Demo board DC365A Quick Start Guide.

Size: px
Start display at page:

Download "Demo board DC365A Quick Start Guide."

Transcription

1 August 02, Demo board DC365A Quick Start Guide. I. Introduction The DC365A demo board is intended to demonstrate the capabilities of the LT5503 RF transmitter IC. This IC incorporates a 1.2 GHz to 2.7 GHz direct I/Q modulator and a 1.7GHz to 2.7GHz mixer. The LT5503 IC operates over a wide supply voltage range, from 5.25V down to 1.8V, and is compatible with the LTC family of WLAN products. The LT5503 (Figure 1) contains a high frequency quadrature modulator with a variable gain amplifier (VGA), and a balanced upconverting mixer. The modulator includes a precision 90 phase shifter which allows direct modulation of an RF signal by the baseband I and Q signals. Depending on transceiver architecture and other considerations, the upconverting mixer can be used to generate the highfrequency RF input for the modulator by mixing the system s 1st and 2nd local oscillators. The LT5503 modulator output can deliver up to 3dBm at 2.5GHz. The VGA allows output power reduction in three steps, up to 15dB with two control pins. The baseband inputs are internally biased for maximum input voltage swing at low supply voltage. If needed, they can be driven with external bias voltages. Up mixer Enable Modulator Enable LO2IN VCC2 2V C p C p 2 1 BPF VccLO2 VccLO1 MX MX MIXEN MODEN L3 2.7nH VccRF VccMOD 0 90 C p BQ BQ VccVGA VGA C1 2p R2 47 R1 390 MODRFout VCC1 2V C7 8p L1 15n L2 2.2nH 2.45 GHz Modulated RF Out DMODE LO1 CONTROL LOGIC GC1 GC2 L4 3.3nH BI BI Figure 1. LT5503 IC block diagram. The DC365A demo board (Figure 2A & 2B) is intended to demonstrate the upconverting mixer and an I/Q modulator independently or in a chain, with the upconverting mixer generating the highfrequency carrier signal for the modulator input. A transceiver application schematic for the upconverting mixer followed by the I/Q modulator is shown in Figure 3. A transceiver application schematic for the direct I/Q modulator in conjunction with a direct conversion receiver is shown in Figure 4. The demo board s modulator input/output matching circuitry is optimized for 2.45 GHz applications. The mixer LO1 input is optimized for 2075 MHz. The mixer LO2 input is broadband without external matching circuitry. Values for 1.2 GHz and 1.9 GHz frequencies are available in the application notes of the LT5503 data sheet. 1

2 Matching circuit MIXRFOUT I IN Single ended to differential Converter Circuit LT5503 IC MODRFOUT LO2 IN o Σ 90 o Matching circuit Q IN Single ended to differential Converter Circuit LO1IN Matching circuit Matching circuit Figure 2A. Demo board DC365A block diagram. Q IN I IN GND VCC4 VCC1 V2 V1 V3 MODRFOUT LT5503 IC LO1 IN LO2 IN GND VCC VCC3 Figure 2B. Demo board DC365A. MIXRFOUT 2

3 Rx BPF 0 Divide 1/2 LT5500 LO Buffer LT Main PLL BPF 2 nd Rx LO & Tx offset PLL (2 nd Rx LO=Rx IF x 2) I I I/Q modulator 0 LO Buffer PA driver Tx Up converter Divide 1/2 (or straight) 90 LT5503 Tx power control Q Q Control Figure 3. LT5503 transceiver implementation with super heterodyne receiver. 3

4 Direct conversion receiver IC 0 90 I I Main PLL PA driver I/Q modulator 0 Divide 1/2 (or straight) 90 LT5503 Tx Up converter Tx power control Q Q Control Figure 4. LT5503 transceiver implementation with direct conversion receiver. 4

5 II. Applications and implementation issues. I/Q inputs external circuitry (refer to demo board schematic). The external I/Q input circuitry is provided to convert single ended input modulation signals to differential signals to best utilize the differential I/Q inputs of the LT5503 IC. If desired by users, the external I/Q input circuitry can be configured to provide singleended to single ended buffering only. In this case, capacitors C17 and C18 should be removed and capacitors C41 and C42 should be placed on the demo board. C41 and C42 provide RF ground to unused I/Q ports. Control signals for demo board dipswitch block (numbers marked on the body of the dipswitch): Modulator RF output power Maximum 4.5 db 9.0 db 13.5 db 1 st GC1 least significant bit of modulator output LOW HIGH LOW HIGH power control 2 nd GC2 most significant bit of modulator output power control LOW LOW HIGH HIGH LOGIC STATE LOW HIGH 3 d DMODE Mixer 2 nd LO divider mode control DIVIDEBY2 DIVIDEBY1 4 th MixEN Mixer Enable MIXER DISABLED MIXER ENABLED 5 th ModEN Modulator Enable MODULATOR DISABLED MODULATOR ENABLED 6 th not used III. LT5503 up converting mixer basic tests and measurements for 2.45 GHz band. NOTE: 2.45 GHz demo board version should be used. 1. Connect all the test equipment and power supplies as shown on Figure Set power supply #2 and power supply #3 to desired supply voltage from 1.8 to 5.25 volts. NOTE: One power supply can be used if desired. 3. Set dipswitch #4 to logic state LOW. Mixer is in OFF state. Measure supply current for mixer OFF state. 4. Set dipswitch #4 to logic state HIGH. Mixer is in ON state. Measure supply current for mixer ON state. 5. Set dipswitch #3 to logic state LOW for divideby2 setting for LO2 input. Set Signal Generator 2 for F = 750 MHz, Pout = 18 dbm CW signal. 6. Set Signal Generator #1 for F = 2075 MHz, Pout = 12 dbm CW signal. 7. Set Spectrum Analyzer for center frequency 2450 MHz. Perform mixer conversion gain and LO1/LO2 leakage measurements. Repeat measurements with different RF input power levels for LO1 and LO2 ports. 8. Set dipswitch #3 to logic state HIGH for divideby1 setting for LO2 input. Set Signal Generator 2 for F = 375 MHz, Pout = 18 dbm CW signal. 9. Repeat measurements of step 7. 5

6 IV. LT5503 up converting mixer basic tests and measurements for 1.9 GHz band. NOTE: 1.9 GHz demo board version should be used. 1. Connect all the test equipment and power supplies as shown on Figure Set power supply #2 and power supply #3 to desired supply voltage from 1.8 to 5.25 volts. NOTE: One power supply can be used if desired. 3. Set dipswitch #4 to logic state LOW. Mixer is in OFF state. Measure supply current for mixer OFF state. 4. Set dipswitch #4 to logic state HIGH. Mixer is in ON state. Measure supply current for mixer ON state. 5. Set dipswitch #3 to logic state LOW for divideby2 setting for LO2 input. Set Signal Generator 2 for F = 480 MHz, Pout = 18 dbm CW signal. 6. Set Signal Generator #1 for F=1660 MHz, Pout = 12 dbm CW signal. 7. Set Spectrum Analyzer for center frequency 1900 MHz. Perform mixer conversion gain and LO1/LO2 leakage measurements. Repeat measurements with different RF input power levels for LO1 and LO2 ports. 8. Set dipswitch #3 to logic state HIGH for divideby1 setting for LO2 input. Set Signal Generator 2 for F = 240 MHz, Pout = 18 dbm CW signal. 9. Repeat measurements of step 7. 6

7 Q IN I IN. GND VCC4 VCC1 V2 V1 V3 MODRFOUT LT5503 IC LO1 IN LO2 IN GND VCC VCC3 Signal Generator 2 MIXRFOUT Power Supply #3 Signal Generator 1 Spectrum Analyzer Power Supply #2 Figure 5. Test set up for LT5503 up mixer measurements. 7

8 V. LT5503 I/Q modulator basic tests and measurements for 2.45 GHz band. NOTE: 2.45 GHz demo board version should be used. 1. Connect all the test equipment and power supplies as shown on Figure Set power supply #4 to provide voltage from 3.5 to 5.25 volts. NOTE: This power supply provides Vcc to two opamps ICs that perform single ended to differential conversion for the LT5503 modulator differential I/Q inputs. 3. Set power supply #1 and power supply #3 to desired supply voltage from 1.8 to 5.25 volts. NOTE: Single power supply can be used if desired to provide supply #1 and supply #3. 4. Set dipswitches #1 and #2 to logic state LOW/LOW (modulator maximum power output). 5. Set dipswitch #5 to logic state LOW. Modulator is in OFF state. Measure supply current for modulator OFF state. 6. Set dipswitch #5 to logic state HIGH. Modulator is in ON state. Measure supply current for modulator ON state. 7. Set Dual Signal Generator for F= 100 KHz, Vout = 500 mv pp CW signals. Signal for I channel should be programmed for 0 o phase. Signal for Q channel should be programmed for 90 o phase. NOTE: Dual Signal Generator should have 50ohm output impedance. 8. Set Signal Generator for F = 2450 MHz, Pout = 16 dbm CW signal. 9. Set Spectrum Analyzer for center frequency 2450 MHz. Frequency span should be set for 1.0 MHz. Measure modulator RF output USB, LSB and Carrier signals. Repeat measurements with different RF input power levels for MODIN. 10. Repeat measurements of step #9 for three other power output settings (dip switches #1 & #2 logic states LOW/HIGH, HIGH/LOW & LOW/LOW). VI. LT5503 I/Q modulator basic tests and measurements for 1.9 GHz band. NOTE: 1.9 GHz demo board version should be used. 1. Connect all the test equipment and power supplies as shown on Figure Set power supply #4 to provide voltage from 3.5 to 5.25 volts. NOTE: This power supply provides Vcc to two opamps ICs that perform single ended to differential conversion for LT5503 modulator differential I/Q inputs. 3. Set power supply #1 and power supply #3 to desired supply voltage from 1.8 to 5.25 volts. 4. Set dipswitches #1 and #2 to logic state HIGH/HIGH (modulator maximum power output). 5. Set dipswitch #5 to logic state LOW. Modulator is in OFF state. Measure supply current for modulator OFF state. 6. Set dipswitch #5 to logic state HIGH. Modulator is in ON state. Measure supply current for modulator ON state. 7. Set Dual Signal Generator for F= 100 KHz, Vout = 500 mv pp CW signals. Signal for I channel should be programmed for 0 o phase. Signal for Q channel should be programmed for 90 o phase. NOTE: Dual Signal Generator should have 50 ohm output impedance. 8. Set Signal Generator for F = 1900 MHz, Pout = 16 dbm CW signal. 9. Set Spectrum Analyzer for center frequency 1900 MHz. Frequency span should be set for 1.0 MHz. Measure modulator RF output USB, LSB and LO signals. Repeat measurements with different RF input power levels for MODIN. 10. Repeat measurements of step #9 for three other power output settings (dip switches #1 & #2 logic states LOW/HIGH, HIGH/LOW & LOW/LOW). 8

9 Power Supply #4 0 o Dual Signal Generator 90 o Q IN I IN Power Supply #1 GND VCC4 VCC1 Spectrum Analyzer V2 V1 Signal Generator LT5503 IC V3 MODRFOUT LO1 IN GND VCC MIXRFOUT VCC3 LO2 IN Power Supply #3 Figure 6. Test set up for LT5503 I/Q modulator measurements. 9

10 VII. LT5503 up converting mixer and I/Q modulator (connected in chain) basic tests and measurements for 2.45 GHz band. NOTE: 2.45 GHz demo board version should be used. 1. Connect all the test equipment and power supplies as shown on Figure Set power supply #4 to provide voltage from 3.5 to 5.25 volts. 3. Set power supplies #1, #2 & #3 to desired supply voltage from 1.8 to 5.25 volts. NOTE: One power supply can be used if desired for power supplies #1, #2 & #3. For tests with power supply voltages 3.5 to 5.25 volts one power supply can be used if desired for power supplies #1, #2, and #3 and power supply #4. 4. Set dipswitch #4 to logic state HIGH. Mixer is in ON state. 5. Set dipswitch #5 to logic state HIGH. Modulator is in ON state. 6. Set dipswitch #3 to logic state LOW for divide by 2 setting for LO2 input. Set Signal Generator 2 for F = 750 MHz, Pout = 10 dbm CW signal. 7. Set Signal Generator #1 for F = 2075 MHz, Pout = 10 dbm CW signal. 8. Connect 3 db attenuator pad between up converting mixer output and modulator input. If desired, 2.45 GHz bandpass filter can be used instead to filter out mixing spurious products. 9. Set dipswitches #1 and #2 to logic state LOW/LOW (modulator maximum power output). 10. Set Dual Signal Generator for F= 100 KHz, Vout = 500 mv pp CW signals. Signal for I channel should be programmed for 0 o phase. Signal for Q channel should be programmed for 90 o phase. NOTE: Dual Signal Generator should have 50ohm output impedance. 11. Set Spectrum Analyzer for center frequency 2450 MHz. Frequency span should be set for 1.0 MHz. Measure modulator RF output USB, LSB and LO signals. 12. Repeat measurements of step #11 for three other RF power output settings (dip switches #1 & #2 logic states LOW/HIGH, HIGH/LOW & HIGH/HIGH). 10

11 0 o Power Supply #4 Dual Signal Generator 90 o Q IN I IN Power Supply #1 GND VCC4 VCC1 Spectrum Analyzer V2 V1 LT5503 IC V3 MODRFOUT Signal Generator 2 LO2 IN Signal Generator 1 LO1 IN GND VCC VCC3 MIXRFOUT Power Supply #3 Power Supply #2 External 3 db Attenuator pad, or 2.45 GHZ BPF Figure 7. Test set up for LT5503 up converting mixer & I/Q modulator chain measurements. 11

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A 40MHZ TO 900MHZ DIRECT CONVERSION QUADRATURE DEMODULATOR

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A 40MHZ TO 900MHZ DIRECT CONVERSION QUADRATURE DEMODULATOR DESCRIPTION QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A LT5517 Demonstration circuit 678A is a 40MHz to 900MHz Direct Conversion Quadrature Demodulator featuring the LT5517. The LT 5517 is a direct

More information

Demo Circuit DC550A Quick Start Guide.

Demo Circuit DC550A Quick Start Guide. May 12, 2004 Demo Circuit DC550A. Introduction Demo circuit DC550A demonstrates operation of the LT5514 IC, a DC-850MHz bandwidth open loop transconductance amplifier with high impedance open collector

More information

Low-Voltage IF Transceiver with Limiter/RSSI and Quadrature Modulator

Low-Voltage IF Transceiver with Limiter/RSSI and Quadrature Modulator 19-1296; Rev 2; 1/1 EVALUATION KIT MANUAL FOLLOWS DATA SHEET Low-Voltage IF Transceiver with General Description The is a highly integrated IF transceiver for digital wireless applications. It operates

More information

DESCRIPTIO FEATURES APPLICATIO S. LT GHz to 2.7GHz Receiver Front End TYPICAL APPLICATIO

DESCRIPTIO FEATURES APPLICATIO S. LT GHz to 2.7GHz Receiver Front End TYPICAL APPLICATIO 1.GHz to 2.GHz Receiver Front End FEATURES 1.V to 5.25V Supply Dual LNA Gain Setting: +13.5dB/ db at Double-Balanced Mixer Internal LO Buffer LNA Input Internally Matched Low Supply Current: 23mA Low Shutdown

More information

EVALUATION KIT AVAILABLE Low-Voltage IF Transceiver with Limiter and RSSI PART

EVALUATION KIT AVAILABLE Low-Voltage IF Transceiver with Limiter and RSSI PART 19-129; Rev ; 1/97 EVALUATION KIT AVAILABLE Low-Voltage IF Transceiver General Description The is a complete, highly integrated IF transceiver for applications employing a dual-conversion architecture.

More information

PARAMETER CONDITIONS TYPICAL PERFORMANCE Operating Supply Voltage 3.1V to 3.5V Supply Current V CC = 3.3V, LO applied 152mA

PARAMETER CONDITIONS TYPICAL PERFORMANCE Operating Supply Voltage 3.1V to 3.5V Supply Current V CC = 3.3V, LO applied 152mA DESCRIPTION LT5578 Demonstration circuit 1545A-x is a high linearity upconverting mixer featuring the LT5578. The LT 5578 is a high performance upconverting mixer IC optimized for output frequencies in

More information

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS FUNCTIONS OF A TRANSMITTER The basic functions of a transmitter are: a) up-conversion: move signal to desired RF carrier frequency.

More information

Quadrature Upconverter for Optical Comms subcarrier generation

Quadrature Upconverter for Optical Comms subcarrier generation Quadrature Upconverter for Optical Comms subcarrier generation Andy Talbot G4JNT 2011-07-27 Basic Design Overview This source is designed for upconverting a baseband I/Q source such as from SDR transmitter

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1455A 5MHZ TO 1600MHZ HIGH LINEARITY DIRECT QUADRATURE MODULATOR LTC5598 DESCRIPTION

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1455A 5MHZ TO 1600MHZ HIGH LINEARITY DIRECT QUADRATURE MODULATOR LTC5598 DESCRIPTION LTC5598 DESCRIPTION Demonstration circuit 1455A is a high linearity direct quadrature modulator featuring the LTC5598. The LTC 5598 is a direct I/Q modulator designed for high performance wireless applications,

More information

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers ADI 2006 RF Seminar Chapter II RF/IF Components and Specifications for Receivers 1 RF/IF Components and Specifications for Receivers Fixed Gain and Variable Gain Amplifiers IQ Demodulators Analog-to-Digital

More information

FEATURES APPLICATIO S. LT GHz to 1.4GHz High Linearity Upconverting Mixer DESCRIPTIO TYPICAL APPLICATIO

FEATURES APPLICATIO S. LT GHz to 1.4GHz High Linearity Upconverting Mixer DESCRIPTIO TYPICAL APPLICATIO FEATURES Wide RF Frequency Range:.7GHz to.ghz 7.dBm Typical Input IP at GHz On-Chip RF Output Transformer On-Chip 5Ω Matched LO and RF Ports Single-Ended LO and RF Operation Integrated LO Buffer: 5dBm

More information

RF2667. Typical Applications CDMA/FM Cellular Systems CDMA PCS Systems GSM/DCS Systems

RF2667. Typical Applications CDMA/FM Cellular Systems CDMA PCS Systems GSM/DCS Systems RF66 RECEIVE AGC AND DEMODULATOR Typical Applications CDMA/FM Cellular Systems CDMA PCS Systems GSM/DCS Systems TDMA Systems Spread Spectrum Cordless Phones Wireless Local Loop Systems Product Description

More information

DESCRIPTIO APPLICATIO S. LTC5531 Precision 300MHz to 7GHz RF Detector with Shutdown and Offset Adjustment FEATURES TYPICAL APPLICATIO

DESCRIPTIO APPLICATIO S. LTC5531 Precision 300MHz to 7GHz RF Detector with Shutdown and Offset Adjustment FEATURES TYPICAL APPLICATIO LTC553 Precision 3MHz to 7GHz RF Detector with Shutdown and Offset Adjustment FEATURES Temperature Compensated Internal Schottky Diode RF Detector Wide Input Frequency Range: 3MHz to 7GHz* Wide Input Power

More information

W-CDMA Upconverter and PA Driver with Power Control

W-CDMA Upconverter and PA Driver with Power Control 19-2108; Rev 1; 8/03 EVALUATION KIT AVAILABLE W-CDMA Upconverter and PA Driver General Description The upconverter and PA driver IC is designed for emerging ARIB (Japan) and ETSI-UMTS (Europe) W-CDMA applications.

More information

MAX2720/MAX2721. PART MAX2720EUP MAX2721EUP *Exposed paddle. -40 C to +85 C 20 TSSOP-EP* 20 TSSOP-EP* -40 C to +85 C MAX2720/MAX2721

MAX2720/MAX2721. PART MAX2720EUP MAX2721EUP *Exposed paddle. -40 C to +85 C 20 TSSOP-EP* 20 TSSOP-EP* -40 C to +85 C MAX2720/MAX2721 19-166; Rev ; 1/ µ µ PART EUP EUP *Exposed paddle. GND DROUT SHDN GND I- I+ GND 1 2 3 4 5 6 7 8 9 BIAS TEMP. RANGE -4 C to +85 C -4 C to +85 C PA DRIVER VGA LO PHASE SHIFTER Σ 9 LO DOUBLER x2 PIN-PACKAGE

More information

DESCRIPTIO APPLICATIO S. LTC5530 Precision 300MHz to 7GHz RF Detector with Shutdown and Gain Adjustment FEATURES TYPICAL APPLICATIO

DESCRIPTIO APPLICATIO S. LTC5530 Precision 300MHz to 7GHz RF Detector with Shutdown and Gain Adjustment FEATURES TYPICAL APPLICATIO Precision 3MHz to 7GHz RF Detector with Shutdown and Gain Adjustment FEATURES Temperature Compensated Internal Schottky Diode RF Detector Wide Input Frequency Range: 3MHz to 7GHz* Wide Input Power Range:

More information

MAX2023 Evaluation Kit. Evaluates: MAX2023. Features

MAX2023 Evaluation Kit. Evaluates: MAX2023. Features 19-0748; Rev 0; 2/07 MAX2023 Evaluation Kit General Description The MAX2023 evaluation kit (EV kit) simplifies the evaluation of the MAX2023 direct upconversion (downconversion) quadrature modulator (demodulator)

More information

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS Introduction As wireless system designs have moved from carrier frequencies at approximately 9 MHz to wider bandwidth applications like Personal Communication System (PCS) phones at 1.8 GHz and wireless

More information

EVALUATION KIT AVAILABLE 3.5GHz Downconverter Mixers with Selectable LO Doubler. PART MAX2683EUE MAX2684EUE *Exposed pad TOP VIEW IFOUT+ IFOUT-

EVALUATION KIT AVAILABLE 3.5GHz Downconverter Mixers with Selectable LO Doubler. PART MAX2683EUE MAX2684EUE *Exposed pad TOP VIEW IFOUT+ IFOUT- -; Rev ; / EVALUATION KIT AVAILABLE.GHz Downconverter Mixers General Description The MAX/MAX are super-high-performance, low-cost downconverter mixers intended for wireless local loop (WLL) and digital

More information

TOP VIEW IF LNAIN IF IF LO LO

TOP VIEW IF LNAIN IF IF LO LO -3; Rev ; / EVALUATION KIT AVAILABLE Low-Cost RF Up/Downconverter General Description The performs the RF front-end transmit/ receive function in time-division-duplex (TDD) communication systems. It operates

More information

AL2230S Single Chip Transceiver for 2.4GHz b/g Applications (AIROHA)

AL2230S Single Chip Transceiver for 2.4GHz b/g Applications (AIROHA) AL2230S Single Chip Transceiver for 2.4GHz 802.11b/g Applications (AIROHA) AL2230S Datasheet MP v1.00-1 - This document is commercially confidential and must NOT be disclosed to third parties without prior

More information

Low voltage LNA, mixer and VCO 1GHz

Low voltage LNA, mixer and VCO 1GHz DESCRIPTION The is a combined RF amplifier, VCO with tracking bandpass filter and mixer designed for high-performance low-power communication systems from 800-1200MHz. The low-noise preamplifier has a

More information

RF9986. Micro-Cell PCS Base Stations Portable Battery Powered Equipment

RF9986. Micro-Cell PCS Base Stations Portable Battery Powered Equipment RF996 CDMA/TDMA/DCS900 PCS Systems PHS 500/WLAN 2400 Systems General Purpose Down Converter Micro-Cell PCS Base Stations Portable Battery Powered Equipment The RF996 is a monolithic integrated receiver

More information

1GHz low voltage LNA, mixer and VCO

1GHz low voltage LNA, mixer and VCO DESCRIPTION The is a combined RF amplifier, VCO with tracking bandpass filter and mixer designed for high-performance low-power communication systems from 800-1200MHz. The low-noise preamplifier has a

More information

Low Distortion Mixer AD831

Low Distortion Mixer AD831 a FEATURES Doubly-Balanced Mixer Low Distortion +2 dbm Third Order Intercept (IP3) + dbm 1 db Compression Point Low LO Drive Required: dbm Bandwidth MHz RF and LO Input Bandwidths 2 MHz Differential Current

More information

Session 3. CMOS RF IC Design Principles

Session 3. CMOS RF IC Design Principles Session 3 CMOS RF IC Design Principles Session Delivered by: D. Varun 1 Session Topics Standards RF wireless communications Multi standard RF transceivers RF front end architectures Frequency down conversion

More information

TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board

TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board Page 1 of 16 ========================================================================================= TestData Summary of 5.2GHz WLAN Direct Conversion RF Transceiver Board =========================================================================================

More information

3V DUAL MODE TRANSCEIVER 434 MHz BAND Product Code:

3V DUAL MODE TRANSCEIVER 434 MHz BAND Product Code: 3V DUAL MODE TRANSCEIVER 434 MHz BAND Product Code: 32001269 Rev. 1.6 PRODUCT SUMMARY: Dual-mode transceiver operating in the 434 MHz ISM band with extremely compact dimensions. The module operates as

More information

Receiver Architecture

Receiver Architecture Receiver Architecture Receiver basics Channel selection why not at RF? BPF first or LNA first? Direct digitization of RF signal Receiver architectures Sub-sampling receiver noise problem Heterodyne receiver

More information

1 MHz to 2.7 GHz RF Gain Block AD8354

1 MHz to 2.7 GHz RF Gain Block AD8354 Data Sheet FEATURES Fixed gain of 2 db Operational frequency of 1 MHz to 2.7 GHz Linear output power up to 4 dbm Input/output internally matched to Ω Temperature and power supply stable Noise figure: 4.2

More information

DESCRIPTIO APPLICATIO S. LT5511 High Signal Level Upconverting Mixer FEATURES TYPICAL APPLICATIO

DESCRIPTIO APPLICATIO S. LT5511 High Signal Level Upconverting Mixer FEATURES TYPICAL APPLICATIO LT High Signal Level Upconverting Mixer FEATURES Wide RF Output Frequency Range to MHz Broadband RF and IF Operation +7dBm Typical Input IP (at 9MHz) +dbm IF Input for db RF Output Compression Integrated

More information

Single Conversion LF Upconverter Andy Talbot G4JNT Jan 2009

Single Conversion LF Upconverter Andy Talbot G4JNT Jan 2009 Single Conversion LF Upconverter Andy Talbot G4JNT Jan 2009 Mark 2 Version Oct 2010, see Appendix, Page 8 This upconverter is designed to directly translate the output from a soundcard from a PC running

More information

3 GHz to 6 GHz Frequency Synthesizer

3 GHz to 6 GHz Frequency Synthesizer 3 GHz to 6 GHz Frequency Synthesizer Low Phase Noise in a Lower Cost Package Features API Technologies Model LCFS1063 frequency synthesizer combines a monolithic integer-n microwave synthesizer, a reference

More information

PVD5870R. IQ Demodulator/ Modulator IQ Demodulator/ Modulator

PVD5870R. IQ Demodulator/ Modulator IQ Demodulator/ Modulator PVD5870R IQ Demodulator/ Modulator IQ Demodulator/ Modulator The PVD5870R is a direct conversion quadrature demodulator designed for communication systems requiring The PVD5870R is a direct conversion

More information

MAINTENANCE MANUAL TRANSMITTER/RECEIVER BOARD CMN-234A/B FOR MLSU141 & MLSU241 UHF MOBILE RADIO TABLE OF CONTENTS

MAINTENANCE MANUAL TRANSMITTER/RECEIVER BOARD CMN-234A/B FOR MLSU141 & MLSU241 UHF MOBILE RADIO TABLE OF CONTENTS MAINTENANCE MANUAL TRANSMITTER/RECEIVER BOARD CMN-234A/B FOR MLSU141 & MLSU241 UHF MOBILE RADIO TABLE OF CONTENTS DESCRIPTION... 2 CIRCUIT ANALYSIS... 2 TRANSMITTER... 2 9-Voft Regulator... 2 Exciter...

More information

PTX-0350 RF UPCONVERTER, MHz

PTX-0350 RF UPCONVERTER, MHz PTX-0350 RF UPCONVERTER, 300 5000 MHz OPERATING MODES I/Q upconverter RF = LO + IF upconverter RF = LO - IF upconverter Synthesizer 10 MHz REFERENCE INPUT/OUTPUT EXTERNAL LOCAL OSCILLATOR INPUT I/Q BASEBAND

More information

Intermediate Frequency Transmitter, 800 MHz to 4000 MHz HMC8200LP5ME

Intermediate Frequency Transmitter, 800 MHz to 4000 MHz HMC8200LP5ME TX_IFIN DGA_S1_OUT DGA_S_IN LOG_IF SLPD_OUT VCC_BG LOG_RF VCC_LOG 9 11 1 13 14 16 31 9 8 7 6 SCLK SEN LO_P LO_N VCC_IRM VCC_ENV ENV_P FEATURES High linearity: supports modulations to 4 QAM Tx IF range:

More information

Maxim Integrated Products 1

Maxim Integrated Products 1 19-0569; Rev 0; 5/06 MAX2041 Evaluation Kit General Description The MAX2041 evaluation kit (EV kit) simplifies the evaluation of the MAX2041 UMTS, DCS, and PCS base-station up/downconversion mixer. It

More information

DEMO CIRCUIT 1004 ADC DRIVER AND 7X7MM HIGH-PERFORMANCE ADC QUICK START GUIDE ADC Driver and 7x7mm High-Performance ADC DESCRIPTION

DEMO CIRCUIT 1004 ADC DRIVER AND 7X7MM HIGH-PERFORMANCE ADC QUICK START GUIDE ADC Driver and 7x7mm High-Performance ADC DESCRIPTION DEMO CIRCUIT 1004 QUICK START GUIDE ADC Driver and 7x7mm High-Performance ADC DESCRIPTION Demonstration circuit 1004 is a reference design featuring Linear Technology Corporation s Analog- Digital Converter

More information

AST-GLSRF GLONASS Downconverter

AST-GLSRF GLONASS Downconverter AST-GLSRF GLONASS Downconverter Document History Sl No. Version Changed By Changed On Change Description 1 0.1 Sudhir N S 17-Nov-2014 Created Contents Features Applications General Description Functional

More information

PLLIN- PLLIN+ MOD- MOD+ LODIVSEL IOUT+ IOUT- QOUT+ QOUT- RFBAND FLCLK. Maxim Integrated Products 1

PLLIN- PLLIN+ MOD- MOD+ LODIVSEL IOUT+ IOUT- QOUT+ QOUT- RFBAND FLCLK. Maxim Integrated Products 1 19-1627; Rev 3; 6/05 DBS Direct Downconverter General Description The low-cost, direct-conversion tuner IC is designed for use in digital direct-broadcast satellite (DBS) television set-top box units and

More information

PART 20 IF_IN LO_V CC 10 TANK 11 TANK 13 LO_GND I_IN 5 Q_IN 6 Q_IN 7 Q_IN 18 V CC

PART 20 IF_IN LO_V CC 10 TANK 11 TANK 13 LO_GND I_IN 5 Q_IN 6 Q_IN 7 Q_IN 18 V CC 19-0455; Rev 1; 9/98 EALUATION KIT AAILABLE 3, Ultra-Low-Power Quadrature General Description The combines a quadrature modulator and quadrature demodulator with a supporting oscillator and divide-by-8

More information

SKY : Direct Quadrature Demodulator GHz Featuring No-Pull LO Architecture

SKY : Direct Quadrature Demodulator GHz Featuring No-Pull LO Architecture PRELIMINARY DATA SHEET SKY73013-306: Direct Quadrature Demodulator 4.9 5.925 GHz Featuring No-Pull LO Architecture Applications WiMAX, WLAN receivers UNII Band OFDM receivers RFID, DSRC applications Proprietary

More information

GHz Upconverter/Amplifier. Technical Data HPMX 2006 YYWW HPMX 2006 YYWW HPMX-2006

GHz Upconverter/Amplifier. Technical Data HPMX 2006 YYWW HPMX 2006 YYWW HPMX-2006 .8 2.5 GHz Upconverter/Amplifier Technical Data HPMX-26 Features Wide Band Operation RF Output: 8-25 MHz IF Input: DC- 9 MHz 2.7-5.5 V Operation Mixer + Amplifier: 38 ma Mixer only: 15 ma Standby Mode:

More information

FEATURES DESCRIPTION BENEFITS APPLICATIONS. Preliminary PT4501 Sub-1 GHz Wideband FSK Transceiver

FEATURES DESCRIPTION BENEFITS APPLICATIONS. Preliminary PT4501 Sub-1 GHz Wideband FSK Transceiver Preliminary PT4501 Sub-1 GHz Wideband FSK Transceiver DESCRIPTION The PT4501 is a highly integrated wideband FSK multi-channel half-duplex transceiver operating in sub-1 GHz license-free ISM bands. The

More information

Wavedancer A new ultra low power ISM band transceiver RFIC

Wavedancer A new ultra low power ISM band transceiver RFIC Wavedancer 400 - A new ultra low power ISM band transceiver RFIC R.W.S. Harrison, Dr. M. Hickson Roke Manor Research Ltd, Old Salisbury Lane, Romsey, Hampshire, SO51 0ZN. e-mail: roscoe.harrison@roke.co.uk

More information

i 1 i 2 LOmod 3 RF OUT 4 RF OUT 5 IF 6 IF 7 ENABLE 8 YYWW

i 1 i 2 LOmod 3 RF OUT 4 RF OUT 5 IF 6 IF 7 ENABLE 8 YYWW Vector Modulator/Mixer Technical Data HPMX-27 Features 5 MHz to 4 GHz Overall Operating Frequency Range 4-4 MHz LOmod range 2.7-5.5 V Operation (3 V, 25 ma) Differential High Impedance i, q Inputs On-Chip

More information

LTC MHz to 1.4GHz IQ Demodulator with IIP2 and DC Offset Control. Applications. Typical Application

LTC MHz to 1.4GHz IQ Demodulator with IIP2 and DC Offset Control. Applications. Typical Application Features n I/Q Bandwidth of 53MHz or Higher n High IIP3: 31dBm at 5MHz, 8dBm at 9MHz n High IIP: 7dBm at 5MHz, 5dBm at 9MHz n User Adjustable IIP to >8dBm n User Adjustable DC Offset Null n High Input

More information

WIDEBAND IQ DEMODULATOR FOR DIGITAL RECEIVERS VCC (IFQ) VCC (RF)

WIDEBAND IQ DEMODULATOR FOR DIGITAL RECEIVERS VCC (IFQ) VCC (RF) FEATURES BROADBAND OPERATION RF & LO DC to GHz IF (IQ) DC to MHz WIDEBAND IQ PHASE AND AMPLITUDE MATCHING Amplitude Matching: ±. db Typical Phase Matching: ±. (driven in phase) AGC DYNAMIC RANGE: db Typical

More information

SHF Communication Technologies AG. Wilhelm-von-Siemens-Str. 23D Berlin Germany. Phone Fax

SHF Communication Technologies AG. Wilhelm-von-Siemens-Str. 23D Berlin Germany. Phone Fax SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23D 12277 Berlin Germany Phone ++49 30 772 051-0 Fax ++49 30 753 10 78 E-Mail: sales@shf.de Web: http://www.shf.de Datasheet SHF D837 A Differential

More information

RX3400 Low Power ASK Receiver IC. Description. Features. Applications. Block Diagram

RX3400 Low Power ASK Receiver IC. Description. Features. Applications. Block Diagram Low Power ASK Receiver IC Princeton Technology Corp. reserves the right to change the product described in this datasheet. All information contained in this datasheet is subject to change without prior

More information

1 MHz to 2.7 GHz RF Gain Block AD8354

1 MHz to 2.7 GHz RF Gain Block AD8354 1 MHz to 2.7 GHz RF Gain Block AD834 FEATURES Fixed gain of 2 db Operational frequency of 1 MHz to 2.7 GHz Linear output power up to 4 dbm Input/output internally matched to Ω Temperature and power supply

More information

DEMO CIRCUIT 1057 LT6411 AND LTC2249 ADC QUICK START GUIDE LT6411 High-Speed ADC Driver Combo Board DESCRIPTION QUICK START PROCEDURE

DEMO CIRCUIT 1057 LT6411 AND LTC2249 ADC QUICK START GUIDE LT6411 High-Speed ADC Driver Combo Board DESCRIPTION QUICK START PROCEDURE DESCRIPTION Demonstration circuit 1057 is a reference design featuring Linear Technology Corporation s LT6411 High Speed Amplifier/ADC Driver with an on-board LTC2249 14-bit, 80MSPS ADC. DC1057 demonstrates

More information

Low Distortion Mixer AD831

Low Distortion Mixer AD831 Low Distortion Mixer AD831 FEATURES Doubly Balanced Mixer Low Distortion +24 dbm Third Order Intercept (IP3) +1 dbm 1 db Compression Point Low LO Drive Required: 1 dbm Bandwidth 5 MHz RF and LO Input Bandwidths

More information

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong Research and Development Activities in RF and Analog IC Design Howard Luong Analog Research Laboratory Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

SHF Communication Technologies AG. Wilhelm-von-Siemens-Str. 23D Berlin Germany. Phone Fax

SHF Communication Technologies AG. Wilhelm-von-Siemens-Str. 23D Berlin Germany. Phone Fax SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23D 12277 Berlin Germany Phone ++49 30 772 051-0 Fax ++49 30 753 10 78 E-Mail: sales@shf.de Web: http://www.shf.de Datasheet SHF S807 B Linear

More information

I REF Q REF GND2 GND2 GND2 VCC1. Product Description. Ordering Information. GaAs HBT GaAs MESFET InGaP HBT

I REF Q REF GND2 GND2 GND2 VCC1. Product Description. Ordering Information. GaAs HBT GaAs MESFET InGaP HBT Direct Quadrature Modulator RF480 DIRECT QUADRATURE MODULATOR RoHS Compliant & Pb-Free Product Package Style: SOIC-16 Features Typical Carrier Suppression>5dBc over temperature with highly linear operation

More information

DRF2018A113 Low Power Audio FM Transmitter Module V1.00

DRF2018A113 Low Power Audio FM Transmitter Module V1.00 DRF2018A113 Low Power Audio FM Transmitter Module V1.00 Features Audio PLL transmitter module 433/868/915Mhz ISM frequency band 13dBm Max. output power Phase noise: -94dBc/Hz Multiple channels Audio response:55~22khz

More information

250 MHz 1000 MHz Quadrature Modulator AD8345

250 MHz 1000 MHz Quadrature Modulator AD8345 a FEATURES 25 MHz MHz Operating Frequency +2.5 dbm P1 db @ 8 MHz 155 dbm/hz Noise Floor.5 Degree RMS Phase Error (IS95).2 db Amplitude Balance Single 2.7 V 5.5 V Supply Pin-Compatible with AD8346 16-Lead

More information

TANK+ VRLO TANK- GND MAX2104 CPG2 CPG1 RFOUT IDC+ XTLOUT TQFP. Maxim Integrated Products 1

TANK+ VRLO TANK- GND MAX2104 CPG2 CPG1 RFOUT IDC+ XTLOUT TQFP. Maxim Integrated Products 1 19-1431; Rev 4; 6/05 Direct-Conversion Tuner IC for General Description The low-cost direct-conversion tuner IC is designed for use in digital direct-broadcast satellite (DBS) television set-top box units.

More information

Advanced RFIC Design ELEN359A, Lecture 3: Gilbert Cell Mixers. Instructor: Dr. Allen A Sweet

Advanced RFIC Design ELEN359A, Lecture 3: Gilbert Cell Mixers. Instructor: Dr. Allen A Sweet Advanced RFIC Design ELEN359A, Lecture 3: Gilbert Cell Mixers Instructor: Dr. Allen A Sweet All of Design is the Art and Science of Navigating Tradeoffs Science gives us the tools to understand what nature,

More information

RF Integrated Circuits

RF Integrated Circuits Introduction and Motivation RF Integrated Circuits The recent explosion in the radio frequency (RF) and wireless market has caught the semiconductor industry by surprise. The increasing demand for affordable

More information

Intermediate Frequency Receiver, 800 MHz to 4000 MHz HMC8100LP6JE

Intermediate Frequency Receiver, 800 MHz to 4000 MHz HMC8100LP6JE 2 3 6 7 8 9 39 32 3 FEATURES High linearity: supports modulations to 2 QAM Rx IF range: 8 MHz to MHz Rx RF range: 8 MHz to MHz Rx power control: 8 db SPI programmable bandpass filters SPI controlled interface

More information

CMOS 2.4GHZ TRANSMIT/RECEIVE WLAN RFeIC

CMOS 2.4GHZ TRANSMIT/RECEIVE WLAN RFeIC CMOS 2.4GHZ TRANSMIT/RECEIVE WLAN RFeIC 17 1 RX 2 3 VDD VDD DNC 16 15 14 13 12 11 10 ANT Description The RFX2402C is a fully integrated, single-chip, single-die RFeIC (RF Front-end Integrated Circuit)

More information

RF/IF Terminology and Specs

RF/IF Terminology and Specs RF/IF Terminology and Specs Contributors: Brad Brannon John Greichen Leo McHugh Eamon Nash Eberhard Brunner 1 Terminology LNA - Low-Noise Amplifier. A specialized amplifier to boost the very small received

More information

Intermediate Frequency Receiver, 800 MHz to 4000 MHz HMC8100LP6JE

Intermediate Frequency Receiver, 800 MHz to 4000 MHz HMC8100LP6JE 11 12 13 14 1 16 17 18 19 2 4 39 32 31 FEATURES High linearity: supports modulations to 124 QAM Rx IF range: 8 MHz to 2 MHz Rx RF range: 8 MHz to 4 MHz Rx power control: 8 db SPI programmable bandpass

More information

FT-897 Alignment. Local Oscillator Adjustment. PLL Adjustment

FT-897 Alignment. Local Oscillator Adjustment. PLL Adjustment FT-897 Local Oscillator Adjustment Reference Frequency Adjustment a. Connect a frequency counter to TP1032. b. Adjust the trimmer capacitor (TC5001) for 67.875000MHz ±5Hz on the frequency counter. c. Connect

More information

HMC795LP5E. SiGe Wideband Direct Quadrature Modulator w/ vga, MHz. Typical Applications. Features. Functional Diagram. General Description

HMC795LP5E. SiGe Wideband Direct Quadrature Modulator w/ vga, MHz. Typical Applications. Features. Functional Diagram. General Description v.49 Modulator w/ vga, 5-28 MHz Typical Applications The is ideal for: UMTS, GSM or CDMA Basestations Fixed Wireless or WLL ism Transceivers, 9 & 24 MHz GMSK, QPSK, QAM, ssb Modulators Cellular/3G and

More information

MAX2720/MAX2721 Evaluation Kits

MAX2720/MAX2721 Evaluation Kits 9-75; Rev 0; 4/00 MAX70/MAX7 Evaluation Kits General Description The MAX70/MAX7 evaluation kits (EV kits) simplify evaluation of the MAX70/MAX7 direct I/Q modulator with variable gain amplifier (VGA) and

More information

LT GHz to 3.8GHz High Linearity Upconverting Mixer. Description. Features. Applications. Typical Application

LT GHz to 3.8GHz High Linearity Upconverting Mixer. Description. Features. Applications. Typical Application Features n High Output IP3: +7.3 at.1ghz n Low Noise Floor: /Hz (P OUT = 5) n High Conversion Gain:. at.1ghz n Wide Frequency Range: 1.5GHz to 3.GHz* n Low LO Leakage n Single-Ended RF and LO n Low LO

More information

GHz Upconverter/ Downconverter. Technical Data H HPMX-5001 YYWW XXXX ZZZ HPMX-5001

GHz Upconverter/ Downconverter. Technical Data H HPMX-5001 YYWW XXXX ZZZ HPMX-5001 1.5 2.5 GHz Upconverter/ Downconverter Technical Data HPMX-5001 Features 2.7 V Single Supply Voltage Low Power Consumption (60 ma in Transmit Mode, 39 ma in Receive Mode Typical) 2 dbm Typical Transmit

More information

SHF Communication Technologies AG. Wilhelm-von-Siemens-Str. 23D Berlin Germany. Phone Fax

SHF Communication Technologies AG. Wilhelm-von-Siemens-Str. 23D Berlin Germany. Phone Fax SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23D 12277 Berlin Germany Phone +49 30 772 051-0 Fax +49 30 753 10 78 E-Mail: sales@shf-communication.com Web: www.shf-communication.com Datasheet

More information

400 MHz to 6 GHz Quadrature Demodulator ADL5380

400 MHz to 6 GHz Quadrature Demodulator ADL5380 Data Sheet 4 MHz to 6 GHz Quadrature Demodulator ADL538 FEATURES Operating RF and LO frequency: 4 MHz to 6 GHz Input IP3 3 dbm at 9 MHz 28 dbm at 19 MHz Input IP2: >65 dbm at 9 MHz Input P1dB (IP1dB):

More information

60 GHz Receiver (Rx) Waveguide Module

60 GHz Receiver (Rx) Waveguide Module The PEM is a highly integrated millimeter wave receiver that covers the GHz global unlicensed spectrum allocations packaged in a standard waveguide module. Receiver architecture is a double conversion,

More information

60 GHz RX. Waveguide Receiver Module. Features. Applications. Data Sheet V60RXWG3. VubIQ, Inc

60 GHz RX. Waveguide Receiver Module. Features. Applications. Data Sheet V60RXWG3. VubIQ, Inc GHz RX VRXWG Features Complete millimeter wave receiver WR-, UG-8/U flange Operates in the to GHz unlicensed band db noise figure Up to.8 GHz modulation bandwidth I/Q analog baseband interface Integrated

More information

SKY LF: MHz Quadrature Modulator

SKY LF: MHz Quadrature Modulator DATA SHEET SKY73077-459LF: 1500-2700 Quadrature Modulator Applications Cellular base station systems: GSM/EDGE, CDMA2000, W-CDMA, TD-SCDMA, LTE WiMAX/broadband wireless access systems Satellite modems

More information

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN

5.4: A 5GHz CMOS Transceiver for IEEE a Wireless LAN 5.4: A 5GHz CMOS Transceiver for IEEE 802.11a Wireless LAN David Su, Masoud Zargari, Patrick Yue, Shahriar Rabii, David Weber, Brian Kaczynski, Srenik Mehta, Kalwant Singh, Sunetra Mendis, and Bruce Wooley

More information

60 GHz Transmitter (Tx) Waveguide Module

60 GHz Transmitter (Tx) Waveguide Module The is a highly integrated millimeter wave transmitter that covers the 60 GHz global unlicensed spectrum allocations packaged in a standard waveguide module. Transmitter architecture is a double conversion,

More information

LF to 4 GHz High Linearity Y-Mixer ADL5350

LF to 4 GHz High Linearity Y-Mixer ADL5350 LF to GHz High Linearity Y-Mixer ADL535 FEATURES Broadband radio frequency (RF), intermediate frequency (IF), and local oscillator (LO) ports Conversion loss:. db Noise figure:.5 db High input IP3: 25

More information

CMX994/CMX994A/CMX994E Direct Conversion Receivers

CMX994/CMX994A/CMX994E Direct Conversion Receivers CML Microcircuits COMMUNICATION SEMICONDUCTORS Direct Conversion Receivers CMX994 / CMX994A (lower power options) / CMX994E (enhanced performance) D/994_994A_994E/3 November 2016 DATASHEET Provisional

More information

60 GHz TX. Waveguide Transmitter Module. Data Sheet Features V60TXWG3. Applications. VubIQ, Inc

60 GHz TX. Waveguide Transmitter Module. Data Sheet Features V60TXWG3. Applications. VubIQ, Inc Features Complete millimeter wave transmitter WR-, UG-8/U flange Operates in the to GHz unlicensed band dbm typical output power Up to.8 GHz modulation bandwidth I/Q analog baseband interface On chip synthesizer

More information

Package and Pin Assignment SSOP-6 (0.64mm pitch) OSCIN OSCOUT TXEN 3 VSS 4 TXOUT 5 VSS 6 7 MODIN 8 HiMARK SW DO RES RESB VREFP VSS Symbol

Package and Pin Assignment SSOP-6 (0.64mm pitch) OSCIN OSCOUT TXEN 3 VSS 4 TXOUT 5 VSS 6 7 MODIN 8 HiMARK SW DO RES RESB VREFP VSS Symbol Low Power ASK Transmitter IC HiMARK Technology, Inc. reserves the right to change the product described in this datasheet. All information contained in this datasheet is subject to change without prior

More information

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver Farbod Behbahani John Leete Alexandre Kral Shahrzad Tadjpour Karapet Khanoyan Paul J. Chang Hooman Darabi Maryam Rofougaran

More information

Features OBSOLETE. LO Port Return Loss db RF Port Return Loss db

Features OBSOLETE. LO Port Return Loss db RF Port Return Loss db v4.18 MODULATOR RFIC, - 4 MHz Typical Applications The HMC497LP4(E) is ideal for: UMTS, GSM or CDMA Basestations Fixed Wireless or WLL ISM Transceivers, 9 & 24 MHz GMSK, QPSK, QAM, SSB Modulators Functional

More information

Automatic Tracking Filter for DDS Generator

Automatic Tracking Filter for DDS Generator Riccardo Gionetti, IØFDH Via S. Bernadette, 00 Roma RM, Italy: rgionetti@virgilio.it Automatic Tracking Filter for DDS Generator Reduce spurious responses from a digital synthesizer with this filter. The

More information

SA620 Low voltage LNA, mixer and VCO 1GHz

SA620 Low voltage LNA, mixer and VCO 1GHz INTEGRATED CIRCUITS Low voltage LNA, mixer and VCO 1GHz Supersedes data of 1993 Dec 15 2004 Dec 14 DESCRIPTION The is a combined RF amplifier, VCO with tracking bandpass filter and mixer designed for high-performance

More information

Features dbm dbc. LO Port Return Loss db RF Port Return Loss db

Features dbm dbc. LO Port Return Loss db RF Port Return Loss db v3.812 HMC197LP4E MODULATOR, 1-6 MHz Typical Applications The HMC197LP4E is Ideal for: UMTS, GSM or CDMA Basestations Fixed Wireless or WLL ISM Transceivers, 9 & 24 MHz GMSK, QPSK, QAM, SSB Modulators

More information

Features. Upconversion & Downconversion Applications MIXERS - SINGLE & DOUBLE BALANCED - SMT

Features. Upconversion & Downconversion Applications MIXERS - SINGLE & DOUBLE BALANCED - SMT v1. Typical Applications The HMC688LP4(E) is Ideal for: Cellular/3G & LTE/WiMAX/4G Basestations & Repeaters GSM, CDMA & OFDM Transmitters and Receivers Features High Input IP3: +35 dbm Low Conversion Loss:

More information

Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI

Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 4929 Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI APPLICATION NOTE 4929 Adapting

More information

Construction Manual 4m-Linear-Transverter XV4-15

Construction Manual 4m-Linear-Transverter XV4-15 Construction Manual 4m-Linear-Transverter XV4-15 Holger Eckardt DF2FQ Kirchstockacherstr. 33 D-85662 Hohenbrunn 3207 Technical data exciter frequency: 21.0... 21.5 MHz RF frequency: 70.0.. 70.5 MHz supply

More information

Evaluate: MAX2828/MAX2829. MAX2828/MAX2829 Evaluation Kits. General Description. Features. Quick Start. Connections and Setup. Test Equipment Required

Evaluate: MAX2828/MAX2829. MAX2828/MAX2829 Evaluation Kits. General Description. Features. Quick Start. Connections and Setup. Test Equipment Required MAX2828/MAX2829 Evaluation Kits Evaluate: MAX2828/MAX2829 General Description The MAX2828/MAX2829 evaluation kits (EV kits) simplify the testing of the MAX2828/MAX2829. The EV kits provide 50Ω SMA connectors

More information

CUSTOM INTEGRATED ASSEMBLIES

CUSTOM INTEGRATED ASSEMBLIES 17 CUSTOM INTEGRATED ASSEMBLIES CUSTOM INTEGRATED ASSEMBLIES Cougar offers full first-level integration capabilities, providing not just performance components but also full subsystem solutions to help

More information

High IP3, 10 MHz to 6 GHz, Active Mixer ADL5801 Data Sheet FUNCTIONAL BLOCK DIAGRAM FEATURES APPLICATIONS GENERAL DESCRIPTION

High IP3, 10 MHz to 6 GHz, Active Mixer ADL5801 Data Sheet FUNCTIONAL BLOCK DIAGRAM FEATURES APPLICATIONS GENERAL DESCRIPTION High IP3, MHz to GHz, Active Mixer FEATURES Broadband upconverter/downconverter Power conversion gain of 1.8 db Broadband RF, LO, and IF ports SSB noise figure (NF) of 9.7 db Input IP3: 8. dbm Input P1dB:

More information

LTC5585 Wideband IQ Demodulator with IIP2 and DC Offset Control. Applications. Typical Application

LTC5585 Wideband IQ Demodulator with IIP2 and DC Offset Control. Applications. Typical Application Features n 7MHz to 3GHz Operating Frequency n High IIP3: 8.7dBm at 7MHz,.7dBm at 1.9GHz n High IIP: 7dBm at 7MHz, 6dBm at 1.9GHz n User Adjustable IIP Up to 8dBm n User Adjustable DC Offset Null n High

More information

FM Radio Transmitter & Receiver Modules

FM Radio Transmitter & Receiver Modules Features Miniature SIL package Fully shielded Data rates up to 128kbits/sec Range up to 300 metres Single supply voltage Industry pin compatible T5-434 Temp range -20 C to +55 C No adjustable components

More information

700 MHz to 2700 MHz Quadrature Modulator AD8349

700 MHz to 2700 MHz Quadrature Modulator AD8349 FEATURES Output frequency range: 7 MHz to 7 MHz Modulation bandwidth: dc to MHz (large signal BW) 1 db output compression: 5. dbm @ MHz Output disable function: output below 5 dbm in < 5 ns Noise floor:

More information

Components for modular microwave transverters. Wolf-Henning Rech DF9IC in JN48iw

Components for modular microwave transverters. Wolf-Henning Rech DF9IC in JN48iw Components for modular microwave transverters Wolf-Henning Rech DF9IC in JN48iw http://www.df9ic.de Content Multiband transverter systems Filters and multiplexers PLL-disciplined oscillators Transverters

More information

Maintenance Manual TRANSMITTER/RECEIVER BOARD CMN-233 FOR MLSH041

Maintenance Manual TRANSMITTER/RECEIVER BOARD CMN-233 FOR MLSH041 Maintenance Manual TRANSMITTER/RECEIVER BOARD CMN-233 FOR MLSH041 TABLE OF CONTENTS Page DESCRIPTION... 2 CIRCUIT ANALYSIS... 2 Transmitter... 2 9-volt Regulator... 2 Exciter... 2 40-Watt PA... 2 Antenna

More information

100W High Power Silicon PIN Diode SPDT Switches By Rick Puente, Skyworks Solutions, Inc.

100W High Power Silicon PIN Diode SPDT Switches By Rick Puente, Skyworks Solutions, Inc. October 2013 100W High Power Silicon PIN Diode SPDT Switches By Rick Puente, Skyworks Solutions, Inc. Radio transceiver designers have searched for a low cost solution to replace expensive mechanical switches

More information

76-81GHz MMIC transceiver (4 RX / 3 TX) for automotive radar applications. Table 1. Device summary. Order code Package Packing

76-81GHz MMIC transceiver (4 RX / 3 TX) for automotive radar applications. Table 1. Device summary. Order code Package Packing STRADA770 76-81GHz MMIC transceiver (4 RX / 3 TX) for automotive radar applications Data brief ESD protected Scalable architecture (master/slave configuration) BIST structures Bicmos9MW, 0.13-µm SiGe:C

More information