Effects of Source Field Plate and Pt- gate Metalliza8on on AlGaN/GaN HEMTs Reliability

Size: px
Start display at page:

Download "Effects of Source Field Plate and Pt- gate Metalliza8on on AlGaN/GaN HEMTs Reliability"

Transcription

1 Effects of Source Field Plate and Pt- gate Metalliza8on on AlGaN/GaN HEMTs Reliability Robert Finch, Lu Liu, Chien- Fong Lo, Tsung- Sheng Kang, David A. Cullen, Jinhyung Kim, David. J. Smith, S. J. Pearton and Fan Ren April 12, 211

2 Effects of Source Field Plate and Pt- gate Metalliza8on on AlGaN/GaN HEMTs Reliability FLOORS Pt- gated HEMT S Pt AlGaN/GaN D VDS SiNx Field Plate N i/a u g a te P t/t i/a u g a te F o rw ard B ias Stressed device NFP FP Vcri VGS - N i/a u g a te P t/t i/a u g a te V g (V ) t=, As Built I D S (m A /m m ) IG (A) 75-3 R evers e B ias IG (ma/mm) 5 Ig (m A /m m ) 25-2 Ig (A ) Ig (m A /m m ) NFP FP 2 IDS (ma/mm) G Step =.5V 3 Stressed device Ig (A ) Source- Field Plate HEMT 4 V = V Fresh device 5 P t- g ated H E MT s Ni- g ated H E MT s 4 V G = V, s tep = - 1V F res h S tres s ed V D S ( V ) V D S ( V ) t>, Degrada4on V G = V, s tep = - 1V F res h S tres s ed 2 4

3 Proposed Degradation Mechanisms Ø Hot- electron- induced trap degrada8on (Meneghesso, 28); Ø Crystallographic- defects through the inverse piezoelectric effect (del Alamo, 28); Ø Electric- field driven mechanism; Ø Gate sinking; Ø Ohmic contact degrada8on (Meneghesso, 1998). 3

4 Micrographs With Field Plate: Without Field Plate: G G D S D S 4

5 Device Schematic & TEM result Pt deposition Field Plate Ohmic source contact Gate SiN x passivation Ohmic drain conta ield Plate GaN Phase nucleating at interface 1µm S Pt SiNx D AlGaN/GaN 5

6 Drain I-V Characteristics (ma) V G = V Step =.5V NFP FP (ma/mm) V DS 6

7 Off-state Stress Result I G (ma/mm) NFP FP I G (A) V GS V cri -7 7

8 Electric Field Simulation 2- D simula8on of the electric field distribu8on between Source and Drain. ATLAS/BLAZE (AutomaGcally tuned linear algebra sohware) Electric Field (MV/cm) S G No F ield P late F ield P late Vg=- 5V V DS =3V Position (µm) D 8

9 I G, I GS and I GD as a function of V GS I G - 4 I GS Ig (ma/mm) I GD Vcrit Ig (A) V GS - 8 9

10 TEM Result Fresh device Stressed device Source side of gate edge Drain side of gate edge Dr. Smith, ASU

11 TEM Result Au Ni AlGaN Metal diffusion GaN TD 11

12 STEM-EELS Line Scan a a Distance (nm) b Ni N O Ni c Counts ( 5 ) b Distance (nm) N O Ni Counts ( 5 ) c N O Ni nm AlGaN Distance (nm) 12

13 Field-plate Conclusions By employing Source field plate the device s cri8cal voltage has been improved from - 4 to - 65V, and breakdown voltage from 5 to 15V. 13

14 DC characteristics of Pt- and Ni-gated HEMTs (ma/mm) Ni/Au gate Pt/Ti/Au gate V DS (ma) Ig (ma/mm) Ig (ma/mm) -2 Reverse Bias Pt/Ti/Au gate Ni/Au gate Forward Bias Vg Ni/Au gate P t/ti/au gate Ig (A) Ig (A) 14

15 Comparison of V cri I G (ma/mm) Ni- gated HEMTs V DS = +5V I G (A) I G (ma/mm) 3 Pt- gated HEMTs 1 V DS = +5V V GS V GS 15

16 Comparison of Drain I-V (ma/mm) Ni- g ated H E MT s F resh S tressed V G = V, step = - 1V (ma) (ma/mm) P t- g ated H E MT s F resh S tressed V G = V, step = - 1V V DS V DS 16

17 omparison of Gate leakage current Ig (ma/mm) Reverse Bias Pt- gate Ni- gate F resh S tressed V G Ig (A) Ig (ma/mm) Pt- gate V G Forward Bias Ni- gate F resh S tressed

18 omparison of sub-threshold leakage current (ma/mm) V DS = V 2V 3V 4V Ni- g ated H E MT s V GS (A) (ma/mm) V DS = V 2V 3V 4V Pt- gated HEMTs V GS

19 omparison of ON/OFF ratio, I G (ma/mm) 6 Fresh Stressed I G V DS = +4V Ni- gated HEMTs V G , I G (A), I G (ma/mm) 6 Fresh Stressed P t- g ated H E MT s I G V DS = +4V V G , I G (A) 19

20 ummary of parameters before/after stress Pt/Ti/Au Ni/Au Subthreshold slope (mv/dec) On/Off ra8o Ideality factor Scho]ky barrier height Fresh Stressed Fresh Stressed

21 XPS results As deposit Post annealed 5 Pt on GaN As deposit 1.Pt 4f 7/2 5 Pt on GaN 4 Post-anneal 1.Pt 4f 7/2 Intensity N(E) Pt 4f 5/2 Intensity N(E) Pt 4f 5/ Binding Energy (ev) Binding Energy (ev) 21

22 XPS results As deposit Post annealed Intensity N(E) Ni on GaN As deposit 1.Ni-O 2.Ni satellite 3.Ni metal Intensity N(E) Ni on GaN 1 Post-anneal 1.Ni-O 2.Ni satellite 3.Ni metal Binding Energy (ev) Binding Energy (ev) 22

23 XPS results As deposit Post annealed Intensity N(E) Ni on GaN 2 1 As deposit 1.Ga-O 2.Ni-O (e) Ni on GaN 2 1 Post-anneal 1.Ga-O 2.Ni-O (f) Binding Energy (ev) Binding Energy (ev) 23

24 Pt gate Conclusion Using Pt gate metalliza8on, the cri8cal voltage of electrical stress has been enhanced from - 55V with Ni gate to greater than - V with Pt gate. The reliability of AlGaN/GaN HEMTs have been enhanced significantly. 24

Fundamental Failure Mechanisms Limiting Maximum Voltage Operation in AlGaN/GaN HEMTs. Michael D. Hodge, Ramakrishna Vetury, and Jeffrey B.

Fundamental Failure Mechanisms Limiting Maximum Voltage Operation in AlGaN/GaN HEMTs. Michael D. Hodge, Ramakrishna Vetury, and Jeffrey B. Fundamental Failure Mechanisms Limiting Maximum Voltage Operation in AlGaN/GaN HEMTs Michael D. Hodge, Ramakrishna Vetury, and Jeffrey B. Shealy Purpose Propose a method of determining Safe Operating Area

More information

AlGaN/GaN High-Electron-Mobility Transistor Using a Trench Structure for High-Voltage Switching Applications

AlGaN/GaN High-Electron-Mobility Transistor Using a Trench Structure for High-Voltage Switching Applications Applied Physics Research; Vol. 4, No. 4; 212 ISSN 19169639 EISSN 19169647 Published by Canadian Center of Science and Education AlGaN/GaN HighElectronMobility Transistor Using a Trench Structure for HighVoltage

More information

Reverse gate bias-induced degradation of AlGaN/GaN high electron mobility transistors

Reverse gate bias-induced degradation of AlGaN/GaN high electron mobility transistors Reverse gate bias-induced degradation of AlGaN/GaN high electron mobility transistors Chih-Yang Chang Travis Anderson and Jennifer Hite U.S. Naval Research Laboratory, Washington, DC 20375 Liu Lu, Chien-Fong

More information

Effective Channel Mobility of AlGaN/GaN-on-Si Recessed-MOS-HFETs

Effective Channel Mobility of AlGaN/GaN-on-Si Recessed-MOS-HFETs JOURNAL OF SEMICONUCTOR TECHNOLOGY AN SCIENCE, VOL.16, NO.6, ECEMBER, 216 ISSN(Print) 1598-1657 https://doi.org/1.5573/jsts.216.16.6.867 ISSN(Online) 2233-4866 Effective Channel Mobility of AlGaN/GaN-on-Si

More information

Sub-Threshold Region Behavior of Long Channel MOSFET

Sub-Threshold Region Behavior of Long Channel MOSFET Sub-threshold Region - So far, we have discussed the MOSFET behavior in linear region and saturation region - Sub-threshold region is refer to region where Vt is less than Vt - Sub-threshold region reflects

More information

GaN power electronics

GaN power electronics GaN power electronics The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Lu, Bin, Daniel Piedra, and

More information

GaN MMIC PAs for MMW Applicaitons

GaN MMIC PAs for MMW Applicaitons GaN MMIC PAs for MMW Applicaitons Miroslav Micovic HRL Laboratories LLC, 311 Malibu Canyon Road, Malibu, CA 9265, U. S. A. mmicovic@hrl.com Motivation for High Frequency Power sources 6 GHz 11 GHz Frequency

More information

International Workshop on Nitride Semiconductors (IWN 2016)

International Workshop on Nitride Semiconductors (IWN 2016) International Workshop on Nitride Semiconductors (IWN 2016) Sheng Jiang The University of Sheffield Introduction The 2016 International Workshop on Nitride Semiconductors (IWN 2016) conference is held

More information

RADIATION RESPONSE AND RELIABILITY OF HIGH SPEED AlGaN/GaN HEMTS

RADIATION RESPONSE AND RELIABILITY OF HIGH SPEED AlGaN/GaN HEMTS RADIATION RESPONSE AND RELIABILITY OF HIGH SPEED AlGaN/GaN HEMTS By Jin Chen Dissertation Submitted to the Faculty of the Graduate school of Vanderbilt University in partial fulfillment of the requirements

More information

High Voltage Normally-off GaN MOSC- HEMTs on Silicon Substrates for Power Switching Applications

High Voltage Normally-off GaN MOSC- HEMTs on Silicon Substrates for Power Switching Applications High Voltage Normally-off GaN MOSC- HEMTs on Silicon Substrates for Power Switching Applications Zhongda Li, John Waldron, Shinya Takashima, Rohan Dayal, Leila Parsa, Mona Hella, and T. Paul Chow Department

More information

Record Extrinsic Transconductance (2.45 ms/μm at V DS = 0.5 V) InAs/In 0.53 Ga 0.47 As Channel MOSFETs Using MOCVD Source-Drain Regrowth

Record Extrinsic Transconductance (2.45 ms/μm at V DS = 0.5 V) InAs/In 0.53 Ga 0.47 As Channel MOSFETs Using MOCVD Source-Drain Regrowth Record Extrinsic Transconductance (2.45 ms/μm at = 0.5 V) InAs/In 0.53 Ga 7 As Channel MOSFETs Using MOCVD Source-Drain Regrowth Sanghoon Lee 1*, C.-Y. Huang 1, A. D. Carter 1, D. C. Elias 1, J. J. M.

More information

Novel III-Nitride HEMTs

Novel III-Nitride HEMTs IEEE EDS Distinguished Lecture Boston Chapter, July 6 2005 Novel III-Nitride HEMTs Professor Kei May Lau Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials

Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials Kjeld Pedersen Department of Physics and Nanotechnology, AAU SEMPEL Semiconductor Materials for Power Electronics

More information

NAME: Last First Signature

NAME: Last First Signature UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

More information

RADIATION RESPONSE AND RELIABILITY OF AlGaN/GaN HEMTS

RADIATION RESPONSE AND RELIABILITY OF AlGaN/GaN HEMTS RADIATION RESPONSE AND RELIABILITY OF AlGaN/GaN HEMTS By Jin Chen Thesis Submitted to the Faculty of the Graduate school of Vanderbilt University in partial fulfillment of the requirements For the degree

More information

Customized probe card for on-wafer testing of AlGaN/GaN power transistors

Customized probe card for on-wafer testing of AlGaN/GaN power transistors Customized probe card for on-wafer testing of AlGaN/GaN power transistors R. Venegas 1, K. Armendariz 2, N. Ronchi 1 1 imec, 2 Celadon Systems Inc. Outline Introduction GaN for power switching applications

More information

Power. GaN. Rdyn in hard and soft-switching applications. P. Gassot, P. Moens, M. Tack, Corporate R&D Bodo Power Conference Munich, Dec.

Power. GaN. Rdyn in hard and soft-switching applications. P. Gassot, P. Moens, M. Tack, Corporate R&D Bodo Power Conference Munich, Dec. Power GaN Rdyn in hard and soft-switching applications P. Gassot, P. Moens, M. Tack, Corporate R&D Bodo Power Conference Munich, Dec. 2017 Acknowledgements The authors wish to acknowledge and thank the

More information

Acknowledgments: This work was supported by Air Force HiREV program and the DTRA Basic Research Program.

Acknowledgments: This work was supported by Air Force HiREV program and the DTRA Basic Research Program. Gate Bias and Geometry Dependence of Total-Ionizing-Dose Effects in InGaAs Quantum-Well MOSFETs K. Ni 1, E. X. Zhang 1, R. D. Schrimpf 1, D. M. Fleetwood 1, R. A. Reed 1, M. L. Alles 1, J. Lin 2, and J.

More information

AlGaN Polarization Graded Field Effect Transistors for High Linearity Microwave Applications

AlGaN Polarization Graded Field Effect Transistors for High Linearity Microwave Applications AlGaN Polarization Graded Field Effect Transistors for High Linearity Microwave Applications Shahadat H. Sohel, Hao Xue, Towhidur Razzak, Sanyam Bajaj, Yuewei Zhang, Wu Lu, Siddharth Rajan Department of

More information

Customized probe card for on wafer testing of AlGaN/GaN power transistors

Customized probe card for on wafer testing of AlGaN/GaN power transistors Customized probe card for on wafer testing of AlGaN/GaN power transistors R. Venegas 1, K. Armendariz 2, N. Ronchi 1 1 imec, 2 Celadon Systems Inc. Presented by Bryan Root 2 Outline Introduction GaN for

More information

We are right on schedule for this deliverable. 4.1 Introduction:

We are right on schedule for this deliverable. 4.1 Introduction: DELIVERABLE # 4: GaN Devices Faculty: Dipankar Saha, Subhabrata Dhar, Subhananda Chakrabati, J Vasi Researchers & Students: Sreenivas Subramanian, Tarakeshwar C. Patil, A. Mukherjee, A. Ghosh, Prantik

More information

4: Transistors Non idealities

4: Transistors Non idealities 4: Transistors Non idealities Inversion Major cause of non-idealities/complexities: Who controls channel (and how)? Large Body(Substrate) Source Voltage V G V SB - - - - - - - - n+ n+ - - - - - - - - -

More information

Gallium nitride (GaN)

Gallium nitride (GaN) 80 Technology focus: GaN power electronics Vertical, CMOS and dual-gate approaches to gallium nitride power electronics US research company HRL Laboratories has published a number of papers concerning

More information

Deprocessing and defect analysis of GaN/AlGaN HEMTs. Patrick Whiting, Ray Holzworth Dr. Nicholas Rudawski, and Dr. Kevin Jones

Deprocessing and defect analysis of GaN/AlGaN HEMTs. Patrick Whiting, Ray Holzworth Dr. Nicholas Rudawski, and Dr. Kevin Jones Deprocessing and defect analysis of GaN/AlGaN HEMTs Patrick Whiting, Ray Holzworth Dr. Nicholas Rudawski, and Dr. Kevin Jones Scientific Approach FLOORS TEM SEM SEM LEAP t=0, As Built TEM OSTS Gate Metal

More information

A New Self-aligned Quantum-Well MOSFET Architecture Fabricated by a Scalable Tight-Pitch Process

A New Self-aligned Quantum-Well MOSFET Architecture Fabricated by a Scalable Tight-Pitch Process A New Self-aligned Quantum-Well MOSFET Architecture Fabricated by a Scalable Tight-Pitch Process Jianqiang Lin, Xin Zhao, Tao Yu, Dimitri A. Antoniadis, and Jesús A. del Alamo Microsystems Technology Laboratories,

More information

InGaAs MOSFETs for CMOS:

InGaAs MOSFETs for CMOS: InGaAs MOSFETs for CMOS: Recent Advances in Process Technology J. A. del Alamo, D. Antoniadis, A. Guo, D.-H. Kim 1, T.-W. Kim 2, J. Lin, W. Lu, A. Vardi and X. Zhao Microsystems Technology Laboratories,

More information

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.2, APRIL, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.2.221 ISSN(Online) 2233-4866 Normally-Off Operation of AlGaN/GaN

More information

Design of Enhancement Mode Single-gate and Double-gate Multi-channel GaN HEMT with Vertical Polarity Inversion Heterostructure

Design of Enhancement Mode Single-gate and Double-gate Multi-channel GaN HEMT with Vertical Polarity Inversion Heterostructure MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Design of Enhancement Mode Single-gate and Double-gate Multi-channel GaN HEMT with Vertical Polarity Inversion Heterostructure Feng, P.; Teo,

More information

FABRICATION OF SELF-ALIGNED T-GATE AlGaN/GaN HIGH

FABRICATION OF SELF-ALIGNED T-GATE AlGaN/GaN HIGH International Journal of High Speed Electronics and Systems World Scientific Vol. 14, No. 3 (24) 85-89 wworldscientific World Scientific Publishing Company www.worldsclentific.com FABRICATION OF SELF-ALIGNED

More information

3: MOS Transistors. Non idealities

3: MOS Transistors. Non idealities 3: MOS Transistors Non idealities Inversion Major cause of non-idealities/complexities: Who controls channel (and how)? Large Body(Substrate) Source Voltage V G V SB - - - - - - - - n+ n+ - - - - - - -

More information

E-MODE III-N HIGH-VOLTAGE TRANSISTOR DEVELOPMENT

E-MODE III-N HIGH-VOLTAGE TRANSISTOR DEVELOPMENT 1 E-MODE III-N HIGH-VOLTAGE TRANSISTOR DEVELOPMENT 1 st -Year Final Project Report (Feb 2010 March 2011) Presented to Intersil Corp., Milpitas CA Program Manager: Dr. François Hébert Georgia Tech PIs:

More information

3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET)

3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET) 3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET) Pei W. Ding, Kristel Fobelets Department of Electrical Engineering, Imperial College London, U.K. J. E. Velazquez-Perez

More information

CHAPTER 8 FIELD EFFECT TRANSISTOR (FETs)

CHAPTER 8 FIELD EFFECT TRANSISTOR (FETs) CHAPTER 8 FIELD EFFECT TRANSISTOR (FETs) INTRODUCTION - FETs are voltage controlled devices as opposed to BJT which are current controlled. - There are two types of FETs. o Junction FET (JFET) o Metal

More information

Enhancement-mode AlGaN/GaN HEMTs on silicon substrate

Enhancement-mode AlGaN/GaN HEMTs on silicon substrate phys. stat. sol. (c) 3, No. 6, 368 37 (6) / DOI 1.1/pssc.565119 Enhancement-mode AlGaN/GaN HEMTs on silicon substrate Shuo Jia, Yong Cai, Deliang Wang, Baoshun Zhang, Kei May Lau, and Kevin J. Chen * Department

More information

GaN: Applications: Optoelectronics

GaN: Applications: Optoelectronics GaN: Applications: Optoelectronics GaN: Applications: Optoelectronics - The GaN LED industry is >10 billion $ today. - Other optoelectronic applications of GaN include blue lasers and UV emitters and detectors.

More information

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; Chapter 3 Field-Effect Transistors (FETs) 3.1 Introduction Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; The concept has been known

More information

I E I C since I B is very small

I E I C since I B is very small Figure 2: Symbols and nomenclature of a (a) npn and (b) pnp transistor. The BJT consists of three regions, emitter, base, and collector. The emitter and collector are usually of one type of doping, while

More information

MOSFET short channel effects

MOSFET short channel effects MOSFET short channel effects overview Five different short channel effects can be distinguished: velocity saturation drain induced barrier lowering (DIBL) impact ionization surface scattering hot electrons

More information

SEVERAL III-V materials, due to their high electron

SEVERAL III-V materials, due to their high electron IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 64, NO. 1, JANUARY 2017 239 Gate Bias and Geometry Dependence of Total-Ionizing-Dose Effects in InGaAs Quantum-Well MOSFETs Kai Ni, Student Member, IEEE, En Xia

More information

832 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 64, NO. 3, MARCH 2017

832 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 64, NO. 3, MARCH 2017 832 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 64, NO. 3, MARCH 2017 Investigation of In Situ SiN as Gate Dielectric and Surface Passivation for GaN MISHEMTs Huaxing Jiang, Chao Liu, Yuying Chen, Xing

More information

Scaling and High-Frequency Performance of AlN/GaN HEMTs

Scaling and High-Frequency Performance of AlN/GaN HEMTs Scaling and High-Frequency Performance of AlN/GaN HEMTs Xi Luo 1, Subrata Halder 1, Walter R. Curtice 1, James C. M. Hwang 1, Kelson D. Chabak 2, Dennis E. Walker, Jr. 2, and Amir M. Dabiran 3 1 Lehigh

More information

Composants HEMT InAlGaN/GaN pour applications en bandes Ka et Q.

Composants HEMT InAlGaN/GaN pour applications en bandes Ka et Q. Composants HEMT InAlGaN/GaN pour applications en bandes Ka et Q. Stéphane PIOTROWICZ, Olivier PATARD, Jean-Claude JACQUET, Piero GAMARRA, Christian DUA & Sylvain DELAGE RF & Microwave 22 mars 2018 Copyright

More information

III-Nitride microwave switches Grigory Simin

III-Nitride microwave switches Grigory Simin Microwave Microelectronics Laboratory Department of Electrical Engineering, USC Research Focus: - Wide Bandgap Microwave Power Devices and Integrated Circuits - Physics, Simulation, Design and Characterization

More information

RF Power Degradation of GaN High Electron Mobility Transistors

RF Power Degradation of GaN High Electron Mobility Transistors RF Power Degradation of GaN High Electron Mobility Transistors The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

GaN based Power Devices. Michael A. Briere. RPI CFES Conference

GaN based Power Devices. Michael A. Briere. RPI CFES Conference GaN based Power Devices Michael A. Briere ACOO Enterprises LLC Under contract to International Rectifier RPI CFES Conference January 25, 2013 1 Motivation : Potential Energy Savings Worldwide M.A. Briere

More information

CHAPTER 2 HEMT DEVICES AND BACKGROUND

CHAPTER 2 HEMT DEVICES AND BACKGROUND CHAPTER 2 HEMT DEVICES AND BACKGROUND 2.1 Overview While the most widespread application of GaN-based devices is in the fabrication of blue and UV LEDs, the fabrication of microwave power devices has attracted

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1 Introduction of Device Technology Digital wireless communication system has become more and more popular in recent years due to its capability for both voice and data communication.

More information

Bias Stress Testing of SiC MOSFETs

Bias Stress Testing of SiC MOSFETs Bias Stress Testing of SiC MOSFETs Robert Shaw Manager, Test and Qualification August 15 th, 2014 Special thanks to the U.S. Department of Energy for funding this under SBIR DE-SC0011315. Outline Objectives

More information

PRELIMINARY = 25 C) Parameter GHz 14.0 GHz 14.5 GHz Units Small Signal Gain db P SAT. = 26 dbm W P 3dB

PRELIMINARY = 25 C) Parameter GHz 14.0 GHz 14.5 GHz Units Small Signal Gain db P SAT. = 26 dbm W P 3dB CMPADE030D PRELIMINARY 30 W, 3.75-4.5 GHz, 40 V, GaN MMIC, Power Amplifier Cree s CMPADE030D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit

More information

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs Sanghoon Lee 1*, V. Chobpattana 2,C.-Y. Huang 1, B. J. Thibeault 1, W. Mitchell 1, S. Stemmer

More information

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences.

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences. UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences Discussion #9 EE 05 Spring 2008 Prof. u MOSFETs The standard MOSFET structure is shown

More information

Wu Lu Department of Electrical and Computer Engineering and Microelectronics Laboratory, University of Illinois, Urbana, Illinois 61801

Wu Lu Department of Electrical and Computer Engineering and Microelectronics Laboratory, University of Illinois, Urbana, Illinois 61801 Comparative study of self-aligned and nonself-aligned SiGe p-metal oxide semiconductor modulation-doped field effect transistors with nanometer gate lengths Wu Lu Department of Electrical and Computer

More information

New Generation Reliability Model

New Generation Reliability Model New Generation Reliability Model S.-Y. Liao, C. Huang, T. Guo, A. Chen, Jushan Xie, Cadence Design Systems, Inc. S. Guo, R. Wang, Z. Yu, P. Hao, P. Ren, Y. Wang, R. Huang, Peking University Dec. 5th, 2016

More information

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices Anri Nakajima Research Center for Nanodevices and Systems, Hiroshima University 1-4-2 Kagamiyama, Higashi-Hiroshima,

More information

Research Article GaN-Based High-k Praseodymium Oxide Gate MISFETs with P 2 S 5 /(NH 4 ) 2 S X + UV Interface Treatment Technology

Research Article GaN-Based High-k Praseodymium Oxide Gate MISFETs with P 2 S 5 /(NH 4 ) 2 S X + UV Interface Treatment Technology Active and Passive Electronic Components Volume, Article ID 9, pages doi:.//9 Research Article GaN-Based High-k Praseodymium Oxide Gate MISFETs with P S /(NH S X + UV Interface Treatment Technology Chao-Wei

More information

Modeling the Influence of Dielectric Interface Traps on I-V Characteristics of TFETs

Modeling the Influence of Dielectric Interface Traps on I-V Characteristics of TFETs Modeling the Influence of Dielectric Interface Traps on I-V Characteristics of TFETs Jie Min 1, Peter Asbeck UCSD 1 Present address: Global Foundries, Santa Clara, CA Schematic TFET Structures Based on

More information

Y9.FS1.2.1: GaN Low Voltage Power Device Development. Sizhen Wang (Ph.D., EE)

Y9.FS1.2.1: GaN Low Voltage Power Device Development. Sizhen Wang (Ph.D., EE) Y9.FS1.2.1: GaN Low Voltage Power Device Development Faculty: Students: Alex. Q. Huang Sizhen Wang (Ph.D., EE) 1. Project Goals The overall objective of the GaN power device project is to fabricate and

More information

Ceramic Packaged GaAs Power phemt DC-12 GHz

Ceramic Packaged GaAs Power phemt DC-12 GHz Ceramic Packaged GaAs Power phemt DC-12 GHz DESCRIPTION AMCOM s is a discrete GaAs phemt that has a total gate width of 1.mm. It is in a ceramic BH package for operating up to 12 GHz. The BH package has

More information

DC AND SMALL SIGNAL DEGRADATION IN INAS - ALSB HEMTS UNDER HOT CARRIER STRESS. Sandeepan DasGupta. Dissertation. Submitted to the Faculty of the

DC AND SMALL SIGNAL DEGRADATION IN INAS - ALSB HEMTS UNDER HOT CARRIER STRESS. Sandeepan DasGupta. Dissertation. Submitted to the Faculty of the DC AND SMALL SIGNAL DEGRADATION IN INAS - ALSB HEMTS UNDER HOT CARRIER STRESS By Sandeepan DasGupta Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment

More information

Development of Microwave and Terahertz Detectors Utilizing AlN/GaN High Electron Mobility Transistors

Development of Microwave and Terahertz Detectors Utilizing AlN/GaN High Electron Mobility Transistors Development of Microwave and Terahertz Detectors Utilizing AlN/GaN High Electron Mobility Transistors L. Liu 1, 2,*, B. Sensale-Rodriguez 1, Z. Zhang 1, T. Zimmermann 1, Y. Cao 1, D. Jena 1, P. Fay 1,

More information

Microwave & RF 22 nd of March 2018 D. FLORIOT

Microwave & RF 22 nd of March 2018 D. FLORIOT Microwave & RF 22 nd of March 2018 D. FLORIOT Outine Introduction GaN technology roadmap GH15-10 : Up to Ka band GH10 : Towards high frequency (Q / V bands) GaN : Technology & Integration 2 UMS at a glance

More information

Fabrication of High-Power AlGaN/GaN Schottky Barrier Diode with Field Plate Design

Fabrication of High-Power AlGaN/GaN Schottky Barrier Diode with Field Plate Design Fabrication of High-Power AlGaN/GaN Schottky Barrier Diode with Field Plate Design Chia-Jui Yu, Chien-Ju Chen, Jyun-Hao Liao, Chia-Ching Wu, Meng-Chyi Wu Abstract In this letter, we demonstrate high-performance

More information

600V GaN Power Transistor

600V GaN Power Transistor 600V GaN Power Transistor Sample Available Features Normally-Off Current-Collapse-Free Zero Recovery GaN Power Transistor (TO220 Package) ID(Continuous) : 15A RDS(on) : 65m Qg : 11nC Applications Power

More information

Electronic Circuits. Junction Field-effect Transistors. Dr. Manar Mohaisen Office: F208 Department of EECE

Electronic Circuits. Junction Field-effect Transistors. Dr. Manar Mohaisen Office: F208   Department of EECE Electronic Circuits Junction Field-effect Transistors Dr. Manar Mohaisen Office: F208 Email: manar.subhi@kut.ac.kr Department of EECE Review of the Precedent Lecture Explain the Operation Class A Power

More information

A 2.4GHz Fully Integrated CMOS Power Amplifier Using Capacitive Cross-Coupling

A 2.4GHz Fully Integrated CMOS Power Amplifier Using Capacitive Cross-Coupling A 2.4GHz Fully Integrated CMOS Power Amplifier Using Capacitive Cross-Coupling JeeYoung Hong, Daisuke Imanishi, Kenichi Okada, and Akira Tokyo Institute of Technology, Japan Contents 1 Introduction PA

More information

Sub-30 nm InAs Quantum-Well MOSFETs with Self-Aligned Metal Contacts and Sub-1 nm EOT HfO 2 Insulator

Sub-30 nm InAs Quantum-Well MOSFETs with Self-Aligned Metal Contacts and Sub-1 nm EOT HfO 2 Insulator Sub-30 nm InAs Quantum-Well MOSFETs with Self-Aligned Metal Contacts and Sub-1 nm EOT HfO 2 Insulator Jianqiang Lin, Dimitri A. Antoniadis, and Jesús A. del Alamo Microsystems Technology Laboratories,

More information

INVESTIGATION OF DEGRADATION EFFECTS DUE TO GATE STRESS. IN GaN-ON-Si HIGH ELECTRON MOBILITY TRANSISTORS THROUGH ANALYSIS OF LOW FREQUENCY NOISE

INVESTIGATION OF DEGRADATION EFFECTS DUE TO GATE STRESS. IN GaN-ON-Si HIGH ELECTRON MOBILITY TRANSISTORS THROUGH ANALYSIS OF LOW FREQUENCY NOISE INVESTIGATION OF DEGRADATION EFFECTS DUE TO GATE STRESS IN GaN-ON-Si HIGH ELECTRON MOBILITY TRANSISTORS THROUGH ANALYSIS OF LOW FREQUENCY NOISE A Thesis presented to the Faculty of California Polytechnic

More information

Carbon Nanotube Bumps for Thermal and Electric Conduction in Transistor

Carbon Nanotube Bumps for Thermal and Electric Conduction in Transistor Carbon Nanotube Bumps for Thermal and Electric Conduction in Transistor V Taisuke Iwai V Yuji Awano (Manuscript received April 9, 07) The continuous miniaturization of semiconductor chips has rapidly improved

More information

TEST FREQ. 12 GHz 18 GHz 12 GHz 18 GHz. P1dB Output p1db (Vds = 2V, Id = 10mA) 12 GHz dbm

TEST FREQ. 12 GHz 18 GHz 12 GHz 18 GHz. P1dB Output p1db (Vds = 2V, Id = 10mA) 12 GHz dbm SUPER LOW NOISE PHEMT CHIP (.15µm x 160µm) The BeRex BCL016B is a GaAs super low noise phemt with a nominal 0.15 micron gate length and 160 micron gate width making the product ideally suited for applications

More information

8. Characteristics of Field Effect Transistor (MOSFET)

8. Characteristics of Field Effect Transistor (MOSFET) 1 8. Characteristics of Field Effect Transistor (MOSFET) 8.1. Objectives The purpose of this experiment is to measure input and output characteristics of n-channel and p- channel field effect transistors

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals 4.4. Field Effect Transistor (MOSFET) ENS 463 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 4N101b 1 Field-effect transistor (FET)

More information

PERSPECTIVES FOR DISRUPTIVE 200MM/8-INCH GAN POWER DEVICE AND GAN-IC TECHNOLOGY DR. DENIS MARCON SR. BUSINESS DEVELOPMENT MANAGER

PERSPECTIVES FOR DISRUPTIVE 200MM/8-INCH GAN POWER DEVICE AND GAN-IC TECHNOLOGY DR. DENIS MARCON SR. BUSINESS DEVELOPMENT MANAGER PERSPECTIVES FOR DISRUPTIVE 200MM/8-INCH GAN POWER DEVICE AND GAN-IC TECHNOLOGY DR. DENIS MARCON SR. BUSINESS DEVELOPMENT MANAGER What I will show you today 200mm/8-inch GaN-on-Si e-mode/normally-off technology

More information

AlGaN/GaN metal-insulator-semiconductor heterojunction field-effect transistors using BN and AlTiO high-k gate insulators

AlGaN/GaN metal-insulator-semiconductor heterojunction field-effect transistors using BN and AlTiO high-k gate insulators AlGaN/GaN metal-insulator-semiconductor heterojunction field-effect transistors using BN and AlTiO high-k gate insulators NGUYEN QUY TUAN Japan Advanced Institute of Science and Technology Doctoral Dissertation

More information

CHARACTERIZATION OF GaN MOS-HEMT TRAP- RELATED EFFECTS FOR POWER SWITCHING APPLICATIONS

CHARACTERIZATION OF GaN MOS-HEMT TRAP- RELATED EFFECTS FOR POWER SWITCHING APPLICATIONS CHARACTERIZATION OF GaN MOS-HEMT TRAP- RELATED EFFECTS FOR POWER SWITCHING APPLICATIONS BY DABIN ZHANG THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP015074 TITLE: Channel Recessed 4H-SiC MESFETs with Ft o f14.5ghz and F max of 40GHz DISTRIBUTION: Approved for public release,

More information

Self-Aligned-Gate GaN-HEMTs with Heavily-Doped n + -GaN Ohmic Contacts to 2DEG

Self-Aligned-Gate GaN-HEMTs with Heavily-Doped n + -GaN Ohmic Contacts to 2DEG Self-Aligned-Gate GaN-HEMTs with Heavily-Doped n + -GaN Ohmic Contacts to 2DEG K. Shinohara, D. Regan, A. Corrion, D. Brown, Y. Tang, J. Wong, G. Candia, A. Schmitz, H. Fung, S. Kim, and M. Micovic HRL

More information

ASM GaN HEMT: Advanced SPICE Model for GaN HEMTs

ASM GaN HEMT: Advanced SPICE Model for GaN HEMTs ASM GaN HEMT: Advanced SPICE Model for GaN HEMTs Sourabh Khandelwal, T. A. Fjeldly, B. Iniguez, Y. S. Chauhan, S. Ghosh, A. Dasgupta MOS-AK 2014 Sourabh Khandelwal MOS-AK 2014 1 Outline ASM-HEMT Model

More information

Students: Yifan Jiang (Research Assistant) Siyang Liu (Visiting Scholar)

Students: Yifan Jiang (Research Assistant) Siyang Liu (Visiting Scholar) Y9.FS1.1: SiC Power Devices for SST Applications Project Leader: Faculty: Dr. Jayant Baliga Dr. Alex Huang Students: Yifan Jiang (Research Assistant) Siyang Liu (Visiting Scholar) 1. Project Goals (a)

More information

EE241 - Spring 2013 Advanced Digital Integrated Circuits. Projects. Groups of 3 Proposals in two weeks (2/20) Topics: Lecture 5: Transistor Models

EE241 - Spring 2013 Advanced Digital Integrated Circuits. Projects. Groups of 3 Proposals in two weeks (2/20) Topics: Lecture 5: Transistor Models EE241 - Spring 2013 Advanced Digital Integrated Circuits Lecture 5: Transistor Models Projects Groups of 3 Proposals in two weeks (2/20) Topics: Soft errors in datapaths Soft errors in memory Integration

More information

CHAPTER I INTRODUCTION. mechanisms for the device are yet to be adequately understood. In this thesis, a detailed

CHAPTER I INTRODUCTION. mechanisms for the device are yet to be adequately understood. In this thesis, a detailed CHAPTER I INTRODUCTION Indium Arsenide (InAs) channel high electron mobility transistors (HEMTs) with Aluminium Antimonide (AlSb) barriers are an exciting option for low power RF applications due to excellent

More information

A new Hetero-material Stepped Gate (HSG) SOI LDMOS for RF Power Amplifier Applications

A new Hetero-material Stepped Gate (HSG) SOI LDMOS for RF Power Amplifier Applications A new Hetero-material Stepped Gate (HSG) SOI LDMOS for RF Power Amplifier Applications Radhakrishnan Sithanandam and M. Jagadesh Kumar, Senior Member, IEEE Department of Electrical Engineering Indian Institute

More information

FP Description. Features. Applications. Packaging Information. 340W, 48V GaN HEMT D

FP Description. Features. Applications. Packaging Information. 340W, 48V GaN HEMT D FP48005340 340W, 48V GaN HEMT D Description The FP48005340 is a 340W gallium nitride (GaN) High Electron Mobility Transistor (HEMT). This GaN HEMT is a wideband transistor optimized for 3.5GHz operation

More information

FP Description. Features. Applications. Packaging Information. 260W, 48V GaN HEMT D

FP Description. Features. Applications. Packaging Information. 260W, 48V GaN HEMT D FP48005260 260W, 48V GaN HEMT D Description The FP48005260 is a 260W gallium nitride (GaN) High Electron Mobility Transistor (HEMT). This GaN HEMT is a wideband transistor optimized for 3.5GHz operation

More information

A Gate Sinking Threshold Voltage Adjustment Technique for High Voltage GaN HEMT

A Gate Sinking Threshold Voltage Adjustment Technique for High Voltage GaN HEMT A Gate Sinking Threshold Voltage Adjustment Technique for High Voltage GaN HEMT by WeiJia Zhang A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate

More information

Parasitic Resistance Effects on Mobility Extraction of Normally-off AlGaN/GaN Gate-recessed MISHFETs

Parasitic Resistance Effects on Mobility Extraction of Normally-off AlGaN/GaN Gate-recessed MISHFETs JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.18, NO.1, FEBRUARY, 2018 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2018.18.1.078 ISSN(Online) 2233-4866 Parasitic Resistance Effects on Mobility

More information

FP Description. Features. Applications. Packaging Information. 50W, 28V GaN HEMT Die

FP Description. Features. Applications. Packaging Information. 50W, 28V GaN HEMT Die FP28010060 50W, 28V GaN HEMT Die Description The FP28010060 is a 50W gallium nitride (GaN) High Electron Mobility Transistor (HEMT). This GaN HEMT is a wideband transistor optimized for X-band operation

More information

Lecture (03) The JFET

Lecture (03) The JFET Lecture (03) The JFET By: Dr. Ahmed ElShafee ١ JFET Basic Structure Figure shows the basic structure of an n channel JFET (junction field effect transistor). Wire leads are connected to each end of the

More information

Forming Gas Post Metallization Annealing of Recessed AlGaN/GaN-on-Si MOSHFET

Forming Gas Post Metallization Annealing of Recessed AlGaN/GaN-on-Si MOSHFET http://dx.doi.org/10.5573/jsts.2015.15.1.016 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.1, FEBRUARY, 2015 Forming Gas Post Metallization Annealing of Recessed AlGaN/GaN-on-Si MOSHFET Jung-Yeon

More information

IFB270 Advanced Electronic Circuits

IFB270 Advanced Electronic Circuits IFB270 Advanced Electronic Circuits Chapter 9: FET amplifiers and switching circuits Prof. Manar Mohaisen Department of EEC Engineering Review of the Precedent Lecture Review of basic electronic devices

More information

FP Description. Features. Applications. Packaging Information. 104W, 48V GaN HEMT D

FP Description. Features. Applications. Packaging Information. 104W, 48V GaN HEMT D FP48007104 104W, 48V GaN HEMT D Description The FP48007104 is a 104W gallium nitride (GaN) High Electron Mobility Transistor (HEMT). This GaN HEMT is a wideband transistor optimized for 3.5GHz operation

More information

Reliability Investigation of GaN HEMTs for MMICs Applications

Reliability Investigation of GaN HEMTs for MMICs Applications Micromachines 2014, 5, 570-582; doi:10.3390/mi5030570 Article OPEN ACCESS micromachines ISSN 2072-666X www.mdpi.com/journal/micromachines Reliability Investigation of GaN HEMTs for MMICs Applications Alessandro

More information

On-Wafer Integration of Nitrides and Si Devices: Bringing the Power of Polarization to Si

On-Wafer Integration of Nitrides and Si Devices: Bringing the Power of Polarization to Si On-Wafer Integration of Nitrides and Si Devices: Bringing the Power of Polarization to Si The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

From Bulk Gallium Nitride Material to Vertical GaN Devices

From Bulk Gallium Nitride Material to Vertical GaN Devices From Bulk Gallium Nitride Material to Vertical GaN Devices Thomas Mikolajick 1,2, Stefan Schmult 2, Rico Hentschel 1, Patrick Hofmann 1, and Andre Wachowiak 1 1 NaMLab ggmbh 2 Chair of Nanoelectronic Materials,

More information

N-polar GaN/ AlGaN/ GaN high electron mobility transistors

N-polar GaN/ AlGaN/ GaN high electron mobility transistors JOURNAL OF APPLIED PHYSICS 102, 044501 2007 N-polar GaN/ AlGaN/ GaN high electron mobility transistors Siddharth Rajan a Electrical and Computer Engineering Department, University of California, Santa

More information

FET(Field Effect Transistor)

FET(Field Effect Transistor) Field Effect Transistor: Construction and Characteristic of JFETs. Transfer Characteristic. CS,CD,CG amplifier and analysis of CS amplifier MOSFET (Depletion and Enhancement) Type, Transfer Characteristic,

More information

III-V CMOS: Quo Vadis?

III-V CMOS: Quo Vadis? III-V CMOS: Quo Vadis? J. A. del Alamo, X. Cai, W. Lu, A. Vardi, and X. Zhao Microsystems Technology Laboratories Massachusetts Institute of Technology Compound Semiconductor Week 2018 Cambridge, MA, May

More information

MACOM GaN Reliability Presentation GaN on Silicon Processes and Products

MACOM GaN Reliability Presentation GaN on Silicon Processes and Products MACOM GaN Reliability Presentation GaN on Silicon Processes and Products 1 MACOM GaN on Silicon Reliability Presentation MACOM GaN Strategy GaN on Silicon Carbide 0.5um GaN HEMT process 0.25um GaN HEMT

More information

High Power Wideband AlGaN/GaN HEMT Feedback. Amplifier Module with Drain and Feedback Loop. Inductances

High Power Wideband AlGaN/GaN HEMT Feedback. Amplifier Module with Drain and Feedback Loop. Inductances High Power Wideband AlGaN/GaN HEMT Feedback Amplifier Module with Drain and Feedback Loop Inductances Y. Chung, S. Cai, W. Lee, Y. Lin, C. P. Wen, Fellow, IEEE, K. L. Wang, Fellow, IEEE, and T. Itoh, Fellow,

More information

Performance Analysis of 20 nm Pentagonal and Trapezoidal NanoWire Transistor with Si and Ge Channel

Performance Analysis of 20 nm Pentagonal and Trapezoidal NanoWire Transistor with Si and Ge Channel Performance Analysis of 20 nm Pentagonal and Trapezoidal NanoWire Transistor with Si and Ge Channel SANDEEP SINGH GILL 1, JAIDEV KAUSHIK 2, NAVNEET KAUR 3 Department of Electronics and Communication Engineering

More information