EE C245 ME C218 Introduction to MEMS Design

Size: px
Start display at page:

Download "EE C245 ME C218 Introduction to MEMS Design"

Transcription

1 EE C45 ME C18 Introduction to MEMS Design Fall 008 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 9470 Lecture 7: Noise & Integration ti EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 1

2 Lecture Outline Reading: Senturia, Chpt. 16 Lecture Topics: Noise MEMS/Transistor Integration Wrap Up Final Exam Next Week EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08

3 Noise EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 3

4 Noise Noise: Random fluctuation of a given parameter I(t) In addition, a noise waveform has a zero average value Avg. value (e.g. could be DC current) I D I(t) t We can t handle noise at instantaneous times But we can handle some of the averaged effects of random fluctuations by giving noise a power spectral density representation Thus, represent noise by its mean-square value: Let i ( t ) = I ( t ) I D Then i 1 = ( I I ) = D lim I T T T 0 I D dt EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 4

5 Noise Spectral Density We can plot the spectral density of this mean-square value: i Δf [units /Hz] One-sided spectral density used in circuits measured by spectrum analyzers Two-sided spectral density (1/ the one-sided) d) Often used in systems courses i = integrated mean-square noise spectral density over all frequencies (area under the curve) EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 5

6 Inputs Circuit Noise Calculations Deterministic Outputs v i ( jω) ) ( jω) ) H ( jω) S i (ω ) S o o( (ω ) Deterministic: Random: Linear Time-Invariant System Random v π v o (t) ( jω) ω o v o t ω ( jω) H ( jω) v ( jω) o = i v o ω ο S o (t) S ( jω) ) t S o ω ο Mean square spectral density * Random: S ( ω ) = [ H ( j ω ) H ( j ω )] S ( ω ) = H ( j ω ) S ( ω ) o i S ( ω) = H ( jω) S ( ω) How is it we o Root mean square amplitudes i can do this? EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 6 i ω

7 Handling Noise Deterministically Can do this for noise in a tiny bandwidth (e.g., 1 Hz) S n v n n 1 = S1 ( f Δf ω ο B ( jω) ) ω Can approximate this v = S ( f ) B v n 1 S S o i 1 ( ω ο ω ω o ω [This is actually the principle by which oscillators work oscillators are just noise going through a tiny bandwidth filter] B by a sinusoidal voltage generator (especially for small B, say 1 Hz) v o τ ~ (t) 1 B A cosω t Why? Neither the amplitude nor the phase of a signal can change appreciably within a time period 1/B. EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 7 o t

8 Systematic Noise Calculation Procedure H ( jω) H5( jω) General Circuit With Wth Several Noise Sources v n i n1 v n3 i n5 i n4 v n6 v on H1( jω) Assume noise sources are uncorrelated 1. For i n1, replace w/ a deterministic source of value in1 n 1 = i Δff (1Hz) EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 8

9 Systematic Noise Calculation Procedure v 1( ω) i 1( ω) H ( jω). Calculate n (treating it like a deterministic signal) 3. Determine on = v on1 = in1 H ( jω) 4. Repeat for each noise source:,, i n1 1 v n n3. p f,,v n3 5. Add noise power (mean square values) v ontot = v on1 + v on + v on3 + v on4 +L v ontot = v on1 + von + von3 + von4 +L Total rms value EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 9

10 Minimum Detectable Signal (MDS) Minimum Detectable Signal (MDS): Input signal level when the signal-to-noise ratio (SNR) is equal to unity Sensed Signal Sensor Scale Factor Circuit Gain Output t Sensor Noise Sensor Circuit Output Noise Signal Conditioning Circuit Includes desired output plus noise The sensor scale factor is governed by the sensor type The effect of noise is best determined via analysis of the equivalent circuit for the system EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 10

11 LF356 Op Amp Data Sheet EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 11

12 Minimum Detectable Signal (MDS) Minimum Detectable Signal (MDS): Input signal level when the signal-to-noise ratio (SNR) is equal to unity Sensed Signal Sensor Scale Factor Circuit Gain Output t Sensor Noise Sensor Circuit Output Noise Signal Conditioning Circuit Includes desired output plus noise The sensor scale factor is governed by the sensor type The effect of noise is best determined via analysis of the equivalent circuit for the system EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 1

13 Move Noise Sources to a Common Point Move noise sources so that all sum at the input to the amplifier circuit (i.e., at the output of the sense element) Then, can compare the output of the sensed signal directly to the noise at this node to get the MDS Sensed Signal Sensor Scale Factor Circuit Gain Output Sensor Noise Sensor Circuit Input- Referred Noise Signal Conditioning Circuit Includes desired output plus noise EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 13

14 r F c Gyro Readout Equivalent Circuit (for a single tine) Noise Sources r r r = mac = m ( x & d Ω ) i f F c l x c x f r x r x η e :1 i o v x i 0 ia C p ia - + R f v Gyro Sense Element Signal Conditioning Circuit Output Circuit (Transresistance Amplifier) Easiest to analyze if all noise sources are summed at a common node EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 14

15 r F c Gyro Readout Equivalent Circuit (for a single tine) r r r = mac = m ( x & d Ω ) Noise Sources Noiseless l x c x f r r x r x η e :1 i o v F x i 0 c eq C p eq - + R f v Gyro Sense Element Output Circuit Signal Conditioning Circuit (Transresistance Amplifier) v eq i eq Here, and are equivalent input-referred voltage and current noise sources EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 15

16 r F c = Example: Gyro MDS Calculation (cont) r ma c = l x c x r r m ( x & Ω) f r x r x d η e :1 i o v F x& i v 0 c s eq C p eq - + R f Noiseless Now, find the i eqtot entering the amplifier input: EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 16

17 Example: Gyro MDS Calculation (cont) EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 17

18 r F c = Example: Gyro MDS Calculation (cont) r ma c = l x c x r r m ( x & Ω) f r x r x d η e :1 i o v F x& i v 0 c s eq C p eq - + R f Noiseless First, find the rotation to i o transfer function: EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 18

19 Example: Gyro MDS Calculation (cont) EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 19

20 Sensing Circuits (cont) EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 0

21 Problems With Pure-C Position Sensing To sense position (i.e., displacement), use a capacitive load EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 1

22 F d1 Ele ectrode The Op Amp Integrator Advantage x d 1 d b k e C 1io - m lectrod E The virtual ground provided by the ideal op amp eliminates the parasitic capacitance C p R 1 R >> sc (for biasing) C p 0 + v i C C 1 1 v 1 V P EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08

23 Integration of MEMS and Transistors EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 3

24 Merged MEMS/Transistor Technologies (Process Philosophy) MEMS-Last: MEMS-First: Mixed: problem: multiple passivation/protection steps large number of masks required problem: custom process for each product MEMS-first or MEMS-last: adv.: modularity flexibility less development time adv.: low pass./protection complexity fewer masks EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 4

25 Analog Devices BiMEMS Process Interleaved MEMS and 4 μm BiMOS processes (8 masks) Diffused n+ runners used to interconnect MEMS & CMOS Relatively deep junctions allow for MEMS poly stress anneal Used to manufacture the ADXL-50 accelerometer and Analog Devices family of accelerometers EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 5

26 Analog Devices BiMEMS Process (cont) Examples: Old New Analog Devices ADXL 78 Analog Devices ADXL-0 Multi-Axis Accelerometer Can you list the advances in the process from old to new? EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 6

27 50 nm CMOS Cross-Section D D G Sub S nd Level Metal Interconnect (e.g., Cu) G Sub S S G D S G D 1 st Level Metal Interconnect (e.g., Al) LPCVD SiO Polysilicon Gate CVD Tungsten LOCOS Oxidation TiSi Contact Barrier TiN Local P + N P+ N + P N + Interconnect N Well - PMOS Substrate P Well - NMOS Substrate Silicon Substrate P Lightly Doped Drain (LDD) 8 masks and a lot more complicated than MEMS! EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 7

28 Merged MEMS/Transistor Technologies (Process Philosophy) Mixed: problem: multiple passivation/protection steps large number of masks required problem: custom process for each product MEMS-first or MEMS-last: adv.: modularity flexibility less development time adv.: low pass./protection complexity fewer masks EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 8

29 MEMS-First Integration Problem: μstructural topography interferes with lithography difficult to apply photoresist for submicron circuits Soln.: build μmechanics in a trench, then planarize before circuit processing [Smith et al, IEDM 95] EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 9

30 MEMS-First Ex: Sandia s imems Used to demonstrate functional fully integrated oscillators Issues: lithography h and etching may be difficult in trench may limit dimensions (not good for RF MEMS) μmechanical material must stand up to IC temperatures (>1000 o C) problem for some metal materials might be contamination issues for foundry IC s [Smith et al, IEDM 95] EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 30

31 Bosch/Stanford MEMS-First Process Single-crystal silicon microstructures sealed under epi-poly encapsulation covers Many masking steps needed, but very stable structures Resonator Epi-Poly Seal Epi-Poly Cap Contact Substrate Epi-silicon for CMOS Transistor Circuits Vacuum Chamber [Kim, Kenny Trans 05] μmechanical Device EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 31

32 Merged MEMS/Transistor Technologies (Process Philosophy) Mixed: problem: multiple passivation/protection steps large number of masks required problem: custom process for each product MEMS-first or MEMS-last: adv.: modularity flexibility less development time adv.: low pass./protection complexity fewer masks EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 3

33 Berkeley Polysilicon MICS Process Uses surface-micromachinedpolysilicon microstructures with silicon nitride layer between transistors & MEMS Polysilicon dep. T~600 o C; nitride dep. T~835 o C 1100 o C RTA stress anneal for 1 min. metal and junctions must withstand temperatures ~835 o C tungsten metallization used with TiSi contact barriers in situ doped structural polysi; rapid thermal annealing EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 33

34 Single-Chip Ckt/MEMS Integration Completely monolithic, low phase noise, high-q oscillator (effectively, an integrated crystal oscillator) Oscilloscope Output Waveform [Nguyen, Howe 1993] To allow the use of >600 o C processing temperatures, tungsten (instead of aluminum) is used for metallization EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 34

35 Usable MEMS-Last Integration Problem: tungsten is not an accepted primary interconnect metal Challenge: retain conventional metallization minimize post-cmos processing temperatures explore alternative structural materials (e.g., plated nickel, SiGe [Franke, Howe et al, MEMS 99]) Limited set of usable structural materials not the best situation, but workable EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 35

36 UCB Poly-SiGe MICS Process μm standard CMOS process w/ Al metallization P-type poly-si 0.35 Ge 0.65 structural material; poly-ge sacrificial material Process: Passivate CMOS w/ 400 o C Open vias to interconnect runners Deposit & pattern ground plane RTA anneal to lower resistivity (550 o C, 30s) Transistor Circuits EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 36

37 Wrap Up EE C45: Introduction to MEMS Design Lecture 7 C. Nguyen 1/8/08 37

EE C247B ME C218 Introduction to MEMS Design Spring 2016

EE C247B ME C218 Introduction to MEMS Design Spring 2016 EE C247B ME C218 Introduction to MEMS Design Spring 2016 Prof. Clark T.C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Module 16: Sensing

More information

Surface Micromachining

Surface Micromachining Surface Micromachining An IC-Compatible Sensor Technology Bernhard E. Boser Berkeley Sensor & Actuator Center Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley Sensor

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2010

EE C245 ME C218 Introduction to MEMS Design Fall 2010 Instructor: Prof. Clark T.-C. Nguyen EE C245 ME C218 Introduction to MEMS Design Fall 2010 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 1: Definition

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2008 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 1: Definition

More information

2.8 - CMOS TECHNOLOGY

2.8 - CMOS TECHNOLOGY CMOS Technology (6/7/00) Page 1 2.8 - CMOS TECHNOLOGY INTRODUCTION Objective The objective of this presentation is: 1.) Illustrate the fabrication sequence for a typical MOS transistor 2.) Show the physical

More information

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs 1 CMOS Digital Integrated Circuits 3 rd Edition Categories of Materials Materials can be categorized into three main groups regarding their

More information

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 LECTURE 020 ECE 4430 REVIEW II (READING: GHLM - Chap. 2) Objective The objective of this presentation is: 1.) Identify the prerequisite material as taught

More information

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 LECTURE 020 ECE 4430 REVIEW II (READING: GHLM - Chap. 2) Objective The objective of this presentation is: 1.) Identify the prerequisite material as taught

More information

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1 Topics What is semiconductor Basic semiconductor devices Basics of IC processing CMOS technologies 2006/9/27 2 1 What is Semiconductor

More information

420 Intro to VLSI Design

420 Intro to VLSI Design Dept of Electrical and Computer Engineering 420 Intro to VLSI Design Lecture 0: Course Introduction and Overview Valencia M. Joyner Spring 2005 Getting Started Syllabus About the Instructor Labs, Problem

More information

Topic 3. CMOS Fabrication Process

Topic 3. CMOS Fabrication Process Topic 3 CMOS Fabrication Process Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk Lecture 3-1 Layout of a Inverter

More information

Chapter 3 Basics Semiconductor Devices and Processing

Chapter 3 Basics Semiconductor Devices and Processing Chapter 3 Basics Semiconductor Devices and Processing 1 Objectives Identify at least two semiconductor materials from the periodic table of elements List n-type and p-type dopants Describe a diode and

More information

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2011 PROBLEM SET #2. Due (at 7 p.m.): Tuesday, Sept. 27, 2011, in the EE C245 HW box in 240 Cory.

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2011 PROBLEM SET #2. Due (at 7 p.m.): Tuesday, Sept. 27, 2011, in the EE C245 HW box in 240 Cory. Issued: Tuesday, Sept. 13, 2011 PROBLEM SET #2 Due (at 7 p.m.): Tuesday, Sept. 27, 2011, in the EE C245 HW box in 240 Cory. 1. Below in Figure 1.1 is a description of a DRIE silicon etch using the Marvell

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 21: Gyros

More information

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag FABRICATION OF CMOS INTEGRATED CIRCUITS Dr. Mohammed M. Farag Outline Overview of CMOS Fabrication Processes The CMOS Fabrication Process Flow Design Rules Reference: Uyemura, John P. "Introduction to

More information

CMP for More Than Moore

CMP for More Than Moore 2009 Levitronix Conference on CMP Gerfried Zwicker Fraunhofer Institute for Silicon Technology ISIT Itzehoe, Germany gerfried.zwicker@isit.fraunhofer.de Contents Moore s Law and More Than Moore Comparison:

More information

Layout of a Inverter. Topic 3. CMOS Fabrication Process. The CMOS Process - photolithography (2) The CMOS Process - photolithography (1) v o.

Layout of a Inverter. Topic 3. CMOS Fabrication Process. The CMOS Process - photolithography (2) The CMOS Process - photolithography (1) v o. Layout of a Inverter Topic 3 CMOS Fabrication Process V DD Q p Peter Cheung Department of Electrical & Electronic Engineering Imperial College London v i v o Q n URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk

More information

EE4800 CMOS Digital IC Design & Analysis. Lecture 1 Introduction Zhuo Feng

EE4800 CMOS Digital IC Design & Analysis. Lecture 1 Introduction Zhuo Feng EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng 1.1 Prof. Zhuo Feng Office: EERC 730 Phone: 487-3116 Email: zhuofeng@mtu.edu Class Website http://www.ece.mtu.edu/~zhuofeng/ee4800fall2010.html

More information

Lecture 10: Accelerometers (Part I)

Lecture 10: Accelerometers (Part I) Lecture 0: Accelerometers (Part I) ADXL 50 (Formerly the original ADXL 50) ENE 5400, Spring 2004 Outline Performance analysis Capacitive sensing Circuit architectures Circuit techniques for non-ideality

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 20: Equivalent

More information

Lecture 0: Introduction

Lecture 0: Introduction Lecture 0: Introduction Introduction Integrated circuits: many transistors on one chip. Very Large Scale Integration (VLSI): bucketloads! Complementary Metal Oxide Semiconductor Fast, cheap, low power

More information

Chapter 15 Summary and Future Trends

Chapter 15 Summary and Future Trends Chapter 15 Summary and Future Trends Hong Xiao, Ph. D. hxiao89@hotmail.com www2.austin.cc.tx.us/hongxiao/book.htm Hong Xiao, Ph. D. www2.austin.cc.tx.us/hongxiao/book.htm 1 The 1960s First IC product Bipolar

More information

ECE4902 B2015 HW Set 1

ECE4902 B2015 HW Set 1 ECE4902 B2015 HW Set 1 Due in class Tuesday November 3. To make life easier on the graders: Be sure your NAME and ECE MAILBOX NUMBER are prominently displayed on the upper right of what you hand in. When

More information

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02 EE 5611 Introduction to Microelectronic Technologies Fall 2014 Thursday, September 04, 2014 Lecture 02 1 Lecture Outline Review on semiconductor materials Review on microelectronic devices Example of microelectronic

More information

RF MEMS for Low-Power Communications

RF MEMS for Low-Power Communications RF MEMS for Low-Power Communications Clark T.-C. Nguyen Center for Wireless Integrated Microsystems Dept. of Electrical Engineering and Computer Science University of Michigan Ann Arbor, Michigan 48109-2122

More information

Micromechanical Circuits for Wireless Communications

Micromechanical Circuits for Wireless Communications Micromechanical Circuits for Wireless Communications Clark T.-C. Nguyen Center for Integrated Microsystems Dept. of Electrical Engineering and Computer Science University of Michigan Ann Arbor, Michigan

More information

+1 (479)

+1 (479) Introduction to VLSI Design http://csce.uark.edu +1 (479) 575-6043 yrpeng@uark.edu Invention of the Transistor Vacuum tubes ruled in first half of 20th century Large, expensive, power-hungry, unreliable

More information

Final Exam Topics. IC Technology Advancement. Microelectronics Technology in the 21 st Century. Intel s 90 nm CMOS Technology. 14 nm CMOS Transistors

Final Exam Topics. IC Technology Advancement. Microelectronics Technology in the 21 st Century. Intel s 90 nm CMOS Technology. 14 nm CMOS Transistors ANNOUNCEMENTS Final Exam: When: Wednesday 12/10 12:30-3:30PM Where: 10 Evans (last names beginning A-R) 60 Evans (last names beginning S-Z) Comprehensive coverage of course material Closed book; 3 sheets

More information

VLSI Technology Dr. Nandita Dasgupta Department of Electrical Engineering Indian Institute of Technology, Madras

VLSI Technology Dr. Nandita Dasgupta Department of Electrical Engineering Indian Institute of Technology, Madras VLSI Technology Dr. Nandita Dasgupta Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 40 BICMOS technology So, today we are going to have the last class on this VLSI

More information

2009 Spring CS211 Digital Systems & Lab 1 CHAPTER 3: TECHNOLOGY (PART 2)

2009 Spring CS211 Digital Systems & Lab 1 CHAPTER 3: TECHNOLOGY (PART 2) 1 CHAPTER 3: IMPLEMENTATION TECHNOLOGY (PART 2) Whatwillwelearninthischapter? we learn in this 2 How transistors operate and form simple switches CMOS logic gates IC technology FPGAs and other PLDs Basic

More information

Vibrating RF MEMS for Low Power Wireless Communications

Vibrating RF MEMS for Low Power Wireless Communications Vibrating RF MEMS for Low Power Wireless Communications Clark T.-C. Nguyen Center for Wireless Integrated Microsystems Dept. of Electrical Engineering and Computer Science University of Michigan Ann Arbor,

More information

PROBLEM SET #7. EEC247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2015 C. Nguyen. Issued: Monday, April 27, 2015

PROBLEM SET #7. EEC247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2015 C. Nguyen. Issued: Monday, April 27, 2015 Issued: Monday, April 27, 2015 PROBLEM SET #7 Due (at 9 a.m.): Friday, May 8, 2015, in the EE C247B HW box near 125 Cory. Gyroscopes are inertial sensors that measure rotation rate, which is an extremely

More information

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced.

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Unit 1 Basic MOS Technology Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Levels of Integration:- i) SSI:-

More information

EE 410: Integrated Circuit Fabrication Laboratory

EE 410: Integrated Circuit Fabrication Laboratory EE 410: Integrated Circuit Fabrication Laboratory 1 EE 410: Integrated Circuit Fabrication Laboratory Web Site: Instructor: http://www.stanford.edu/class/ee410 https://ccnet.stanford.edu/ee410/ (on CCNET)

More information

Experiment 3 - IC Resistors

Experiment 3 - IC Resistors Experiment 3 - IC Resistors.T. Yeung, Y. Shin,.Y. Leung and R.T. Howe UC Berkeley EE 105 1.0 Objective This lab introduces the Micro Linear Lab Chips, with measurements of IC resistors and a distributed

More information

Advanced Digital Integrated Circuits. Lecture 2: Scaling Trends. Announcements. No office hour next Monday. Extra office hour Tuesday 2-3pm

Advanced Digital Integrated Circuits. Lecture 2: Scaling Trends. Announcements. No office hour next Monday. Extra office hour Tuesday 2-3pm EE241 - Spring 20 Advanced Digital Integrated Circuits Lecture 2: Scaling Trends and Features of Modern Technologies Announcements No office hour next Monday Extra office hour Tuesday 2-3pm 2 1 Outline

More information

INFN Laboratori Nazionali di Legnaro, Marzo 2007 FRONT-END ELECTRONICS PART 2

INFN Laboratori Nazionali di Legnaro, Marzo 2007 FRONT-END ELECTRONICS PART 2 INFN Laboratori Nazionali di Legnaro, 6-30 Marzo 007 FRONT-END ELECTRONICS PART Francis ANGHINOLFI Wednesday 8 March 007 Francis.Anghinolfi@cern.ch v1 1 FRONT-END Electronics Part A little bit about signal

More information

Basic Fabrication Steps

Basic Fabrication Steps Basic Fabrication Steps and Layout Somayyeh Koohi Department of Computer Engineering Adapted with modifications from lecture notes prepared by author Outline Fabrication steps Transistor structures Transistor

More information

EE 230 Lab Lab 9. Prior to Lab

EE 230 Lab Lab 9. Prior to Lab MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

More information

EE 330 Lecture 7. Design Rules. IC Fabrication Technology Part 1

EE 330 Lecture 7. Design Rules. IC Fabrication Technology Part 1 EE 330 Lecture 7 Design Rules IC Fabrication Technology Part 1 Review from Last Time Technology Files Provide Information About Process Process Flow (Fabrication Technology) Model Parameters Design Rules

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information

IWORID J. Schmitz page 1. Wafer-level CMOS post-processing Jurriaan Schmitz

IWORID J. Schmitz page 1. Wafer-level CMOS post-processing Jurriaan Schmitz IWORID J. Schmitz page 1 Wafer-level CMOS post-processing Jurriaan Schmitz IWORID J. Schmitz page 2 Outline Introduction on wafer-level post-proc. CMOS: a smart, but fragile substrate Post-processing steps

More information

Alternatives to standard MOSFETs. What problems are we really trying to solve?

Alternatives to standard MOSFETs. What problems are we really trying to solve? Alternatives to standard MOSFETs A number of alternative FET schemes have been proposed, with an eye toward scaling up to the 10 nm node. Modifications to the standard MOSFET include: Silicon-in-insulator

More information

IFSIN. WEB PAGE Fall ://weble.upc.es/ifsin/

IFSIN. WEB PAGE   Fall ://weble.upc.es/ifsin/ IFSIN IMPLEMENTACIÓ FÍSICA DE SISTEMES INTEGRATS NANOMÈTRICS IMPLEMENTACIÓN N FÍSICA F DE SISTEMAS INTEGRADOS NANOMÉTRICOS PHYSICAL IMPLEMENTATION OF NANOMETER INTEGRATED SYSTEMS Fall 2008 Prof. Xavier

More information

University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences. EECS 40 Midterm II

University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences. EECS 40 Midterm II University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences EECS 40 Midterm II Fall 1998 Prof. Roger T. Howe November 19, 1998 Name: Student ID: Guidelines

More information

Design cycle for MEMS

Design cycle for MEMS Design cycle for MEMS Design cycle for ICs IC Process Selection nmos CMOS BiCMOS ECL for logic for I/O and driver circuit for critical high speed parts of the system The Real Estate of a Wafer MOS Transistor

More information

Device Technologies. Yau - 1

Device Technologies. Yau - 1 Device Technologies Yau - 1 Objectives After studying the material in this chapter, you will be able to: 1. Identify differences between analog and digital devices and passive and active components. Explain

More information

ECEN474/704: (Analog) VLSI Circuit Design Fall 2016

ECEN474/704: (Analog) VLSI Circuit Design Fall 2016 ECEN474/704: (Analog) VLSI Circuit Design Fall 2016 Lecture 1: Introduction Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Turn in your 0.18um NDA form by Thursday Sep 1 No

More information

Micromechanical Signal Processors for Low-Power Communications Instructor: Clark T.-C. Nguyen

Micromechanical Signal Processors for Low-Power Communications Instructor: Clark T.-C. Nguyen First International Conference and School on Nanoscale/Molecular Mechanics: Maui, HI; May 2002 School Lecture/Tutorial on Micromechanical Signal Processors for Low-Power Communications Instructor: Clark

More information

Semiconductor Detector Systems

Semiconductor Detector Systems Semiconductor Detector Systems Helmuth Spieler Physics Division, Lawrence Berkeley National Laboratory OXFORD UNIVERSITY PRESS ix CONTENTS 1 Detector systems overview 1 1.1 Sensor 2 1.2 Preamplifier 3

More information

Semiconductor Memory: DRAM and SRAM. Department of Electrical and Computer Engineering, National University of Singapore

Semiconductor Memory: DRAM and SRAM. Department of Electrical and Computer Engineering, National University of Singapore Semiconductor Memory: DRAM and SRAM Outline Introduction Random Access Memory (RAM) DRAM SRAM Non-volatile memory UV EPROM EEPROM Flash memory SONOS memory QD memory Introduction Slow memories Magnetic

More information

Physics 160 Lecture 11. R. Johnson May 4, 2015

Physics 160 Lecture 11. R. Johnson May 4, 2015 Physics 160 Lecture 11 R. Johnson May 4, 2015 Two Solutions to the Miller Effect Putting a matching resistor on the collector of Q 1 would be a big mistake, as it would give no benefit and would produce

More information

(a) (d) (e) (b) (c) (f) 3D-NAND Flash and Its Manufacturing Process

(a) (d) (e) (b) (c) (f) 3D-NAND Flash and Its Manufacturing Process 3D-NAND Flash and Its Manufacturing Process 79 (d) Si Si (b) (c) (e) Si (f) +1-2 (g) (h) Figure 2.33 Top-down view in cap oxide and (b) in nitride_n-2; (c) cross-section near the top of the channel; top-down

More information

Semiconductor Devices

Semiconductor Devices Semiconductor Devices - 2014 Lecture Course Part of SS Module PY4P03 Dr. P. Stamenov School of Physics and CRANN, Trinity College, Dublin 2, Ireland Hilary Term, TCD 3 th of Feb 14 MOSFET Unmodified Channel

More information

Micromachining Technologies for Miniaturized Communication Devices

Micromachining Technologies for Miniaturized Communication Devices Micromachining Technologies for Miniaturized Communication Devices Clark T.-C. Nguyen Center for Integrated Sensors and Circuits Department of Electrical Engineering and Computer Science University of

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 11/6/2007 MOSFETs Lecture 6 BJTs- Lecture 1 Reading Assignment: Chapter 10 More Scalable Device Structures Vertical Scaling is important. For example,

More information

Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007

Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 33-1 Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007 Contents: 1. MOSFET scaling

More information

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI 1 Integrated diodes pn junctions of transistor structures can be used as integrated diodes. The choice of the junction is limited by the considerations of switching speed and breakdown voltage. The forward

More information

Signal Integrity Design of TSV-Based 3D IC

Signal Integrity Design of TSV-Based 3D IC Signal Integrity Design of TSV-Based 3D IC October 24, 21 Joungho Kim at KAIST joungho@ee.kaist.ac.kr http://tera.kaist.ac.kr 1 Contents 1) Driving Forces of TSV based 3D IC 2) Signal Integrity Issues

More information

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture EE 45 ME 8 Introduction to MEMS Design Fall 003 Roger Howe and Thara Srinivasan Lecture 6 Micromechanical Resonators I Today s Lecture ircuit models for micromechanical resonators Microresonator oscillators:

More information

ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations

ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations Workshop on Frontiers of Extreme Computing Santa Cruz, CA October 24, 2005 ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations Peter M. Zeitzoff Outline Introduction MOSFET scaling and

More information

FinFET-based Design for Robust Nanoscale SRAM

FinFET-based Design for Robust Nanoscale SRAM FinFET-based Design for Robust Nanoscale SRAM Prof. Tsu-Jae King Liu Dept. of Electrical Engineering and Computer Sciences University of California at Berkeley Acknowledgements Prof. Bora Nikoli Zheng

More information

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 23 p. 1/16 EE 42/100 Lecture 23: CMOS Transistors and Logic Gates ELECTRONICS Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad University

More information

TECHNO INDIA BATANAGAR (DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018

TECHNO INDIA BATANAGAR (DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 TECHNO INDIA BATANAGAR (DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 Paper Setter Detail Name Designation Mobile No. E-mail ID Raina Modak Assistant Professor 6290025725 raina.modak@tib.edu.in

More information

CRYSTAL oscillators are widely used to generate precision

CRYSTAL oscillators are widely used to generate precision 440 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 34, NO. 4, APRIL 1999 An Integrated CMOS Micromechanical Resonator High- Oscillator Clark T.-C. Nguyen, Member, IEEE, and Roger T. Howe, Fellow, IEEE Abstract

More information

VLSI Design. Introduction

VLSI Design. Introduction VLSI Design Introduction Outline Introduction Silicon, pn-junctions and transistors A Brief History Operation of MOS Transistors CMOS circuits Fabrication steps for CMOS circuits Introduction Integrated

More information

ECEN474: (Analog) VLSI Circuit Design Fall 2011

ECEN474: (Analog) VLSI Circuit Design Fall 2011 ECEN474: (Analog) VLSI Circuit Design Fall 2011 Lecture 1: Introduction Sebastian Hoyos Analog & Mixed-Signal Center Texas A&M University Analog Circuit Sequence 326 2 Why is Analog Important? [Silva]

More information

Indium Phosphide and Related Materials Selectively implanted subcollector DHBTs

Indium Phosphide and Related Materials Selectively implanted subcollector DHBTs Indium Phosphide and Related Materials - 2006 Selectively implanted subcollector DHBTs Navin Parthasarathy, Z. Griffith, C. Kadow, U. Singisetti, and M.J.W. Rodwell Dept. of Electrical and Computer Engineering,

More information

Lecture #29. Moore s Law

Lecture #29. Moore s Law Lecture #29 ANNOUNCEMENTS HW#15 will be for extra credit Quiz #6 (Thursday 5/8) will include MOSFET C-V No late Projects will be accepted after Thursday 5/8 The last Coffee Hour will be held this Thursday

More information

VLSI Design. Introduction

VLSI Design. Introduction Tassadaq Hussain VLSI Design Introduction Outcome of this course Problem Aims Objectives Outcomes Data Collection Theoretical Model Mathematical Model Validate Development Analysis and Observation Pseudo

More information

Switched Capacitor Concepts & Circuits

Switched Capacitor Concepts & Circuits Switched apacitor oncepts & ircuits Outline Why Switched apacitor circuits? Historical Perspective Basic Building Blocks Switched apacitors as Resistors Switched apacitor Integrators Discrete time & charge

More information

Chapter 2 : Semiconductor Materials & Devices (II) Feb

Chapter 2 : Semiconductor Materials & Devices (II) Feb Chapter 2 : Semiconductor Materials & Devices (II) 1 Reference 1. SemiconductorManufacturing Technology: Michael Quirk and Julian Serda (2001) 3. Microelectronic Circuits (5/e): Sedra & Smith (2004) 4.

More information

IH2655 Design and Characterisation of Nano- and Microdevices. Lecture 1 Introduction and technology roadmap

IH2655 Design and Characterisation of Nano- and Microdevices. Lecture 1 Introduction and technology roadmap IH2655 Design and Characterisation of Nano- and Microdevices Lecture 1 Introduction and technology roadmap IH2655 Design and Characterisation of Nano- and Microdevices Introduction to IH2655 Brief historic

More information

EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS

EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS P. MARTIN-GONTHIER, F. CORBIERE, N. HUGER, M. ESTRIBEAU, C. ENGEL,

More information

MEMS in ECE at CMU. Gary K. Fedder

MEMS in ECE at CMU. Gary K. Fedder MEMS in ECE at CMU Gary K. Fedder Department of Electrical and Computer Engineering and The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213-3890 fedder@ece.cmu.edu http://www.ece.cmu.edu/~mems

More information

INTRODUCTION TO MOS TECHNOLOGY

INTRODUCTION TO MOS TECHNOLOGY INTRODUCTION TO MOS TECHNOLOGY 1. The MOS transistor The most basic element in the design of a large scale integrated circuit is the transistor. For the processes we will discuss, the type of transistor

More information

Lecture Wrap up. December 13, 2005

Lecture Wrap up. December 13, 2005 6.012 Microelectronic Devices and Circuits Fall 2005 Lecture 26 1 Lecture 26 6.012 Wrap up December 13, 2005 Contents: 1. 6.012 wrap up Announcements: Final exam TA review session: December 16, 7:30 9:30

More information

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 2: Basic MOS Physics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture Semiconductor

More information

Nanosecond Thermal Processing for Self-Aligned Silicon-on-Insulator Technology

Nanosecond Thermal Processing for Self-Aligned Silicon-on-Insulator Technology TECHNICAL DOCUMENT 3195 April 2005 Nanosecond Thermal Processing for Self-Aligned Silicon-on-Insulator Technology A. D. Ramirez B. W. Offord J. D. Popp S. D. Russell J. F. Rowland Approved for public release;

More information

Notes. (Subject Code: 7EC5)

Notes. (Subject Code: 7EC5) COMPUCOM INSTITUTE OF TECHNOLOGY & MANAGEMENT, JAIPUR (DEPARTMENT OF ELECTRONICS & COMMUNICATION) Notes VLSI DESIGN NOTES (Subject Code: 7EC5) Prepared By: MANVENDRA SINGH Class: B. Tech. IV Year, VII

More information

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices Christopher Batten School of Electrical and Computer Engineering Cornell University http://www.csl.cornell.edu/courses/ece5950 Simple Transistor

More information

Session 3: Solid State Devices. Silicon on Insulator

Session 3: Solid State Devices. Silicon on Insulator Session 3: Solid State Devices Silicon on Insulator 1 Outline A B C D E F G H I J 2 Outline Ref: Taurand Ning 3 SOI Technology SOl materials: SIMOX, BESOl, and Smart Cut SIMOX : Synthesis by IMplanted

More information

Lecture Notes 5 CMOS Image Sensor Device and Fabrication

Lecture Notes 5 CMOS Image Sensor Device and Fabrication Lecture Notes 5 CMOS Image Sensor Device and Fabrication CMOS image sensor fabrication technologies Pixel design and layout Imaging performance enhancement techniques Technology scaling, industry trends

More information

Jan Bogaerts imec

Jan Bogaerts imec imec 2007 1 Radiometric Performance Enhancement of APS 3 rd Microelectronic Presentation Days, Estec, March 7-8, 2007 Outline Introduction Backside illuminated APS detector Approach CMOS APS (readout)

More information

Process Technology to Fabricate High Performance MEMS on Top of Advanced LSI. Shuji Tanaka Tohoku University, Sendai, Japan

Process Technology to Fabricate High Performance MEMS on Top of Advanced LSI. Shuji Tanaka Tohoku University, Sendai, Japan Process Technology to Fabricate High Performance MEMS on Top of Advanced LSI Shuji Tanaka Tohoku University, Sendai, Japan 1 JSAP Integrated MEMS Technology Roadmap More than Moore: Diversification More

More information

Wiring Parasitics. Contact Resistance Measurement and Rules

Wiring Parasitics. Contact Resistance Measurement and Rules Wiring Parasitics Contact Resistance Measurement and Rules Connections between metal layers and nonmetal layers are called contacts. Connections between metal layers are called vias. For non-critical design,

More information

Aptina MT9P111 5 Megapixel, 1/4 Inch Optical Format, System-on-Chip (SoC) CMOS Image Sensor

Aptina MT9P111 5 Megapixel, 1/4 Inch Optical Format, System-on-Chip (SoC) CMOS Image Sensor Aptina MT9P111 5 Megapixel, 1/4 Inch Optical Format, System-on-Chip (SoC) CMOS Image Sensor Imager Process Review For comments, questions, or more information about this report, or for any additional technical

More information

6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators

6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators 6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators Massachusetts Institute of Technology March 29, 2005 Copyright 2005 by Michael H. Perrott VCO Design for Narrowband

More information

Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families

Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families 1 Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families 1. Introduction 2. Metal Oxide Semiconductor (MOS) logic 2.1. Enhancement and depletion mode 2.2. NMOS and PMOS inverter

More information

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018 Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018 ECE 658 Sp 2018 Semiconductor Materials and Device Characterizations OUTLINE Background FinFET Future Roadmap Keeping up w/ Moore s Law

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 11/01/2007 MOSFETs Lecture 5 Announcements HW7 set is due now HW8 is assigned, but will not be collected/graded. MOSFET Technology Scaling Technology

More information

Vibrating MEMS resonators

Vibrating MEMS resonators Vibrating MEMS resonators Vibrating resonators can be scaled down to micrometer lengths Analogy with IC-technology Reduced dimensions give mass reduction and increased spring constant increased resonance

More information

Microelectronics, BSc course

Microelectronics, BSc course Microelectronics, BSc course MOS circuits: CMOS circuits, construction http://www.eet.bme.hu/~poppe/miel/en/14-cmos.pptx http://www.eet.bme.hu The abstraction level of our study: SYSTEM + MODULE GATE CIRCUIT

More information

A New SiGe Base Lateral PNM Schottky Collector. Bipolar Transistor on SOI for Non Saturating. VLSI Logic Design

A New SiGe Base Lateral PNM Schottky Collector. Bipolar Transistor on SOI for Non Saturating. VLSI Logic Design A ew SiGe Base Lateral PM Schottky Collector Bipolar Transistor on SOI for on Saturating VLSI Logic Design Abstract A novel bipolar transistor structure, namely, SiGe base lateral PM Schottky collector

More information

AE53/AC53/AT53/AE103 ELECT. DEVICES & CIRCUITS DEC 2015

AE53/AC53/AT53/AE103 ELECT. DEVICES & CIRCUITS DEC 2015 Q.2 a. By using Norton s theorem, find the current in the load resistor R L for the circuit shown in Fig.1. (8) Fig.1 IETE 1 b. Explain Z parameters and also draw an equivalent circuit of the Z parameter

More information

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI Lecture: Integration of silicon photonics with electronics Prepared by Jean-Marc FEDELI CEA-LETI Context The goal is to give optical functionalities to electronics integrated circuit (EIC) The objectives

More information

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor.

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor. Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 38 MOS Field Effect Transistor In this lecture we will begin

More information

Wu Lu Department of Electrical and Computer Engineering and Microelectronics Laboratory, University of Illinois, Urbana, Illinois 61801

Wu Lu Department of Electrical and Computer Engineering and Microelectronics Laboratory, University of Illinois, Urbana, Illinois 61801 Comparative study of self-aligned and nonself-aligned SiGe p-metal oxide semiconductor modulation-doped field effect transistors with nanometer gate lengths Wu Lu Department of Electrical and Computer

More information

Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches

Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches University of Pennsylvania From the SelectedWorks of Nipun Sinha 29 Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches Nipun Sinha, University of Pennsylvania Timothy S.

More information