3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li

Size: px
Start display at page:

Download "3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li"

Transcription

1 3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li Mar. 4,

2 Agenda Status Overview of RAN1 Working/Study Items Narrowband Internet of Things (NB-IoT) (Rel-13) Study on latency reduction techniques Study on LTE-based V2X services Support for V2V services based on LTE sidelink Study on channel model for frequency spectrum above 6 GHz LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum 2

3 Narrowband Internet of Things (NB-IoT) A non-backward-compatible variant of E-UTRA Improved indoor coverage, massive number of low throughput devices, low delay sensitivity, ultra low device cost, low device power consumption and (optimised) network architecture Three modes of operation Stand-alone operation: a replacement of one or more GSM carriers Guard band operation: the unused RBs within a LTE carrier s guard-band In-band operation: resource blocks (RBs) within a normal LTE carrier Basic Transmissions 180 khz UE RF bandwidth for both DL/UL DL: 15 khz sub-carrier spacing for all the modes of operation UL single tone transmissions: 3.75 khz and 15 khz, CP, freq. domain sinc UL multi-tone transmissions: SC-FDMA with 15 khz subcarrier spacing NB-IoT UE: Only needs to support half duplex operations 3

4 Narrowband Internet of Things (NB-IoT) A resource unit, schedulable in NPUSCH transmission For single-tone transmission A single 3.75 khz sub-carrier for 32 ms; A single 15 khz sub-carrier for 8 ms; For multi-tone transmission 3 subcarriers for 4 ms / 6 subcarriers for 2 ms / 12 subcarriers for 1ms. A UL-SCH transport block can be scheduled over more than one resource unit in time Synchronization signals... NB-PSS: per 10 ms, at subframe 5, length-11 Zadoff-Chu Sequence NB-SSS: per 10 ms, at subframe 9, length-11, NB-IoT vs. LTE Cat.1, Cat.0, LTE-M 4

5 Latency Reduction: Shortened TTI Latency reductions Protocol enhancements is created and packetized UE enodeb MME S-GW PDN-GW SR Application Server Shortened TTIs Grant BSR (+) Delay per packet exchange Grant Grant between UE & enodeb Request, Grant, or 1 ms UE enodeb MME S-GW PDN-GW packet Shortened TTI candidates 1, 2, 3, 4, 7 symbols packet to higher layers 5

6 Shortened TTI(s) Design assumptions No shortened TTI spans over subframe boundary At least for SIBs and paging, PDCCH and legacy PDSCH are used for scheduling From enb perspective, existing non-stti and stti can be FDMed in the same subframe in the same carrier PSS/SSS, PBCH, PCFICH and PRACH, Random access, SIB and Paging procedures are not modified 6

7 LTE-based V2X Services Vehicle wireless communications V2V: Between vehicles. V2P: Between a vehicle and a device carried by an individual E.g. handheld terminal carried by a pedestrian, cyclist, driver or passenger V2I/N (vehicle-to-infrastructure/network): between a vehicle and a roadside unit (RSU: enb / stationary UE.) / network Pedestrian Vehicle Network V2P V2V V2I Vehicle 7

8 LTE-based V2X Services RSU Traffic-Safety Server Car accident Ahead Pedestrian Vehicle Pedestrian 8

9 V2X Operation only based on PC5 SL SL UE (RSU) UE (RSU) SL SL SL 9

10 V2X Operation only based on Uu (RSU) UL DL (RSU) UL DL UL DL UL DL 10

11 V2V Services based on LTE Sidelink LTE sidelink enhancements for V2V services With and without LTE network coverage DM-RS enhancements Adopt DMRS location option 1 PSCCH/PSSCH for V2V Option 1: #2, #5, #8, #11 (i.e. the regular spacing) Working Assumption: 15 khz subcarrier spacing with 1 msec TTI length Intel & ITRI proposed to support increased subcarrier spacing, e.g. 30 khz. Sensing with semi-persistent transmission is supported Sets of resources among which a UE selects can be restricted based on the geo information of the UE Mechanisms to report UE geographical information to the enb are supported 11 SL

12 Channel Model for Frequency Spectrum above 6 GHz A channel model from 6 GHz to 100 GHz Further evolution beyond LTE-Advanced / towards 5G Bandwidth: up to 1GHz (vs. LTE-A s 100MHz by CA) Channel Modeling Scenarios 1 st priority: UMi street canyon, Indoor office, and Uma 2 nd priority: UMi open square, Indoor shopping mall Channel Modeling Requirements Blocking, atmosphere attenuation, etc. Large channel bandwidths (up to 10% of carrier frequency) Mobile speed up to [500] km/h Support large antenna arrays Channel Modeling Methodology Stochastic modeling methodology (3D spatial CM of TR ) 12

13 1 st Priority UMi - Street Canyon O2O and O2I Cell radii: less than 100 m BS: below rooftops (e.g., 3-20 m) UMa O2O and O2I Cell radii: above 200 m BS: Rooftops (e.g m) 13

14 1 st Priority (cont d) Indoor office Sub scenario 1 Open office: open office with cubicles, chairs, etc. Sub scenario 2 Mixed office: open cubicle areas, meeting rooms, walled offices, corridors, etc. APs: Ceilings or walls (e.g.2-3 m) AP density: depending on the frequency band and output power Range from one per floor to one per room 14

15 2 nd Priority UMi Open Square O2O and O2I Cell radii: less than 100 m BS: below rooftops (e.g., 3-20 m) Indoor - Shopping Malls BS: Ceilings Details FFS 15

16 LTE Licensed-Assisted Access to Unlicensed Spectrum Access to unlicensed spectrum LAA deployment scenarios (vs. LWA, LTE-U, and MulteFire) 16

17 LAA in Rel-13 DL-only LAA Cat. 4 LBT Random back-off Contention window of variable sizes Four LBT priority classes Transmissions PDSCH Discovery signal Multiple channel access Type A (A1 & A2) Type B (B1 & B2) 17

18 LAA in Rel-14 UL support for LAA SCell operation in unlicensed spectrum UL carrier aggregation for LAA SCell(s) using Frame Structure type 3 Channel access mechanism Use the decisions made in RAN1 during Rel-13 as a starting point PUSCH and SRS Self-scheduling and cross-carrier scheduling from licensed spectrum. If needed, specify support for PUCCH If needed, specify support for PRACH Complete support for 10 MHz system BW as an LAA SCell 18

19 Channel Access and PUSCH in LAA Channel access Support UL LBT based on a Cat-4 channel access procedure. Support UL LBT based on a CCA of at least 25 µs before the UL transmission burst. PUSCH At least RB-level multi-cluster transmission (>2) is supported For elaa, flexible timing between UL grant and UL transmission is supported For UL transmission in elaa Scells, flexible timing between the subframe carrying the UL grant and subframe(s) of the corresponding PUSCH(s) is supported Working assumption: The minimum latency is 4ms In Rel-14 LAA, UL grant(s) for a UE in a subframe can enable PUSCH transmission for the UE in multiple subframes in LAA SCell for both cross-cc scheduling case and self-scheduling case. 19

20 SRS, PUCCH, and PRACH in LAA SRS Aperiodic SRS transmission with PUSCH is supported in elaa PUCCH Transmission of HARQ ACK for serving cells at licensed carriers on an LAA SCell is NOT supported Transmission of HARQ ACK and CSI for serving cells at unlicensed carriers on an LAA SCell is supported PRACH Contention based PRACH on LAA Scell is NOT supported in Rel-14 Non-contention based PRACH on LAA Scell is supported in Rel-14 subject to LBT 10 MHz BW as an LAA Scell Shall not be used if the absence of Wi-Fi cannot be guaranteed Unless additional work on channel access is agreed 20

NB IoT RAN. Srđan Knežević Solution Architect. NB-IoT Commercial in confidence Uen, Rev A Page 1

NB IoT RAN. Srđan Knežević Solution Architect. NB-IoT Commercial in confidence Uen, Rev A Page 1 NB IoT RAN Srđan Knežević Solution Architect NB-IoT Commercial in confidence 20171110-1 Uen, Rev A 2017-11-10 Page 1 Massive Iot market outlook M2M (TODAY) IOT (YEAR 2017 +) 15 Billion PREDICTED IOT CONNECTED

More information

Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G

Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G ICTC 2015 Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G Juho Lee Samsung Electronics Presentation Outline LTE/LTE-Advanced evolution: an overview LTE-Advanced in Rel-13 Expectation for LTE-Advanced

More information

From D2D to V2X. Hung-Yu Wei. National Taiwan University. Acknowledgement to Mei-Ju Shih

From D2D to V2X. Hung-Yu Wei. National Taiwan University. Acknowledgement to Mei-Ju Shih From D2D to V2X Hung-Yu Wei National Taiwan University Acknowledgement to Mei-Ju Shih OUTLINE Preview RAN2#91 Rel-13 ed2d General UE-to-Network Relays ProSe discovery in partial- and outside network coverage

More information

3GPP 5G 無線インターフェース検討状況

3GPP 5G 無線インターフェース検討状況 3GPP 5G 無線インターフェース検討状況 エリクソン ジャパン ( 株 ) ノキアソリューションズ & ネットワークス ( 株 ) 2017 年 12 月 22 日 1 Disclaimers This presentation is based on the draft 3GPP specifications to be approved in RAN#78 meeting in Dec/2017.

More information

5G New Radio Design. Fall VTC-2017, Panel September 25 th, Expanding the human possibilities of technology to make our lives better

5G New Radio Design. Fall VTC-2017, Panel September 25 th, Expanding the human possibilities of technology to make our lives better 5G New Radio Design Expanding the human possibilities of technology to make our lives better Fall VTC-2017, Panel September 25 th, 2017 Dr. Amitabha Ghosh Head of Small Cell Research, Nokia Fellow, IEEE

More information

5G NR Update and UE Validation

5G NR Update and UE Validation 5G NR Update and UE Validation Sr. Project Manager/ Keysight JianHua Wu 3GPP Status Update 2 5G Scenarios and Use Cases B R O A D R A N G E O F N E W S E R V I C E S A N D PA R A D I G M S Amazingly fast

More information

MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II

MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II BASICS & CHALLENGES Dr Konstantinos Dimou Senior Research Engineer Ericsson Research konstantinos.dimou@ericsson.com Overview Introduction Definition Vision

More information

Part I Evolution. ZTE All rights reserved

Part I Evolution. ZTE All rights reserved Part I Evolution 2 ZTE All rights reserved 4G Standard Evolution, LTE-A in 3GPP LTE(R8/R9) DL: 100Mbps, UL: 50Mbps MIMO, BF,LCS, embms LTE-A (R10/R11) DL: 1Gbps, UL: 500Mbps CA, Relay, Het-Net CoMP, emimo

More information

3GPP Activities on ITS

3GPP Activities on ITS 3GPP Activities on ITS March, 2016 SungDuck CHUN LG Electronics 1. History Overall Timeline 3GPP started feasibility study of 3GPP support of V2X communication from 1Q 2015 Discussion started from 3GPP

More information

C O M PAN Y R E S T R I C T E D

C O M PAN Y R E S T R I C T E D What is 5G? It s a paradigm shift 1G~1985 2G1992 3G2001 4G2010 5G2020 Transition from analog to digital www Define use case Analyze requirements Define technology embb www Define technology framework Find

More information

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany 3G/4G Mobile Communications Systems Dr. Stefan Brück Qualcomm Corporate R&D Center Germany Chapter VI: Physical Layer of LTE 2 Slide 2 Physical Layer of LTE OFDM and SC-FDMA Basics DL/UL Resource Grid

More information

5G NR network deployment is now let s test!

5G NR network deployment is now let s test! 5G NR network deployment is now let s test! Jibran Siddiqui Technology and Application Engineer Mobile Network Testing Shakil Ahmed Regional Director Mobile Network Testing Contents Market drivers and

More information

2014 ARO-MURI Cyber Situation Awareness Review University of California at Santa Barbara, November 19,

2014 ARO-MURI Cyber Situation Awareness Review University of California at Santa Barbara, November 19, 2014 ARO-MURI Cyber Situation Awareness Review University of California at Santa Barbara, November 19, 2014 1 1 Correlation Engine COAs Data Data Data Data Real World Enterprise Network Mission Cyber-Assets

More information

Adaptive Transmission Scheme for Vehicle Communication System

Adaptive Transmission Scheme for Vehicle Communication System Sangmi Moon, Sara Bae, Myeonghun Chu, Jihye Lee, Soonho Kwon and Intae Hwang Dept. of Electronics and Computer Engineering, Chonnam National University, 300 Yongbongdong Bukgu Gwangju, 500-757, Republic

More information

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) Long Term Evolution (LTE) What is LTE? LTE is the next generation of Mobile broadband technology Data Rates up to 100Mbps Next level of

More information

DOWNLINK AIR-INTERFACE...

DOWNLINK AIR-INTERFACE... 1 ABBREVIATIONS... 10 2 FUNDAMENTALS... 14 2.1 INTRODUCTION... 15 2.2 ARCHITECTURE... 16 2.3 INTERFACES... 18 2.4 CHANNEL BANDWIDTHS... 21 2.5 FREQUENCY AND TIME DIVISION DUPLEXING... 22 2.6 OPERATING

More information

K E Y N O T E S P E E C H. Deputy General Manager / Keysight Technologies

K E Y N O T E S P E E C H. Deputy General Manager / Keysight Technologies //08 K E Y N O T E S P E E C H Jeffrey Chen Jeffrey-cy_chen@keysight.com 08.0. Deputy General Manager / Keysight Technologies M O R E S P E E D, L E S S P O W E R, P E R F E C T A C C U R A C Y NETWORKS/CLOUD

More information

RF exposure impact on 5G rollout A technical overview

RF exposure impact on 5G rollout A technical overview RF exposure impact on 5G rollout A technical overview ITU Workshop on 5G, EMF & Health Warsaw, Poland, 5 December 2017 Presentation: Kamil BECHTA, Nokia Mobile Networks 5G RAN Editor: Christophe GRANGEAT,

More information

DEVELOPMENT TRENDS OF D2D COMMUNICATIONS IN THE LTE 魏存毅國 立台北 大學通訊系

DEVELOPMENT TRENDS OF D2D COMMUNICATIONS IN THE LTE 魏存毅國 立台北 大學通訊系 DEVELOPMENT TRENDS OF D2D COMMUNICATIONS IN THE LTE 魏存毅國 立台北 大學通訊系 The evolution A set of radio access technologies is required to satisfy future requirements Required Performance TRx Spectrum efficiency

More information

RAN and Key technologies in 5G NR

RAN and Key technologies in 5G NR RAN and Key technologies in 5G NR Zhixi Wang Huawei Technology September,2018 Agenda NR Overall Architecture and Network Interfaces Physical Layer Layer 2 and RRC Deployment Architecture and Scenarios

More information

LTE-U Forum: Alcatel-Lucent, Ericsson, Qualcomm Technologies Inc., Samsung Electronics & Verizon. LTE-U SDL Coexistence Specifications V1.

LTE-U Forum: Alcatel-Lucent, Ericsson, Qualcomm Technologies Inc., Samsung Electronics & Verizon. LTE-U SDL Coexistence Specifications V1. LTE-U Forum LTE-U Forum: Alcatel-Lucent, Ericsson, Qualcomm Technologies Inc., Samsung Electronics & Verizon LTE-U SDL Coexistence Specifications V1.0 (2015-02) Disclaimer and Copyright Notification Copyright

More information

5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc.

5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc. 5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc. Yinan Qi Samsung Electronics R&D Institute UK, Staines, Middlesex TW18 4QE,

More information

NR Physical Layer Design: NR MIMO

NR Physical Layer Design: NR MIMO NR Physical Layer Design: NR MIMO Younsun Kim 3GPP TSG RAN WG1 Vice-Chairman (Samsung) 3GPP 2018 1 Considerations for NR-MIMO Specification Design NR-MIMO Specification Features 3GPP 2018 2 Key Features

More information

Planning of LTE Radio Networks in WinProp

Planning of LTE Radio Networks in WinProp Planning of LTE Radio Networks in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen mail@awe-communications.com Issue Date Changes V1.0 Nov. 2010 First version of document V2.0

More information

TECHTRAINED. Foundations Explained. Learn Technology in 10 minutes. Contact:

TECHTRAINED. Foundations Explained. Learn Technology in 10 minutes. Contact: TT 1608: LTE Air Interface Foundations Explained Contact: hello@techtrained.com 469-619-7419 918-908-0336 Course Overview: If you are trying to learn LTE and don t know where to start. You or your technical

More information

Introduction to Shortened TTI And Processing Time for LTE. Sam Meng HTC

Introduction to Shortened TTI And Processing Time for LTE. Sam Meng HTC Introduction to Shortened TTI And Processing Time for LTE Sam Meng HTC 1 Table of Contents Background Design Considerations Specification Concluding Remarks 2 3 Background TTI in LTE Short for Transmission

More information

Background: Cellular network technology

Background: Cellular network technology Background: Cellular network technology Overview 1G: Analog voice (no global standard ) 2G: Digital voice (again GSM vs. CDMA) 3G: Digital voice and data Again... UMTS (WCDMA) vs. CDMA2000 (both CDMA-based)

More information

3GPP ProSe/D2D and its proposed extensions to other topics such as V2X, Wearable devices RAN Aspects. ICL 蔡華龍 (Hua-Lung Tsai) 105 年 09 月 12 日

3GPP ProSe/D2D and its proposed extensions to other topics such as V2X, Wearable devices RAN Aspects. ICL 蔡華龍 (Hua-Lung Tsai) 105 年 09 月 12 日 3GPP ProSe/D2D and its proposed extensions to other topics such as V2X, Wearable devices RAN Aspects ICL 蔡華龍 (Hua-Lung Tsai) 105 年 09 月 12 日 Outline Introduce LTE-A ProSe (D2D) in Rel. 12/13 Further Enhancements

More information

3GPP TS V8.0.0 ( )

3GPP TS V8.0.0 ( ) TS 36.213 V8.0.0 (2007-09) Technical Specification 3 rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical

More information

Design of a UE-specific Uplink Scheduler for Narrowband Internet-of-Things (NB-IoT) Systems

Design of a UE-specific Uplink Scheduler for Narrowband Internet-of-Things (NB-IoT) Systems 1 Design of a UE-specific Uplink Scheduler for Narrowband Internet-of-Things (NB-IoT) Systems + Bing-Zhi Hsieh, + Yu-Hsiang Chao, + Ray-Guang Cheng, and ++ Navid Nikaein + Department of Electronic and

More information

Low latency in 4.9G/5G

Low latency in 4.9G/5G Low latency in 4.9G/5G Solutions for millisecond latency White Paper The demand for mobile networks to deliver low latency is growing. Advanced services such as robotics control, autonomous cars and virtual

More information

Path to 5G Radio Access Network

Path to 5G Radio Access Network Path to 5G Radio Access Network Eduardo Inzunza RF-Test Market Development Dec-2017 2016 2017 Viavi Solutions Inc. 1 Topics 5G RAN Introduction 5G Evolution 5G Revolution 2 Cellular evolution APPS 10101

More information

LTE Release 14 Outlook

LTE Release 14 Outlook LTE Release 14 Outlook Christian Hoymann, David Astely, Magnus Stattin, Gustav Wikström, Jung-Fu (Thomas) Cheng, Henning Wiemann, Niklas Johansson, Mattias Frenne, Ricardo Blasco, Joerg Huschke, Andreas

More information

Understanding the 5G NR Physical Layer

Understanding the 5G NR Physical Layer Understanding the 5G NR Physical Layer Senior Application Engineer/ Keysight Technologies Alex Liang 梁晉源 U P D AT E O N 3 G P P R A N 1 N R R O A D M A P 2015 2016 2017 2018 2019 2020 2021 3GPP Rel 14

More information

LTE-Advanced and Release 10

LTE-Advanced and Release 10 LTE-Advanced and Release 10 1. Carrier Aggregation 2. Enhanced Downlink MIMO 3. Enhanced Uplink MIMO 4. Relays 5. Release 11 and Beyond Release 10 enhances the capabilities of LTE, to make the technology

More information

GTI Proof of Concept of 5G System White Paper

GTI Proof of Concept of 5G System White Paper GTI Proof of Concept of 5G System White Paper http://www.gtigroup.org Page 0 White Paper of Proof of Concept of 5G System V 1.0 Version V1.0 Deliverable Type Confidential Level Program Name Working Group

More information

LTE and NB-IoT. Luca Feltrin. RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna. Telecom Italia Mobile S.p.a. - TIM

LTE and NB-IoT. Luca Feltrin. RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna. Telecom Italia Mobile S.p.a. - TIM LTE and NB-IoT Luca Feltrin RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna Telecom Italia Mobile S.p.a. - TIM Index Ø 3GPP and LTE Specifications Ø LTE o Architecture o PHY Layer o Procedures

More information

LTE Air Interface. Course Description. CPD Learning Credits. Level: 3 (Advanced) days. Very informative, instructor was engaging and knowledgeable!

LTE Air Interface. Course Description. CPD Learning Credits. Level: 3 (Advanced) days. Very informative, instructor was engaging and knowledgeable! Innovating Telecoms Training Very informative, instructor was engaging and knowledgeable! Watch our course intro video. LTE Air Interface Course Description With the introduction of LTE came the development

More information

Interference management Within 3GPP LTE advanced

Interference management Within 3GPP LTE advanced Interference management Within 3GPP LTE advanced Konstantinos Dimou, PhD Senior Research Engineer, Wireless Access Networks, Ericsson research konstantinos.dimou@ericsson.com 2013-02-20 Outline Introduction

More information

3GPP: Evolution of Air Interface and IP Network for IMT-Advanced. Francois COURAU TSG RAN Chairman Alcatel-Lucent

3GPP: Evolution of Air Interface and IP Network for IMT-Advanced. Francois COURAU TSG RAN Chairman Alcatel-Lucent 3GPP: Evolution of Air Interface and IP Network for IMT-Advanced Francois COURAU TSG RAN Chairman Alcatel-Lucent 1 Introduction Reminder of LTE SAE Requirement Key architecture of SAE and its impact Key

More information

LTE Direct Overview. Sajith Balraj Qualcomm Research

LTE Direct Overview. Sajith Balraj Qualcomm Research MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION This technical data may be subject to U.S. and international export, re-export, or transfer ( export ) laws. Diversion contrary to U.S.

More information

LTE Aida Botonjić. Aida Botonjić Tieto 1

LTE Aida Botonjić. Aida Botonjić Tieto 1 LTE Aida Botonjić Aida Botonjić Tieto 1 Why LTE? Applications: Interactive gaming DVD quality video Data download/upload Targets: High data rates at high speed Low latency Packet optimized radio access

More information

Extending LTE into the Unlicensed Spectrum: Technical Analysis of the Proposed Variants

Extending LTE into the Unlicensed Spectrum: Technical Analysis of the Proposed Variants Extending LTE into the Unlicensed Spectrum: Technical Analysis of the Proposed Variants Mina Labib*, Vuk Marojevic*, Jeffrey H. Reed*, Amir I. Zaghloul* *Virginia Tech, Blacksburg, VA, USA US Army Research

More information

What LTE parameters need to be Dimensioned and Optimized

What LTE parameters need to be Dimensioned and Optimized What LTE parameters need to be Dimensioned and Optimized Leonhard Korowajczuk CEO/CTO CelPlan International, Inc. www.celplan.com webinar@celplan.com 8/4/2014 CelPlan International, Inc. www.celplan.com

More information

5G New Radio (NR) : Physical Layer Overview and Performance

5G New Radio (NR) : Physical Layer Overview and Performance 5G New Radio (NR) : Physical Layer Overview and Performance IEEE Communication Theory Workshop - 2018 Amitabha Ghosh Nokia Fellow and Head, Radio Interface Group Nokia Bell Labs May 15 th, 2018 1 5G New

More information

References. What is UMTS? UMTS Architecture

References. What is UMTS? UMTS Architecture 1 References 2 Material Related to LTE comes from 3GPP LTE: System Overview, Product Development and Test Challenges, Agilent Technologies Application Note, 2008. IEEE Communications Magazine, February

More information

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

LTE-Unlicensed. Sreekanth Dama, Dr. Kiran Kuchi, Dr. Abhinav Kumar IIT Hyderabad

LTE-Unlicensed. Sreekanth Dama, Dr. Kiran Kuchi, Dr. Abhinav Kumar IIT Hyderabad LTE-Unlicensed Sreekanth Dama, Dr. Kiran Kuchi, Dr. Abhinav Kumar IIT Hyderabad Unlicensed Bands Shared spectrum Huge available spectrum Regulations Dynamic frequency selection Restrictions over maximum

More information

5G Toolbox. Model, simulate, design and test 5G systems with MATLAB

5G Toolbox. Model, simulate, design and test 5G systems with MATLAB 5G Toolbox Model, simulate, design and test 5G systems with MATLAB Houman Zarrinkoub, PhD. Product Manager 5G, Communications, LTE and WLAN Toolboxes Signal Processing & Communications houmanz@mathworks.com

More information

Docket No.: U Uplink Transmission in a Wireless Device and Wireless Network

Docket No.: U Uplink Transmission in a Wireless Device and Wireless Network Uplink Transmission in a Wireless Device and Wireless Network CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of U.S. Provisional Application No. 62/327,265, filed April

More information

LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany;

LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany; Proceedings of SDR'11-WInnComm-Europe, 22-24 Jun 2011 LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany; meik.kottkamp@rohde-schwarz.com) ABSTRACT From 2009 onwards

More information

Introduction. Air Interface. LTE and UMTS Terminology and Concepts

Introduction. Air Interface. LTE and UMTS Terminology and Concepts LTE and UMTS Terminology and Concepts By Chris Reece, Subject Matter Expert - 8/2009 UMTS and LTE networks are surprisingly similar in many respects, but the terms, labels and acronyms they use are very

More information

Docket No.: U TITLE UPLINK RESOURCE ALLOCATION IN A WIRELESS DEVICE AND WIRELESS NETWORK

Docket No.: U TITLE UPLINK RESOURCE ALLOCATION IN A WIRELESS DEVICE AND WIRELESS NETWORK TITLE UPLINK RESOURCE ALLOCATION IN A WIRELESS DEVICE AND WIRELESS NETWORK CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of U.S. Provisional Application No. 62/345,410,

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

MIMO-OFDM for LTE 최수용. 연세대학교전기전자공학과

MIMO-OFDM for LTE 최수용.   연세대학교전기전자공학과 MIMO-OFDM for LTE 최수용 csyong@yonsei.ac.kr http://web.yonsei.ac.kr/sychoi/ 연세대학교전기전자공학과 LTE 시스템의특징 : Architecture LTE(Long Term Evolution) (=E-UTRAN) SAE(System Architecture Evolution) (=EPC) EPS(Evolved

More information

Progress on LAA and its relationship to LTE-U and MulteFire. Qualcomm Technologies, Inc. February 22, 2016

Progress on LAA and its relationship to LTE-U and MulteFire. Qualcomm Technologies, Inc. February 22, 2016 Progress on LAA and its relationship to LTE-U and MulteFire Qualcomm Technologies, Inc. February 22, 2016 Making best use of 5 GHz unlicensed band LTE-U/LAA, LWA, MulteFire and will coexist in 5 GHz Enterprises

More information

3GPP Standards for the Internet-of-Things

3GPP Standards for the Internet-of-Things 3GPP Standards for the Internet-of-Things Philippe Reininger Chairman of 3GPP RAN WG 3 (Huawei) 3GPP 2016 1 Partnership Organizational Partners (SDOs) Regional standards organizations: ARIB (Japan), ATIS

More information

ETSI TS V ( )

ETSI TS V ( ) TS 136 302 V14.2.0 (2017-04) TECHNICAL SPECIFICATION LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Services provided by the physical layer (3GPP TS 36.302 version 14.2.0 Release 14) 1 TS 136

More information

Lecture 13 UMTS Long Term Evolution. I. Tinnirello

Lecture 13 UMTS Long Term Evolution. I. Tinnirello Lecture 13 UMTS Long Term Evolution Beyond 3G International Mobile Telecommunications (IMT)-2000 introduced global standard for 3G Systems beyond IMT-2000 (IMT-Advanced) are set to introduce evolutionary

More information

Title: sxgp (shared XGP) Specification Version: 01 Date: October 18, 2017 XGP Forum Classification: Unrestricted.

Title: sxgp (shared XGP) Specification Version: 01 Date: October 18, 2017 XGP Forum Classification: Unrestricted. XGP Forum Document A-GN6.00-01-TS Title: sxgp (shared XGP) Specification Version: 01 Date: October 18, 2017 XGP Forum Classification: Unrestricted List of contents: 1. Overview of Standard System 2. Abbreviations

More information

Long Term Evolution (LTE)

Long Term Evolution (LTE) 1 Lecture 13 LTE 2 Long Term Evolution (LTE) Material Related to LTE comes from 3GPP LTE: System Overview, Product Development and Test Challenges, Agilent Technologies Application Note, 2008. IEEE Communications

More information

Test strategy towards Massive MIMO

Test strategy towards Massive MIMO Test strategy towards Massive MIMO Using LTE-Advanced Pro efd-mimo Shatrughan Singh, Technical Leader Subramaniam H, Senior Technical Leader Jaison John Puliyathu Mathew, Senior Engg. Project Manager Abstract

More information

TITLE DOWNLINK CONTROL INFORMATION IN A WIRELESS DEVICE AND WIRELESS NETWORK CROSS-REFERENCE TO RELATED APPLICATIONS

TITLE DOWNLINK CONTROL INFORMATION IN A WIRELESS DEVICE AND WIRELESS NETWORK CROSS-REFERENCE TO RELATED APPLICATIONS TITLE DOWNLINK CONTROL INFORMATION IN A WIRELESS DEVICE AND WIRELESS NETWORK CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of U.S. Provisional Application No. 62/289,949,

More information

Available online at ScienceDirect. Procedia Computer Science 34 (2014 ) , United States

Available online at  ScienceDirect. Procedia Computer Science 34 (2014 ) , United States Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 34 (2014 ) 133 140 The 9th International Conference on Future Networks and Communications (FNC-2014) LTE-WiFi Carrier Aggregation

More information

Evolution of 3GPP LTE-Advanced Standard toward 5G

Evolution of 3GPP LTE-Advanced Standard toward 5G Evolution of 3GPP LTE-Advanced Standard toward 5G KRNet 2013. 6. 24. LG Electronics Byoung-Hoon Kim (bh.kim@lge.com) Communication Standards Evolution Mobility We are here IMT-Advanced Standard High (~350Km/h)

More information

Performance evaluation of LTE in unlicensed bands for indoor deployment of ultra-broadband mobile networks

Performance evaluation of LTE in unlicensed bands for indoor deployment of ultra-broadband mobile networks Performance evaluation of LTE in unlicensed bands for indoor deployment of ultra-broadband mobile networks Claudio Rasconà, Maria-Gabriella Di Benedetto Dept. of Information Engineering, Electronics and

More information

TEPZZ A T EP A2 (19) (11) EP A2. (12) EUROPEAN PATENT APPLICATION published in accordance with Art.

TEPZZ A T EP A2 (19) (11) EP A2. (12) EUROPEAN PATENT APPLICATION published in accordance with Art. (19) TEPZZ 597799A T (11) EP 2 597 799 A2 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: 29.05.2013 Bulletin 2013/22 (21) Application number: 11809845.8

More information

5G new radio architecture and challenges

5G new radio architecture and challenges WHITE PAPER 5G new radio architecture and challenges By Dr Paul Moakes, CTO, CommAgility www.commagility.com 5G New Radio One of the key enabling technologies for 5G will be New Radio (NR). 5G NR standardization

More information

5G Technology Introduction, Market Status Overview and Worldwide Trials. Dr. Taro Eichler Technology Manager Wireless Communication

5G Technology Introduction, Market Status Overview and Worldwide Trials. Dr. Taro Eichler Technology Manager Wireless Communication 5G Technology Introduction, Market Status Overview and Worldwide Trials Dr. Taro Eichler Technology Manager Wireless Communication Mobile World Congress 2017 Barcelona (It not Smartphones anymore) Automation

More information

LTE systems: overview

LTE systems: overview LTE systems: overview Luca Reggiani LTE overview 1 Outline 1. Standard status 2. Signal structure 3. Signal generation 4. Physical layer procedures 5. System architecture 6. References LTE overview 2 Standard

More information

TITLE UPLINK SIGNAL STARTING POSITION IN A WIRELESS DEVICE AND WIRELESS NETWORK

TITLE UPLINK SIGNAL STARTING POSITION IN A WIRELESS DEVICE AND WIRELESS NETWORK TITLE UPLINK SIGNAL STARTING POSITION IN A WIRELESS DEVICE AND WIRELESS NETWORK CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of U.S. Provisional Application No. 62/332,510,

More information

The road to 5G LTE-A evolution, Internet of Things and first 5G aspects Reiner Stuhlfauth

The road to 5G LTE-A evolution, Internet of Things and first 5G aspects Reiner Stuhlfauth The road to 5G LTE-A evolution, Internet of Things and first 5G aspects Reiner Stuhlfauth Technology Marketing Manager Subject to change Data without tolerance limits is not binding. R&S is a registered

More information

802.11ax introduction and measurement solution

802.11ax introduction and measurement solution 802.11ax introduction and measurement solution Agenda IEEE 802.11ax 802.11ax overview & market 802.11ax technique / specification 802.11ax test items Keysight Product / Solution Demo M9421A VXT for 802.11ax

More information

What can we do with 5G NR Spectrum Sharing that isn t possible today? Qualcomm Technologies, Inc. December 13th, 2017

What can we do with 5G NR Spectrum Sharing that isn t possible today? Qualcomm Technologies, Inc. December 13th, 2017 What can we do with 5G NR Spectrum Sharing that isn t possible today? Qualcomm Technologies, Inc. December 13th, 2017 Today s agenda 1 2 3 Global 5G spectrum update 5G spectrum sharing technologies Questions

More information

<Technical Report> Number of pages: 20. XGP Forum Document TWG TR

<Technical Report> Number of pages: 20. XGP Forum Document TWG TR XGP Forum Document TWG-009-01-TR Title: Conformance test for XGP Global Mode Version: 01 Date: September 2, 2013 XGP Forum Classification: Unrestricted List of contents: Chapter 1 Introduction

More information

IoT radio access technologies

IoT radio access technologies IoT radio access technologies ITG 5.2.4 Workshop Cellular Internet of Things Dr. Berthold Panzner München 2017-12-01 Internet of Things E2E IoT Connectivity Radio Access Network Sensors/tags, actuators

More information

ETSI TS V ( )

ETSI TS V ( ) TS 136 302 V14.4.0 (2018-01) TECHNICAL SPECIFICATION LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Services provided by the physical layer (3GPP TS 36.302 version 14.4.0 Release 14) 1 TS 136

More information

PHY/MAC design concepts of 5G Version 1.0

PHY/MAC design concepts of 5G Version 1.0 PHY/MAC design concepts of 5G 1 2018 Version 1.0 Outline Introduction Background (standardization process, requirements/levers, LTE vs 5G) Part I: 5G PHY/MAC Enablers Physical channels, physical reference

More information

TITLE DUAL CONNECTIVITY POWER CONTROL FOR WIRELESS NETWORK AND WIRELESS DEVICE

TITLE DUAL CONNECTIVITY POWER CONTROL FOR WIRELESS NETWORK AND WIRELESS DEVICE TITLE DUAL CONNECTIVITY POWER CONTROL FOR WIRELESS NETWORK AND WIRELESS DEVICE CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of U.S. Provisional Application No. 62/408,338,

More information

3GPP TR V9.0.0 ( )

3GPP TR V9.0.0 ( ) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Feasibility study for Further Advancements for E-UTRA (LTE-Advanced) (Release 9) The present document

More information

Special Articles on LTE Advanced Release 13 Standardization. data rates utilizing multiple LTE carriers. mobile network operators all around the

Special Articles on LTE Advanced Release 13 Standardization. data rates utilizing multiple LTE carriers. mobile network operators all around the Broadband Frequency Technologies in LTE-Advanced Release 13 CA DC Unlicensed Frequency Utilization Special Articles on LTE Advanced Release 13 Standardization To accommodate the surge in traffic, the key

More information

LTE Network Architecture, Interfaces and Radio Access

LTE Network Architecture, Interfaces and Radio Access LTE Network Architecture, Interfaces and Radio Access Sanne STIJVE Business Development Manager, Mobile Broadband Ericsson 1 LTE/EPC Architecture & Terminology S1 enodeb MME X2 X2 P/S GW X2 enodeb EPC

More information

ETSI TS V (201

ETSI TS V (201 TS 136 302 V13.2.0 (201 16-08) TECHNICAL SPECIFICATION LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); by the physical layer (3GPP TS 36.302 version 13.2.0 Release 13) Services provided 1 TS

More information

Test Range Spectrum Management with LTE-A

Test Range Spectrum Management with LTE-A Test Resource Management Center (TRMC) National Spectrum Consortium (NSC) / Spectrum Access R&D Program Test Range Spectrum Management with LTE-A Bob Picha, Nokia Corporation of America DISTRIBUTION STATEMENT

More information

MAC Protocols for Massive IoT Connectivity

MAC Protocols for Massive IoT Connectivity < 한국통신학회초저지연 / 고효율무선접속기술워크샵 > MAC Protocols for Massive IoT Connectivity 2017 년 8 월 18 일 김재현 Wireless Internet and Network Engineering Research Lab. Department of Electrical and Computer Engineering Ajou

More information

Next Generation Mobile Networks NGMN Liaison Statement to 5GAA

Next Generation Mobile Networks NGMN Liaison Statement to 5GAA Simulation assumptions and simulation results of LLS and SLS 1 THE LINK LEVEL SIMULATION 1.1 Simulation assumptions The link level simulation assumptions are applied as follows: For fast fading model in

More information

5G Standardization Status in 3GPP

5G Standardization Status in 3GPP As the radio interface of mobile phones has evolved, it has typically been changed about every ten years, and the 5G (5th Generation) interface is expected to start being used in the 2020s. Similar to

More information

5G Frame Structure. August 2017 Frank Kowalewski, Eiko Seidel Nomor Research GmbH, Munich, Germany

5G Frame Structure. August 2017 Frank Kowalewski, Eiko Seidel Nomor Research GmbH, Munich, Germany 5G Frame Structure August 2017 Frank Kowalewski, Eiko Seidel Nomor Research GmbH, Munich, Germany Summary 3GPP is currently defining physical layer technologies for 5G cellular communications. New 5G services

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 What s Behind 5G Wireless Communications? 서기환과장 2015 The MathWorks, Inc. 2 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile

More information

Introducing LTE-Advanced

Introducing LTE-Advanced Introducing LTE-Advanced Application Note LTE-Advanced (LTE-A) is the project name of the evolved version of LTE that is being developed by 3GPP. LTE-A will meet or exceed the requirements of the International

More information

Performance Evaluation of Packet Scheduling Algorithms for LTE Downlink

Performance Evaluation of Packet Scheduling Algorithms for LTE Downlink Master Thesis Electrical Engineering Thesis no: MEEyy:xx September2011 Performance Evaluation of Packet Scheduling Algorithms for LTE Downlink Ömer ARSLAN Olufemi Emmanuel ANJORIN School of Engineering

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Marc Barberis 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile Broadband IoT

More information

PXI LTE FDD and LTE TDD Measurement Suites Data Sheet

PXI LTE FDD and LTE TDD Measurement Suites Data Sheet PXI LTE FDD and LTE TDD Measurement Suites Data Sheet The most important thing we build is trust A production ready ATE solution for RF alignment and performance verification UE Tx output power Transmit

More information

2015 SoftBank Trial Akihabara,Tokyo

2015 SoftBank Trial Akihabara,Tokyo 2015 SoftBank Trial Akihabara,Tokyo Adding street pole mounted Small Cells as a 2 nd LTE layer for the Macro deployment in a dense urban area Akihabara Tokyo 500mm Height limit Detached SBA 1 Trial Goals

More information

Radio Interface and Radio Access Techniques for LTE-Advanced

Radio Interface and Radio Access Techniques for LTE-Advanced TTA IMT-Advanced Workshop Radio Interface and Radio Access Techniques for LTE-Advanced Motohiro Tanno Radio Access Network Development Department NTT DoCoMo, Inc. June 11, 2008 Targets for for IMT-Advanced

More information

With release 12, the third generation. Is Your Handset PA Ready for LTE Device-to-Device Proximity Services?

With release 12, the third generation. Is Your Handset PA Ready for LTE Device-to-Device Proximity Services? Is Your Handset PA Ready for LTE Device-to-Device Proximity Services? Andreas Roessler Rohde & Schwarz, Munich, Germany With release 12, the third generation partnership project (3GPP) has taken on the

More information

Keysight Technologies Narrowband IoT (NB-IoT): Cellular Technology for the Hyperconnected IoT

Keysight Technologies Narrowband IoT (NB-IoT): Cellular Technology for the Hyperconnected IoT Ihr Spezialist für Mess- und Prüfgeräte Keysight Technologies Narrowband IoT (): Cellular Technology for the Hyperconnected IoT Application Note datatec Ferdinand-Lassalle-Str. 52 72770 Reutlingen Tel.

More information

3GPP TS V ( )

3GPP TS V ( ) TS 36.216 V10.3.1 (2011-09) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical

More information

Training Programme. 1. LTE Planning Overview. 2. Modelling a LTE Network. 3. LTE Predictions. 4. Frequency and PCI Plan Analysis

Training Programme. 1. LTE Planning Overview. 2. Modelling a LTE Network. 3. LTE Predictions. 4. Frequency and PCI Plan Analysis ATOLL LTE FEATURES Training Programme 1. LTE Planning Overview 2. Modelling a LTE Network 3. LTE Predictions 4. Frequency and PCI Plan Analysis 5. Monte-Carlo Based Simulations Slide 2 of 82 1. LTE Planning

More information

IEEE ax / OFDMA

IEEE ax / OFDMA #WLPC 2018 PRAGUE CZECH REPUBLIC IEEE 802.11ax / OFDMA WFA CERTIFIED Wi-Fi 6 PERRY CORRELL DIR. PRODUCT MANAGEMENT 1 2018 Aerohive Networks. All Rights Reserved. IEEE 802.11ax Timeline IEEE 802.11ax Passed

More information