirements and Constraints. by Nelson Pass

AMP CAMP AMP #1. Introduction. Requirements and Constraints. by Nelson Pass AMP CAMP AMP #1 by Nelson Pass Introduction Do-It-Yourself audio is a great activity. Many major audio components are easily constructed and made to perform as well or better than what we see in the stores

More information

James Lunsford HW2 2/7/2017 ECEN 607

James Lunsford HW2 2/7/2017 ECEN 607 James Lunsford HW2 2/7/2017 ECEN 607 Problem 1 Part A Figure 1: Negative Impedance Converter To find the input impedance of the above NIC, we use the following equations: V + Z N V O Z N = I in, V O kr

More information

Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore)

Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore) Laboratory 9 Operational Amplifier Circuits (modified from lab text by Alciatore) Required Components: 1x 741 op-amp 2x 1k resistors 4x 10k resistors 1x l00k resistor 1x 0.1F capacitor Optional Components:

More information

Burning Amp 2. by Nelson Pass. Introduction. Concept

Burning Amp 2. by Nelson Pass. Introduction. Concept Burning Amp 2 by Nelson Pass Introduction In Burning Amp 1 we examined an amplifier circuit designed to complement the hardware we gave away to some attendees at last October's Burning Amp Festival in

More information

ERICSSONZ LBI-30398P. MAINTENANCE MANUAL MHz PHASE LOCKED LOOP EXCITER 19D423249G1 & G2 DESCRIPTION TABLE OF CONTENTS

ERICSSONZ LBI-30398P. MAINTENANCE MANUAL MHz PHASE LOCKED LOOP EXCITER 19D423249G1 & G2 DESCRIPTION TABLE OF CONTENTS MAINTENANCE MANUAL 138-174 MHz PHASE LOCKED LOOP EXCITER 19D423249G1 & G2 TABLE OF CONTENTS Page DESCRIPTION... Front Cover CIRCUIT ANALYSIS...1 MODIFICATION INSTRUCTIONS...4 PARTS LIST...5 PRODUCTION

More information

Analyzing the Dynaco Stereo 120 Power Amplifier

Analyzing the Dynaco Stereo 120 Power Amplifier Analyzing the Dynaco Stereo 120 Power Amplifier The Stereo 120 Power Amplifier came out around 1966. It was the first powerful (60 watts per channel) solid state amplifier in wide production. Each channel

More information

High Current, High Power OPERATIONAL AMPLIFIER

High Current, High Power OPERATIONAL AMPLIFIER High Current, High Power OPERATIONAL AMPLIFIER FEATURES HIGH OUTPUT CURRENT: A WIDE POWER SUPPLY VOLTAGE: ±V to ±5V USER-SET CURRENT LIMIT SLEW RATE: V/µs FET INPUT: I B = pa max CLASS A/B OUTPUT STAGE

More information

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp PHYS 536 The Golden Rules of Op Amps Introduction The purpose of this experiment is to illustrate the golden rules of negative feedback for a variety of circuits. These concepts permit you to create and

More information

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

Midterm 2 Exam. Max: 90 Points

Midterm 2 Exam. Max: 90 Points Midterm 2 Exam Name: Max: 90 Points Question 1 Consider the circuit below. The duty cycle and frequency of the 555 astable is 55% and 5 khz respectively. (a) Determine a value for so that the average current

More information

OPERATIONAL AMPLIFIERS and FEEDBACK

OPERATIONAL AMPLIFIERS and FEEDBACK Lab Notes A. La Rosa OPERATIONAL AMPLIFIERS and FEEDBACK 1. THE ROLE OF OPERATIONAL AMPLIFIERS A typical digital data acquisition system uses a transducer (sensor) to convert a physical property measurement

More information

Physics 303 Fall Module 4: The Operational Amplifier

Physics 303 Fall Module 4: The Operational Amplifier Module 4: The Operational Amplifier Operational Amplifiers: General Introduction In the laboratory, analog signals (that is to say continuously variable, not discrete signals) often require amplification.

More information

Version; first draft august 2018 Second draft september 2018, added schematic and adapted text to schematic

Version; first draft august 2018 Second draft september 2018, added schematic and adapted text to schematic Tuning the AS3340 Version; first draft august 2018 Second draft september 2018, added schematic and adapted text to schematic Author: Rob Hordijk (c)2018 Final draft to be released in the public domain.

More information

LF147 - LF247 LF347 WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS

LF147 - LF247 LF347 WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS LF147 - LF247 LF347 WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS LOW POWER CONSUMPTION WIDE COMMON-MODE (UP TO V + CC ) AND DIFFERENTIAL VOLTAGE RANGE LOW INPUT BIAS AND OFFSET CURRENT OUTPUT SHORT-CIRCUIT

More information