CMOS Technology. 1. Why CMOS 2. Qualitative MOSFET model 3. Building a MOSFET 4. CMOS logic gates. Handouts: Lecture Slides. metal ndiff.

Size: px
Start display at page:

Download "CMOS Technology. 1. Why CMOS 2. Qualitative MOSFET model 3. Building a MOSFET 4. CMOS logic gates. Handouts: Lecture Slides. metal ndiff."

Transcription

1 CMOS Technology 1. Why CMOS 2. Qualitative MOSFET model 3. Building a MOSFET 4. CMOS logic gates poly pdiff metal ndiff Handouts: Lecture Slides L03 - CMOS Technology 1

2 Building Bits from Atoms V in V out We Need Three Things: 1. Represent and communicate bits 2. Transform bits (Invert, AND, OR, ) 3. Remember bits (storage) V out V OH Non-linear gain V OL V IL V IH V in subject to the fundamentals of physics: Uncertainty, Noise, c, Thermodynamics, L03 - CMOS Technology 2

3 Wish List Small, simple, repeatable and stable non-linear devices with gain using readily-available materials Can mass produce very large quantities of devices and wires Consistently improves performance and density (scales) with ongoing R&D investment L03 - CMOS Technology 3

4 Wishes Fulfilled Small, simple, repeatable and stable non-linear devices with gain using readily-available materials Silicon + Aluminum/Copper + Can mass produce very large quantities of devices and wires Literally print billions at a time Consistently improves performance and density (scales) with ongoing R&D investment Moore s Law: 2x density every 1.5 to 2 years $1T in cumulative investment L03 - CMOS Technology 4

5 MOSFETS: Gain & non-linearity source gate Polysilicon wire Heavily doped (n-type or p-type) diffusions W Inter-layer SiO 2 insulation Very thin (<20Å) high-quality SiO 2 insulating layer isolates gate from channel region. L drain Channel region: electric field from charges on gate locally inverts type of substrate to create a conducting channel between source and drain. bulk Doped (p-type or n-type) silicon substrate MOSFETs (metal-oxide-semiconductor field-effect transistors) are four-terminal voltage-controlled switches. Current flows between the diffusion terminals if the voltage on the gate terminal is large enough to create a conducting channel, otherwise the mosfet is off and the diffusion terminals are not connected. Why are MOS devices King? L03 - CMOS Technology 5

6 FETs as switches The four terminals of a Field Effect Transistor (gate, source, drain and bulk) connect to conducting surfaces that generate a complicated set of electric fields in the channel region which depend on the relative voltages of each terminal. gate inversion happens here n source E h drain n p E v bulk INVERSION: A sufficiently strong vertical field will attract enough electrons to the surface to create a conducting n-type channel between the source and drain. CONDUCTION: If a channel exists, a horizontal field will cause a drift current from the drain to the source. L03 - CMOS Technology 6

7 Linear operating region V S V GS > V TH 0 < V DS < V Dsat I DS L Why is this bigger here than on other side? Larger V GS creates deeper channel which increases I DS I DS I DS proportional to µ 0 (W/L) Increasing V GS Larger V DS increases drift current but also reduces vertical field component which in turn makes channel less deep. At some point, electrons are traveling as fast as possible through the channel ( velocity saturation ) and the current stops growing linearly. V DS L03 - CMOS Technology 7

8 Saturated operating region V S V GS > V TH V Dsat < V DS I DS L = L - δl δl V Dsat V GS -V TH This looks just like a fet with a channel length of L < L. Shorter L implies greater I DS. As V DS increases, δl gets larger. V I DS = V GS -V TH DS When V DS = V GS -V TH the vertical field component is reduced and the channel is pinched-off. Electrons just keep traveling across depletion region Increasing VGS V DS L03 - CMOS Technology 8

9 NFET Summary D D + S n G p D n G G + V DS 0 Operating regions: S V GS - S - cut-off: V GS < V TH linear: V GS V TH V DS < V Dsat 0.8V S S D D I DS linear saturation V GS V GS -V TH saturation: V GS V TH V DS V Dsat S D V DS L03 - CMOS Technology 9

10 FETs come in two flavors By embedding p-type source and drain in a n-type substrate, we can fabricate a complement to the N-FET: G S D B S D n p n p n p D S G G S D The use of both NFETs and PFETs complimentary transistor types is a key to CMOS (complementary MOS) logic families. L03 - CMOS Technology 10

11 PFET Summary D D - B S p G n D p G G + V DS 0 Operating regions: S V GS - S + cut-off: V GS > V TH 0.8V S D -V DS linear: V GS V TH V DS > V Dsat S D -V GS saturation: V GS V TH V DS V Dsat V GS -V TH S D saturation linear -I DS L03 - CMOS Technology 11

12 CMOS Inverter = 0v I PU = 1v V in G S = power supply I PU D V out D = 2v = 3v = 4v I PU vs V OUT for PULLUP V OUT G I PD S = 0V I PD = 5v = 4v = 3v = 2v = 1v I PD vs V OUT for PULLDOWN V OUT L03 - CMOS Technology 12

13 CMOS Inverter VTC I pd V in = 0.5V I pu I pd Steady state reached when V out reaches value where I pu = I pd. I pu Vout V out V OH V in = 3.5V I pd V in = 1.5V I pu I pd V out I pu V out V in = 4.5V V OL I pu V in = 2.5V V IL V IH V in I pd V out I pd I pu V out When both fets are saturated, small changes in V in produce large changes in V out L03 - CMOS Technology 13

14 Think Switches V DD pullup: make this connection when near 0 so that V OUT = V DD V OUT pulldown: make this connection when near V DD so that V OUT = 0 L H H L V IL V OUT V IH V IH V OUT V IL L03 - CMOS Technology 14

15 Let s build a MOSFET Start with a 500µ slice of a silicon ingot that has been doped with an acceptor (typically boron) to increase the concentration of holes to /cm /cm 3. At room temperature, all the dopants in this p-type material are ionized, turning the silicon into a semiconductor. We ll build many copies of the same circuit onto a single wafer. Only a certain percentage of the chips will work; those that work will run at different speeds. The yield decreases as the size of the chips increases and the feature size decreases. Wafers are processed by automated fabrication lines. To minimize the chance of contaminants ruining a process step, great care is taken to maintain a meticulously clean environment. So put on your bunny suits and let s begin L03 - CMOS Technology 15

16 Creating patterns on the wafer A thick (0.4u) layer of SiO 2 is formed by oxidizing the surface of the wafer with wet oxygen (we rust it!). The SiO 2 will serve as insulation between the conductive substrate and subsequent conductive layers we ll build on top of the oxide. Now we ll form a pattern in the SiO 2 using a mask & etch process. First the wafer is coated with a layer of photoresist. Photoresist becomes soluble when exposed to ultraviolet light Using a mask to protect parts of the wafer, we ll expose those portions of the wafer where we want to remove the photoresist. We ll use different masks when creating each of the different structures on the wafer. L03 - CMOS Technology 16

17 The etching process The exposed photoresist is removed with a solvent. The unexposed photoresist remains, masking portions of the underlying SiO 2 layer. A chemical etch is then used to remove the revealed silicon dioxide. Finally, the remaining photoresist is removed with a different solvent and we re left with pattern of insulating SiO 2 on top of exposed p-type substrate. L03 - CMOS Technology 17

18 Gate oxide & polysilicon Now a thin (20 Å) layer of SiO 2, called gate oxide, is grown on the surface. The gate oxide needs to be of high quality: uniform thickness, no defects! The thinner the oxide, the more oomph the FET will have (we ll see why soon) but the harder it is to make it defect-free. Coming soon to a fab near you: 12 Å gate oxide... On top of the thin oxide a 0.7u thick layer of polycrystalline silicon, called polysilicon or poly for short, is deposited by CVD. The poly layer is patterned and plasma etched (thin ox not covered by poly is etched away too!) exposing the surface where the source and drain junctions will be formed. Poly has a high sheet resistance of 20 Ω/sq which can be reduced by adding a layer of a silicided refractory metal such titanium (TiSi 2 ), tantalum (TaSi 2 ) or molybdenum (MoSi 2 ) => 1, 3 or 5 Ω/sq. L03 - CMOS Technology 18

19 Source/drain diffusions Donor implants are used to create self-aligned MOSFET source/drain diffusions and substrate contacts. Usually As is preferred to obtain shallow N-type diffusions and minimal lateral diffusion. High doses are needed to make low resistance (25 Ω/sq) diffusion wires. Afterwards a short thermal annealing step is performed to repair surface damage caused by the implantation. This completes the construction of the MOSFET itself. Now we ll add the metal wiring layers L03 - CMOS Technology 19

20 Wires: metal interconnect Deposit SiO 2 insulation Etch openings for vias/contacts Deposit Al/Cu conductor Etch away Al/Cu leaving wires After a layer of SiO 2 insulation has been deposited, aluminum or copper is deposited, patterned, then etched to form low-resistance (.07 Ω/sq) interconnect. With planarization of the SiO 2 (a mechanical polishing step that creates a flat surface), multiple levels of metal interconnect are possible -- 3 to 6 layers are common in today s processes. L03 - CMOS Technology 20

21 Standard Cell Layout for Inverter SW: scaled width used in Process-independent design m1/nwell contact m1 power bus m1/pdiff contact pfet Use two narrow mosfets in parallel instead of one wide mosfet m2/m1 via m1/poly contact poly wire m1 wire nfet m1/ndiff contact m1 ground bus m1/substrate contact Physical design of a CMOS gate is represented by a mask layout showing where material on each layer (ndiff, pdiff, poly, m1, m2, ) should be placed on the silicon wafer. Each manufacturing process has a set of design rules that determine minimum widths, spacings, overlaps, etc. L03 - CMOS Technology 21

22 Beyond Inverters: Complementary pullups and pulldowns Now you know what the C in CMOS stands for! We want complementary pullup and pulldown logic, i.e., the pulldown should be on when the pullup is off and vice versa. pullup pulldown F(A 1,,An) on off driven 1 off on driven 0 on on driven X off off no connection Since there s plenty of capacitance on the output node, when the output becomes disconnected it remembers its previous voltage -- at least for a while. The memory is the load capacitor s charge. Leakage currents will cause eventual decay of the charge (that s why DRAMs need to be refreshed!). L03 - CMOS Technology 22

23 What a nice V OH you have... CMOS complements Thanks. It runs in the family... conducts when V GS is high conducts when V GS is low A B A B conducts when A is high and B is high: A. B conducts when A is low or B is low: A+B = A. B A B A B conducts when A is high or B is high: A+B conducts when A is low and B is low: A. B = A+B L03 - CMOS Technology 23

24 A pop quiz! What function does this gate compute? A B A B C NAND 1 0 L03 - CMOS Technology 24

25 Here s another B A What function does this gate compute? A B C NOR 0 0 L03 - CMOS Technology 25

26 General CMOS gate recipe Step 1. Figure out pulldown network that does what you want, e.g., F = A*(B+C) (What combination of inputs generates a low output) B A C Step 2. Walk the hierarchy replacing nfets with pfets, series subnets with parallel subnets, and parallel subnets with series subnets Step 3. Combine pfet pullup network from Step 2 with nfet pulldown network from Step 1 to form fullycomplementary CMOS gate. A A B A B C B C C But isn t it hard to wire it all up? L03 - CMOS Technology 26

27 Emerging Big Issue: Power moves from L to H to L V DD V OUT moves from H to L to H C V OUT Energy dissipated = C V DD 2 per gate Power consumed = f n C V DD 2 per chip C discharges and then recharges where f = frequency of charge/discharge n = number of gates /chip L03 - CMOS Technology 27

28 Unfortunately Modern chip (UltraSparc III, Power4, Itanium 2) dissipates from 80W to 150W with a Vdd 1.2V (Power supply current chip is 100 Amps) Ampacity is similar to a big double oven! Cooling challenge is like making the filament of a 100W incandescent lamp cool to the touch! Worse yet Little room left to reduce Vdd nc and f continue to grow L03 - CMOS Technology 28

29 Emerging Big Issue: Wires V out R C Today (i.e., 100nm): τ RC 50ps/mm Implies 2ns to traverse a 20mm x 20mm chip This is a long time in a 2GHz processor L03 - CMOS Technology 29

30 MOSFET features Summary PN junctions provide electrical isolation Switch-like behavior controlled by V GS Shrinking geometries improves performance CMOS features CMOS logic is naturally inverting: 1 inputs lead to 0 outputs Good noise margins because V OL = 0, V OH = V DD complementary logic has high gain No static power dissipation Next time: timing, converting functionality to logic L03 - CMOS Technology 30

MOSFETS: Gain & non-linearity

MOSFETS: Gain & non-linearity MOFET: ain & non-linearity source gate Polysilicon wire Heavily doped (n-type or p-type) diffusions W Inter-layer io 2 insulation Very thin (

More information

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced.

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Unit 1 Basic MOS Technology Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Levels of Integration:- i) SSI:-

More information

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices Christopher Batten School of Electrical and Computer Engineering Cornell University http://www.csl.cornell.edu/courses/ece5950 Simple Transistor

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information

Lecture #29. Moore s Law

Lecture #29. Moore s Law Lecture #29 ANNOUNCEMENTS HW#15 will be for extra credit Quiz #6 (Thursday 5/8) will include MOSFET C-V No late Projects will be accepted after Thursday 5/8 The last Coffee Hour will be held this Thursday

More information

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs 1 CMOS Digital Integrated Circuits 3 rd Edition Categories of Materials Materials can be categorized into three main groups regarding their

More information

INTRODUCTION TO MOS TECHNOLOGY

INTRODUCTION TO MOS TECHNOLOGY INTRODUCTION TO MOS TECHNOLOGY 1. The MOS transistor The most basic element in the design of a large scale integrated circuit is the transistor. For the processes we will discuss, the type of transistor

More information

Topic 3. CMOS Fabrication Process

Topic 3. CMOS Fabrication Process Topic 3 CMOS Fabrication Process Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk Lecture 3-1 Layout of a Inverter

More information

VLSI Design I. The MOSFET model Wow!

VLSI Design I. The MOSFET model Wow! VLSI Design I The MOSFET model Wow! Are device models as nice as Cindy? Overview The large signal MOSFET model and second order effects. MOSFET capacitances. Introduction in fet process technology Goal:

More information

Layout of a Inverter. Topic 3. CMOS Fabrication Process. The CMOS Process - photolithography (2) The CMOS Process - photolithography (1) v o.

Layout of a Inverter. Topic 3. CMOS Fabrication Process. The CMOS Process - photolithography (2) The CMOS Process - photolithography (1) v o. Layout of a Inverter Topic 3 CMOS Fabrication Process V DD Q p Peter Cheung Department of Electrical & Electronic Engineering Imperial College London v i v o Q n URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk

More information

Processing Information: The Digital Abstraction. Concrete Encodings of Information

Processing Information: The Digital Abstraction. Concrete Encodings of Information page Processing Information: The igital bstraction. Making bits concrete 2. Getting bits under contract 3. Processing bits with transistors Processing Information oncrete Encodings of Information To this

More information

Basic Fabrication Steps

Basic Fabrication Steps Basic Fabrication Steps and Layout Somayyeh Koohi Department of Computer Engineering Adapted with modifications from lecture notes prepared by author Outline Fabrication steps Transistor structures Transistor

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

EE4800 CMOS Digital IC Design & Analysis. Lecture 1 Introduction Zhuo Feng

EE4800 CMOS Digital IC Design & Analysis. Lecture 1 Introduction Zhuo Feng EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng 1.1 Prof. Zhuo Feng Office: EERC 730 Phone: 487-3116 Email: zhuofeng@mtu.edu Class Website http://www.ece.mtu.edu/~zhuofeng/ee4800fall2010.html

More information

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 2: Basic MOS Physics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture Semiconductor

More information

Notes. (Subject Code: 7EC5)

Notes. (Subject Code: 7EC5) COMPUCOM INSTITUTE OF TECHNOLOGY & MANAGEMENT, JAIPUR (DEPARTMENT OF ELECTRONICS & COMMUNICATION) Notes VLSI DESIGN NOTES (Subject Code: 7EC5) Prepared By: MANVENDRA SINGH Class: B. Tech. IV Year, VII

More information

Lecture 0: Introduction

Lecture 0: Introduction Lecture 0: Introduction Introduction Integrated circuits: many transistors on one chip. Very Large Scale Integration (VLSI): bucketloads! Complementary Metal Oxide Semiconductor Fast, cheap, low power

More information

EE 330 Lecture 7. Design Rules. IC Fabrication Technology Part 1

EE 330 Lecture 7. Design Rules. IC Fabrication Technology Part 1 EE 330 Lecture 7 Design Rules IC Fabrication Technology Part 1 Review from Last Time Technology Files Provide Information About Process Process Flow (Fabrication Technology) Model Parameters Design Rules

More information

Session 3: Solid State Devices. Silicon on Insulator

Session 3: Solid State Devices. Silicon on Insulator Session 3: Solid State Devices Silicon on Insulator 1 Outline A B C D E F G H I J 2 Outline Ref: Taurand Ning 3 SOI Technology SOl materials: SIMOX, BESOl, and Smart Cut SIMOX : Synthesis by IMplanted

More information

Session 10: Solid State Physics MOSFET

Session 10: Solid State Physics MOSFET Session 10: Solid State Physics MOSFET 1 Outline A B C D E F G H I J 2 MOSCap MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor: Al (metal) SiO2 (oxide) High k ~0.1 ~5 A SiO2 A n+ n+ p-type Si (bulk)

More information

MOSFET & IC Basics - GATE Problems (Part - I)

MOSFET & IC Basics - GATE Problems (Part - I) MOSFET & IC Basics - GATE Problems (Part - I) 1. Channel current is reduced on application of a more positive voltage to the GATE of the depletion mode n channel MOSFET. (True/False) [GATE 1994: 1 Mark]

More information

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02 EE 5611 Introduction to Microelectronic Technologies Fall 2014 Thursday, September 04, 2014 Lecture 02 1 Lecture Outline Review on semiconductor materials Review on microelectronic devices Example of microelectronic

More information

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 23 p. 1/16 EE 42/100 Lecture 23: CMOS Transistors and Logic Gates ELECTRONICS Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad University

More information

EECS 151/251A Spring 2019 Digital Design and Integrated Circuits. Instructors: Wawrzynek. Lecture 8 EE141

EECS 151/251A Spring 2019 Digital Design and Integrated Circuits. Instructors: Wawrzynek. Lecture 8 EE141 EECS 151/251A Spring 2019 Digital Design and Integrated Circuits Instructors: Wawrzynek Lecture 8 EE141 From the Bottom Up IC processing CMOS Circuits (next lecture) EE141 2 Overview of Physical Implementations

More information

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1 Topics What is semiconductor Basic semiconductor devices Basics of IC processing CMOS technologies 2006/9/27 2 1 What is Semiconductor

More information

MOS Field Effect Transistors

MOS Field Effect Transistors MOS Field Effect Transistors A gate contact gate interconnect n polysilicon gate source contacts W active area (thin oxide area) polysilicon gate contact metal interconnect drain contacts A bulk contact

More information

420 Intro to VLSI Design

420 Intro to VLSI Design Dept of Electrical and Computer Engineering 420 Intro to VLSI Design Lecture 0: Course Introduction and Overview Valencia M. Joyner Spring 2005 Getting Started Syllabus About the Instructor Labs, Problem

More information

+1 (479)

+1 (479) Introduction to VLSI Design http://csce.uark.edu +1 (479) 575-6043 yrpeng@uark.edu Invention of the Transistor Vacuum tubes ruled in first half of 20th century Large, expensive, power-hungry, unreliable

More information

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline:

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: Metal-Semiconductor Junctions MOSFET Basic Operation MOS Capacitor Things you should know when you leave Key Questions What is the

More information

Design cycle for MEMS

Design cycle for MEMS Design cycle for MEMS Design cycle for ICs IC Process Selection nmos CMOS BiCMOS ECL for logic for I/O and driver circuit for critical high speed parts of the system The Real Estate of a Wafer MOS Transistor

More information

EC0306 INTRODUCTION TO VLSI DESIGN

EC0306 INTRODUCTION TO VLSI DESIGN EC0306 INTRODUCTION TO VLSI DESIGN UNIT I INTRODUCTION TO MOS CIRCUITS Why VLSI? Integration improves the design: o lower parasitics = higher speed; o lower power; o physically smaller. Integration reduces

More information

Chapter 3 Basics Semiconductor Devices and Processing

Chapter 3 Basics Semiconductor Devices and Processing Chapter 3 Basics Semiconductor Devices and Processing 1 Objectives Identify at least two semiconductor materials from the periodic table of elements List n-type and p-type dopants Describe a diode and

More information

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI 1 Integrated diodes pn junctions of transistor structures can be used as integrated diodes. The choice of the junction is limited by the considerations of switching speed and breakdown voltage. The forward

More information

The Design and Realization of Basic nmos Digital Devices

The Design and Realization of Basic nmos Digital Devices Proceedings of The National Conference On Undergraduate Research (NCUR) 2004 Indiana University Purdue University Indianapolis, Indiana April 15-17, 2004 The Design and Realization of Basic nmos Digital

More information

CS/ECE 5710/6710. Composite Layout

CS/ECE 5710/6710. Composite Layout CS/ECE 5710/6710 Introduction to Layout Inverter Layout Example Layout Design Rules Composite Layout Drawing the mask layers that will be used by the fabrication folks to make the devices Very different

More information

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor.

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor. Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 38 MOS Field Effect Transistor In this lecture we will begin

More information

Microelectronics, BSc course

Microelectronics, BSc course Microelectronics, BSc course MOS circuits: CMOS circuits, construction http://www.eet.bme.hu/~poppe/miel/en/14-cmos.pptx http://www.eet.bme.hu The abstraction level of our study: SYSTEM + MODULE GATE CIRCUIT

More information

Lecture 3: Transistors

Lecture 3: Transistors Lecture 3: Transistors Now that we know about diodes, let s put two of them together, as follows: collector base emitter n p n moderately doped lightly doped, and very thin heavily doped At first glance,

More information

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s. UNIT-I FIELD EFFECT TRANSISTOR 1. Explain about the Field Effect Transistor and also mention types of FET s. The Field Effect Transistor, or simply FET however, uses the voltage that is applied to their

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 3: January 24, 2019 MOS Fabrication pt. 2: Design Rules and Layout Penn ESE 570 Spring 2019 Khanna Jack Keil Wolf Lecture http://www.ese.upenn.edu/about-ese/events/wolf.php

More information

Semiconductor Devices

Semiconductor Devices Semiconductor Devices - 2014 Lecture Course Part of SS Module PY4P03 Dr. P. Stamenov School of Physics and CRANN, Trinity College, Dublin 2, Ireland Hilary Term, TCD 3 th of Feb 14 MOSFET Unmodified Channel

More information

Jack Keil Wolf Lecture. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. MOSFET N-Type, P-Type.

Jack Keil Wolf Lecture. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. MOSFET N-Type, P-Type. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Jack Keil Wolf Lecture Lec 3: January 24, 2019 MOS Fabrication pt. 2: Design Rules and Layout http://www.ese.upenn.edu/about-ese/events/wolf.php

More information

problem grade total

problem grade total Fall 2005 6.012 Microelectronic Devices and Circuits Prof. J. A. del Alamo Name: Recitation: November 16, 2005 Quiz #2 problem grade 1 2 3 4 total General guidelines (please read carefully before starting):

More information

Three Terminal Devices

Three Terminal Devices Three Terminal Devices - field effect transistor (FET) - bipolar junction transistor (BJT) - foundation on which modern electronics is built - active devices - devices described completely by considering

More information

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 LECTURE 020 ECE 4430 REVIEW II (READING: GHLM - Chap. 2) Objective The objective of this presentation is: 1.) Identify the prerequisite material as taught

More information

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 LECTURE 020 ECE 4430 REVIEW II (READING: GHLM - Chap. 2) Objective The objective of this presentation is: 1.) Identify the prerequisite material as taught

More information

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; Chapter 3 Field-Effect Transistors (FETs) 3.1 Introduction Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; The concept has been known

More information

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences.

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences. UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences Discussion #9 EE 05 Spring 2008 Prof. u MOSFETs The standard MOSFET structure is shown

More information

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET Ch. 13 MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor : I D D-mode E-mode V g The gate oxide is made of dielectric SiO 2 with e = 3.9 Depletion-mode operation ( 공핍형 ): Using an input gate voltage

More information

Shorthand Notation for NMOS and PMOS Transistors

Shorthand Notation for NMOS and PMOS Transistors Shorthand Notation for NMOS and PMOS Transistors Terminal Voltages Mode of operation depends on V g, V d, V s V gs = V g V s V gd = V g V d V ds = V d V s = V gs - V gd Source and drain are symmetric diffusion

More information

FET(Field Effect Transistor)

FET(Field Effect Transistor) Field Effect Transistor: Construction and Characteristic of JFETs. Transfer Characteristic. CS,CD,CG amplifier and analysis of CS amplifier MOSFET (Depletion and Enhancement) Type, Transfer Characteristic,

More information

Chapter 2 : Semiconductor Materials & Devices (II) Feb

Chapter 2 : Semiconductor Materials & Devices (II) Feb Chapter 2 : Semiconductor Materials & Devices (II) 1 Reference 1. SemiconductorManufacturing Technology: Michael Quirk and Julian Serda (2001) 3. Microelectronic Circuits (5/e): Sedra & Smith (2004) 4.

More information

PHYSICAL STRUCTURE OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

PHYSICAL STRUCTURE OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag PHYSICAL STRUCTURE OF CMOS INTEGRATED CIRCUITS Dr. Mohammed M. Farag Outline Integrated Circuit Layers MOSFETs CMOS Layers Designing FET Arrays EE 432 VLSI Modeling and Design 2 Integrated Circuit Layers

More information

ECSE-6300 IC Fabrication Laboratory Lecture 9 MOSFETs. Lecture Outline

ECSE-6300 IC Fabrication Laboratory Lecture 9 MOSFETs. Lecture Outline ECSE-6300 IC Fabrication Laboratory Lecture 9 MOSFETs Prof. Rensselaer Polytechnic Institute Troy, NY 12180 Office: CII-6229 Tel.: (518) 276-2909 e-mails: luj@rpi.edu http://www.ecse.rpi.edu/courses/s18/ecse

More information

Spiral 1 / Unit 8. Transistor Implementations CMOS Logic Gates

Spiral 1 / Unit 8. Transistor Implementations CMOS Logic Gates 18.1 Spiral 1 / Unit 8 Transistor Implementations CMOS Logic Gates 18.2 Spiral Content Mapping Spiral Theory Combinational Design Sequential Design System Level Design Implementation and Tools Project

More information

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1 Fundamental Design Metrics CPE/EE 47, CPE 57 VLSI Design I L0: Design Metrics & IC Manufacturing Department of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic

More information

Metal-Oxide-Silicon (MOS) devices PMOS. n-type

Metal-Oxide-Silicon (MOS) devices PMOS. n-type Metal-Oxide-Silicon (MOS devices Principle of MOS Field Effect Transistor transistor operation Metal (poly gate on oxide between source and drain Source and drain implants of opposite type to substrate.

More information

32nm High-K/Metal Gate Version Including 2nd Generation Intel Core processor family

32nm High-K/Metal Gate Version Including 2nd Generation Intel Core processor family From Sand to Silicon Making of a Chip Illustrations 32nm High-K/Metal Gate Version Including 2nd Generation Intel Core processor family April 2011 1 The illustrations on the following foils are low resolution

More information

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Lecture 16 Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Outline Complementary metal oxide semiconductor (CMOS) Inverting circuit Properties Operating points Propagation delay Power dissipation

More information

Digital Integrated Circuit Design I ECE 425/525 Chapter 3

Digital Integrated Circuit Design I ECE 425/525 Chapter 3 Digital Integrated Circuit Design I ECE 425/525 Chapter 3 Professor R. Daasch Depar tment of Electrical and Computer Engineering Portland State University Portland, OR 97207-0751 (daasch@ece.pdx.edu) http://ece.pdx.edu/~ecex25

More information

UNIT III VLSI CIRCUIT DESIGN PROCESSES. In this chapter we will be studying how to get the schematic into stick diagrams or layouts.

UNIT III VLSI CIRCUIT DESIGN PROCESSES. In this chapter we will be studying how to get the schematic into stick diagrams or layouts. UNIT III VLSI CIRCUIT DESIGN PROCESSES In this chapter we will be studying how to get the schematic into stick diagrams or layouts. MOS circuits are formed on four basic layers: N-diffusion P-diffusion

More information

VLSI Design. Introduction

VLSI Design. Introduction Tassadaq Hussain VLSI Design Introduction Outcome of this course Problem Aims Objectives Outcomes Data Collection Theoretical Model Mathematical Model Validate Development Analysis and Observation Pseudo

More information

Power MOSFET Zheng Yang (ERF 3017,

Power MOSFET Zheng Yang (ERF 3017, ECE442 Power Semiconductor Devices and Integrated Circuits Power MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Evolution of low-voltage (

More information

Physical Structure of CMOS Integrated Circuits

Physical Structure of CMOS Integrated Circuits Physical Structure of CMOS Integrated Circuits Dae Hyun Kim EECS Washington State University References John P. Uyemura, Introduction to VLSI Circuits and Systems, 2002. Chapter 3 Neil H. Weste and David

More information

Advantage of Having Large Numbers of Function on a Single Chip. Less Area occupied Less power Consumption Higher Speed Higher Reliability Economical

Advantage of Having Large Numbers of Function on a Single Chip. Less Area occupied Less power Consumption Higher Speed Higher Reliability Economical VLSI DESIGN(UNIT 1) Introduction Some History Invention of the transistor (BJT) 1947 Single-transistor integrated circuit 1958 Invention of CMOS logic gates 1963 First microprocessor (Intel 4004)1970 Very

More information

Field Effect Transistors (FET s) University of Connecticut 136

Field Effect Transistors (FET s) University of Connecticut 136 Field Effect Transistors (FET s) University of Connecticut 136 Field Effect Transistors (FET s) FET s are classified three ways: by conduction type n-channel - conduction by electrons p-channel - conduction

More information

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag FABRICATION OF CMOS INTEGRATED CIRCUITS Dr. Mohammed M. Farag Outline Overview of CMOS Fabrication Processes The CMOS Fabrication Process Flow Design Rules Reference: Uyemura, John P. "Introduction to

More information

Alternatives to standard MOSFETs. What problems are we really trying to solve?

Alternatives to standard MOSFETs. What problems are we really trying to solve? Alternatives to standard MOSFETs A number of alternative FET schemes have been proposed, with an eye toward scaling up to the 10 nm node. Modifications to the standard MOSFET include: Silicon-in-insulator

More information

VLSI Design. Introduction

VLSI Design. Introduction VLSI Design Introduction Outline Introduction Silicon, pn-junctions and transistors A Brief History Operation of MOS Transistors CMOS circuits Fabrication steps for CMOS circuits Introduction Integrated

More information

Outcomes. Spiral 1 / Unit 8. DeMorgan s Theorem DEMORGAN'S THEOREM. Transistor Implementations CMOS Logic Gates

Outcomes. Spiral 1 / Unit 8. DeMorgan s Theorem DEMORGAN'S THEOREM. Transistor Implementations CMOS Logic Gates 18.1 18.2 Spiral 1 / Unit 8 Transistor Implementations MOS Logic Gates Mark Redekopp Outcomes I know the difference between combinational and sequential logic and can name examples of each. I understand

More information

Digital Design and System Implementation. Overview of Physical Implementations

Digital Design and System Implementation. Overview of Physical Implementations Digital Design and System Implementation Overview of Physical Implementations CMOS devices CMOS transistor circuit functional behavior Basic logic gates Transmission gates Tri-state buffers Flip-flops

More information

ECE/CoE 0132: FETs and Gates

ECE/CoE 0132: FETs and Gates ECE/CoE 0132: FETs and Gates Kartik Mohanram September 6, 2017 1 Physical properties of gates Over the next 2 lectures, we will discuss some of the physical characteristics of integrated circuits. We will

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 11/6/2007 MOSFETs Lecture 6 BJTs- Lecture 1 Reading Assignment: Chapter 10 More Scalable Device Structures Vertical Scaling is important. For example,

More information

From Sand to Silicon Making of a Chip Illustrations May 2009

From Sand to Silicon Making of a Chip Illustrations May 2009 From Sand to Silicon Making of a Chip Illustrations May 2009 1 The illustrations on the following foils are low resolution images that visually support the explanations of the individual steps. For publishing

More information

Layers. Layers. Layers. Transistor Manufacturing COMP375 1

Layers. Layers. Layers. Transistor Manufacturing COMP375 1 Layers VLSI COMP370 Intro to Computer Architecture t Applications Middleware other CS classes High level languages Machine Language Microcode Logic circuits Gates Transistors Silicon structures Layers

More information

NAME: Last First Signature

NAME: Last First Signature UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

More information

CMOS VLSI Design (A3425)

CMOS VLSI Design (A3425) CMOS VLSI Design (A3425) Unit V Dynamic Logic Concept Circuits Contents Charge Leakage Charge Sharing The Dynamic RAM Cell Clocks and Synchronization Clocked-CMOS Clock Generation Circuits Communication

More information

ECE4902 B2015 HW Set 1

ECE4902 B2015 HW Set 1 ECE4902 B2015 HW Set 1 Due in class Tuesday November 3. To make life easier on the graders: Be sure your NAME and ECE MAILBOX NUMBER are prominently displayed on the upper right of what you hand in. When

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals 4.4. Field Effect Transistor (MOSFET) ENS 463 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 4N101b 1 Field-effect transistor (FET)

More information

2.8 - CMOS TECHNOLOGY

2.8 - CMOS TECHNOLOGY CMOS Technology (6/7/00) Page 1 2.8 - CMOS TECHNOLOGY INTRODUCTION Objective The objective of this presentation is: 1.) Illustrate the fabrication sequence for a typical MOS transistor 2.) Show the physical

More information

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

More information

Topic 2. Basic MOS theory & SPICE simulation

Topic 2. Basic MOS theory & SPICE simulation Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris, Ch 2 & 5.1-5.3 Rabaey, Ch 3) URL: www.ee.ic.ac.uk/pcheung/

More information

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2 Basic MOS theory & SPICE simulation Peter Cheung Department of Electrical & Electronic Engineering Imperial College London (Weste&Harris,

More information

Learning Outcomes. Spiral 2-6. Current, Voltage, & Resistors DIODES

Learning Outcomes. Spiral 2-6. Current, Voltage, & Resistors DIODES 26.1 26.2 Learning Outcomes Spiral 26 Semiconductor Material MOS Theory I underst why a diode conducts current under forward bias but does not under reverse bias I underst the three modes of operation

More information

2009 Spring CS211 Digital Systems & Lab 1 CHAPTER 3: TECHNOLOGY (PART 2)

2009 Spring CS211 Digital Systems & Lab 1 CHAPTER 3: TECHNOLOGY (PART 2) 1 CHAPTER 3: IMPLEMENTATION TECHNOLOGY (PART 2) Whatwillwelearninthischapter? we learn in this 2 How transistors operate and form simple switches CMOS logic gates IC technology FPGAs and other PLDs Basic

More information

Chapter 3. Digital Integrated Circuit Design I. ECE 425/525 Chapter 3. Substrates in MOS doped n or p type Silicon (Chemical.

Chapter 3. Digital Integrated Circuit Design I. ECE 425/525 Chapter 3. Substrates in MOS doped n or p type Silicon (Chemical. Digital Integrated Circuit Design I ECE 425/525 Professor R. Daasch Depar tment of Electrical and Computer Engineering Portland State University Portland, OR 97207-0751 (daasch@ece.pdx.edu) http://ece.pdx.edu/~ecex25

More information

Layers. Layers. Layers. Transistor Manufacturing COMP375 1

Layers. Layers. Layers. Transistor Manufacturing COMP375 1 VLSI COMP375 Computer Architecture Middleware other CS classes Machine Language Microcode Logic circuits Transistors Middleware Machine Language - earlier Microcode Logic circuits Transistors Middleware

More information

Digital Electronics Part II - Circuits

Digital Electronics Part II - Circuits Digital Electronics Part II - Circuits Dr. I. J. Wassell Gates from Transistors 1 Introduction Logic circuits are non-linear, consequently we will introduce a graphical technique for analysing such circuits

More information

ECSE-6300 IC Fabrication Laboratory Lecture 7 MOSFETs. Lecture Outline

ECSE-6300 IC Fabrication Laboratory Lecture 7 MOSFETs. Lecture Outline ECSE-6300 IC Fabrication Laboratory Lecture 7 MOSFETs Prof. Rensselaer Polytechnic Institute Troy, NY 12180 Office: CII-6229 Tel.: (518) 276-2909 e-mails: luj@rpi.edu http://www.ecse.rpi.edu/courses/s16/ecse

More information

INTRODUCTION: Basic operating principle of a MOSFET:

INTRODUCTION: Basic operating principle of a MOSFET: INTRODUCTION: Along with the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available whose Gate input is electrically insulated from the main current carrying

More information

I E I C since I B is very small

I E I C since I B is very small Figure 2: Symbols and nomenclature of a (a) npn and (b) pnp transistor. The BJT consists of three regions, emitter, base, and collector. The emitter and collector are usually of one type of doping, while

More information

Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families

Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families 1 Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families 1. Introduction 2. Metal Oxide Semiconductor (MOS) logic 2.1. Enhancement and depletion mode 2.2. NMOS and PMOS inverter

More information

Physical Bits: Transistors and Logic

Physical Bits: Transistors and Logic Physical its: Transistors and Logic Comp 411 ox-o-tricks F = XOR(,) Encoding bits with voltages The Digital contract Digital processing elements Gates Transistors uilding gates with transistors 1 Where

More information

4.1 Device Structure and Physical Operation

4.1 Device Structure and Physical Operation 10/12/2004 4_1 Device Structure and Physical Operation blank.doc 1/2 4.1 Device Structure and Physical Operation Reading Assignment: pp. 235-248 Chapter 4 covers Field Effect Transistors ( ) Specifically,

More information

Lecture 15. Field Effect Transistor (FET) Wednesday 29/11/2017 MOSFET 1-1

Lecture 15. Field Effect Transistor (FET) Wednesday 29/11/2017 MOSFET 1-1 Lecture 15 Field Effect Transistor (FET) Wednesday 29/11/2017 MOSFET 1-1 Outline MOSFET transistors Introduction to MOSFET MOSFET Types epletion-type MOSFET Characteristics Comparison between JFET and

More information

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET) FIELD EFFECT TRANSISTOR (FET) The field-effect transistor (FET) is a three-terminal device used for a variety of applications that match, to a large extent, those of the BJT transistor. Although there

More information

MOS TRANSISTOR THEORY

MOS TRANSISTOR THEORY MOS TRANSISTOR THEORY Introduction A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain is modulated by a voltage applied to the

More information

MOSFET Terminals. The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals.

MOSFET Terminals. The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals. MOSFET Terminals The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals. For an n-channel MOSFET, the SOURCE is biased at a lower potential (often

More information

Digital Electronics. By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology

Digital Electronics. By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology K. N. Toosi University of Technology Chapter 7. Field-Effect Transistors By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology http://wp.kntu.ac.ir/faradji/digitalelectronics.htm

More information

Lecture - 18 Transistors

Lecture - 18 Transistors Electronic Materials, Devices and Fabrication Dr. S. Prarasuraman Department of Metallurgical and Materials Engineering Indian Institute of Technology, Madras Lecture - 18 Transistors Last couple of classes

More information