E2E s Physics tools. Biplab Bhawal. Optics Electronics Mechanical Mathematical functions Data generation and output. Ligo doc. no.

Size: px
Start display at page:

Download "E2E s Physics tools. Biplab Bhawal. Optics Electronics Mechanical Mathematical functions Data generation and output. Ligo doc. no."

Transcription

1 E2E s Physics tools Ligo doc. no. G E Date: Mar 18, 2002 E2E school, LLO Biplab Bhawal LIGO, Caltech Tools: Optics Electronics Mechanical Mathematical functions Data generation and output 1

2 Optics Laser & Field Field operations modulator, sideband-gen, sideband-filter, freq-shifter Beam operations propagator,shifter,wiggler Mirror, lens, telescope Summation cavities Fabry-Perot, triangular, recycling cavity, Measurements: power-meter, photodetector, 2

3 Laser (The field-gen module) Laser (a la field-gen ) generates field at a fixed central frequency It could be plane-wave or a Gaussian beam If it s a Gaussian beam, its basis (distance to waist and waist-size) needs to be specified amplitude of different spatial modes (in Hermite-Gaussian basis) can be specified Distance to waist, Z waist-size,w 0 3

4 Sideband generator SIDEBAND- FILTER SIDEBAND-GEN amplitude frequency LASER CARRIER Sideband-gen : E out = E in Exp( iγ ϕ sin( Ωt) ) Exp( Γ amp sin( Ωt) ) N N E out E in ( i) n i Ji( Γ ϕ ) I n i ( Γ amp ) n = N i = N exp( inωt) 4

5 Phase and Frequency noise (as input to Laser) P o white noise generator Digital Filter spectrum same as of dp(t) power LASER white noise generator Digital Filter spectrum same as of df(t) Integrator (dig. filter) phase Note: All frequencies of carrier and sidebands are constants during the simulation implementation of frquency noise: t φ() t = ωt ()t d = 0 ω 0 t + t δω() t 0 At any other point use Field-modulator module out = in * (1+del_amp) * exp(i*phi) 5

6 Time-domain modal model (w 0,-z ) substrate (w 0,z) z w 0 w(z) (w 0,z ) coating waist position (w 0,-z) coating Field carries two modal info: waist-size, dist-to-waist Tilt, shift, curvature mismatch are treated using mode decomposition matrix Modal basis changes after passing thru lens/curved mirror on reflection at an angle from a curved mirror 6

7 contents of Field In E2E modes upto 4th order (15 modes) can be considered spatial modes frequency carrier a power-meter module can measure power for any mode of any frequency For one freq: total power of all modes or modes of a certain order 7

8 Photodetector Pd-demod: photodetector+demodulation+low_pass_filter shape [0] y x [2] [1] [3] [4] Figure 1: shape number of detectors [6] [5] [7] [8] detmap y axis phi_end r_max r_min gap (dx0,dy0) phi_begin x axis Figure 2: Specification of a detector ready-made boxes y x circular_det.box xhalf_det.box yhalf_det.box Figure 3: detector boxes quad_det.box 8

9 misalignment effects (in Hermite-Gaussian basis) Initial beam : k - mode no. ; w - waist AU 0 Beam-wiggler : deviation(p)ofbeambyanangle A U 0 + jp kw U 2π 1 X θ y Z Propagation Laser Beam wiggler 9

10 misalignment effects Beam-shifter : lateral displacement (d) 2 A U -- 0 π 1 2 d + ---U w 1 X x Z 10

11 misalignment effects in Mirror mirror tilts : rotation (r) by an angle (pitch or yaw) A U 0 + jr kw U 2π 1 mirror s lateral shift : eqv. to rotation d 11

12 Mode Mismatch Mode mismatch: change in waist size shift in beam position Waist-position mismatch (b) : b A U 0 + j kw 2 { U 0 + U 2 } Waist-size mismatch (s) : s A U U 2w 2 X new waist position Z z 12

13 Mirror Reflection and Transmission Operations Reflection Operation (of mirror) on field : multiplication by amplitude-reflectivity with appropriate sign changes in transversal modal-basis of the beam if reflected at an angle from a curved mirror appropriate phase factor for small longitudinal displacement a composite matrix representing small perturbations in mirror, like rotation, shift, mismatch between mirror surface and phase-front, etc. parity operation which flips the beam about vertical axis Transmission operation (of mirror) on field : multiplication by amplitude-transmissivity changes in transversal modal-basis of the beam (lensing) 13

14 Propagation (prop and telescope) Effects (in vacuum) longitudinal phase gouy phase change of basis (distance to waist changes) time-delay telescope l 2 length d 2 output field calculated here 0 (l 1,f 1 ) (l 2,f 2 ) (l n,f n ) Prop module effects propagation thru vacuum and may or may not include time-delay (user s choice) Telescope module can propagate light thru a series of lens placed in vacuum with all changes in guoy phases properly included The telescope effect can also be specified by setting the basis and gouy phase information at the output instead of specifying details of lens & length 14

15 EM Composite Systems (What are summation modules?) t=0 t=2 t=2τ τ r c D[1] D[2] D[3] D[4] D[4+1] D[1] IM B[1] B[2] B[3] B[4] B[1] RM coupled cavity 15

16 Composite Systems (summation modules) propagator propagator Using primitives: time-step = Length/speed of light summation cavity Using summation cavity: time-step = N X Length/speed of light Three modules so far Fabry-Perot cav triangular cavity power-recycled Michelson cavity or the LIGO recycling cavity 16

17 Summationcavity in LIGO 17

18 Triangular cavity 18

19 Digitizer Analog data: discrete time-series of e2e with small timesteps Digitized data: sampled at larger time-steps (e.g. 16K circuit) Digital filter characterised by poles, zeros, polepairs and zeropairs of equivalent analog filter proper handling of data in discrete time-steps is done using z-transform internally can be used as analog filter to use in a digital circuit, it needs to be used in conjunction with ADC and DAC 19

20 ADC & DAC ADC simulation points out(n-1) S(n-1) analog input out(n)=s(n-1)/ (n 1)τ nτ Figure 4: digitization in time (n+1)τ out( nτ) = ( n 1)τ input()t t d ( n 1)τ ADC( nτ) = floor( gain out( nτ) + 0.5) output can be an integer in between limits specified by setting maximum no of bits DAC 20

21 Mechanics susp3dmass d_yaw susppt d_pendulum Thickness y d_attach center of Mass d_pitch center of cylinder y force d_cm mirror position Diameter x End view z coated surface Side view Figure 5: Single Suspended Mass 21

22 Coordinate system: AxisRotation Y arm ETMr (0, 1/2 π, 0) MC3 (1/4 π, 1/2 π, 0) MC2 (-1/2 π, 1/2 π, 0) ITMr (π, 1/2 π, 0) ITMt ETMt (1/2 π, 1/2 π, 0) (-1/2 π, 1/2 π, 0) MC1 (3/4 π, 1/2 π, 0) RM (1/2 π, 1/2 π, 0) BS (-3/4 π, 1/2 π, 0) X arm Figure 6: Detector to e2e coordinate transformation z θ Z y ϕ ψ x Y X Figure 7: Euler angles 22

23 Math functions algebraic: madder (ax+by), sine, square_root, inverse... logic : and,or,xor, a>b, not, flipflop, switch limiter, delay, switch (a) connection view (b) connection when switch is non-zero Figure 8: hardswitch in action (c) connection when switch is zero In many cases, better to use FUNC() 23

24 Data input and output generating inputs clock (time) : may also use get_time() function in Func() random number (normal) random number (flat) data_in : can get a data into simulation data_reader : can read input data from an ascii file Output data_out : can get a data out of the simulation ( probe ) data_viewer: view data at a particular instant psd_out: accumulate input data, calculate psd and write to a file 24

Mode mismatch and sideband imbalance in LIGO I PRM

Mode mismatch and sideband imbalance in LIGO I PRM LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO- CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note LIGO-T04077-00- E Sep/0/04 Mode mismatch and sideband

More information

Alignment signal extraction of the optically degenerate RSE interferometer using the wave front sensing technique

Alignment signal extraction of the optically degenerate RSE interferometer using the wave front sensing technique Alignment signal extraction of the optically degenerate RSE interferometer using the wave front sensing technique Shuichi Sato and Seiji Kawamura TAMA project, National Astronomical Observatory of Japan

More information

Koji Arai / Stan Whitcomb LIGO Laboratory / Caltech. LIGO-G v1

Koji Arai / Stan Whitcomb LIGO Laboratory / Caltech. LIGO-G v1 Koji Arai / Stan Whitcomb LIGO Laboratory / Caltech LIGO-G1401144-v1 General Relativity Gravity = Spacetime curvature Gravitational wave = Wave of spacetime curvature Gravitational waves Generated by motion

More information

5 Advanced Virgo: interferometer configuration

5 Advanced Virgo: interferometer configuration 5 Advanced Virgo: interferometer configuration 5.1 Introduction This section describes the optical parameters and configuration of the AdV interferometer. The optical layout and the main parameters of

More information

Physics of interferometric gravitational wave detectors

Physics of interferometric gravitational wave detectors PRAMANA c Indian Academy of Sciences Vol. 63, No. 4 journal of October 2004 physics pp. 645 662 Physics of interferometric gravitational wave detectors BIPLAB BHAWAL LIGO Laboratory, California Institute

More information

Stable recycling cavities for Advanced LIGO

Stable recycling cavities for Advanced LIGO Stable recycling cavities for Advanced LIGO Guido Mueller LIGO-G070691-00-D with input/material from Hiro Yamamoto, Bill Kells, David Ottaway, Muzammil Arain, Yi Pan, Peter Fritschel, and many others Stable

More information

Advanced Virgo commissioning challenges. Julia Casanueva on behalf of the Virgo collaboration

Advanced Virgo commissioning challenges. Julia Casanueva on behalf of the Virgo collaboration Advanced Virgo commissioning challenges Julia Casanueva on behalf of the Virgo collaboration GW detectors network Effect on Earth of the passage of a GW change on the distance between test masses Differential

More information

Parity and Plane Mirrors. Invert Image flip about a horizontal line. Revert Image flip about a vertical line.

Parity and Plane Mirrors. Invert Image flip about a horizontal line. Revert Image flip about a vertical line. Optical Systems 37 Parity and Plane Mirrors In addition to bending or folding the light path, reflection from a plane mirror introduces a parity change in the image. Invert Image flip about a horizontal

More information

Optical Cavity Designs for Interferometric Gravitational Wave Detectors. Pablo Barriga 17 August 2009

Optical Cavity Designs for Interferometric Gravitational Wave Detectors. Pablo Barriga 17 August 2009 Optical Cavity Designs for Interferoetric Gravitational Wave Detectors Pablo Barriga 7 August 9 Assignents.- Assuing a cavity of 4k with an ITM of 934 radius of curvature and an ETM of 45 radius of curvature.

More information

Introduction to laser interferometric gravitational wave telescope

Introduction to laser interferometric gravitational wave telescope Introduction to laser interferometric gravitational wave telescope KAGRA summer school 013 July 31, 013 Tokyo Inst of Technology Kentaro Somiya Interferometric GW detector Far Galaxy Supernova explosion,

More information

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name: EE119 Introduction to Optical Engineering Fall 2009 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Experimental Test of an Alignment Sensing Scheme for a Gravitational-wave Interferometer

Experimental Test of an Alignment Sensing Scheme for a Gravitational-wave Interferometer Experimental Test of an Alignment Sensing Scheme for a Gravitational-wave Interferometer Nergis Mavalvala *, Daniel Sigg and David Shoemaker LIGO Project Department of Physics and Center for Space Research,

More information

Virgo status and commissioning results

Virgo status and commissioning results Virgo status and commissioning results L. Di Fiore for the Virgo Collaboration 5th LISA Symposium 13 july 2004 VIRGO is an French-Italian collaboration for Gravitational Wave research with a 3 km long

More information

Alignment sensing for optical cavities using radio-frequency jitter modulation

Alignment sensing for optical cavities using radio-frequency jitter modulation Research Article Vol. 56, No. 13 / May 1 2017 / Applied Optics 3879 Alignment sensing for optical cavities using radio-frequency jitter modulation P. FULDA,* D. VOSS, C. MUELLER, L. F. ORTEGA, G. CIANI,

More information

Advanced Virgo phase cameras

Advanced Virgo phase cameras Journal of Physics: Conference Series PAPER OPEN ACCESS Advanced Virgo phase cameras To cite this article: L van der Schaaf et al 2016 J. Phys.: Conf. Ser. 718 072008 View the article online for updates

More information

The Florida control scheme. Guido Mueller, Tom Delker, David Reitze, D. B. Tanner

The Florida control scheme. Guido Mueller, Tom Delker, David Reitze, D. B. Tanner The Florida control scheme Guido Mueller, Tom Delker, David Reitze, D. B. Tanner Department of Physics, University of Florida, Gainesville 32611-8440, Florida, USA The most likely conguration for the second

More information

How to Build a Gravitational Wave Detector. Sean Leavey

How to Build a Gravitational Wave Detector. Sean Leavey How to Build a Gravitational Wave Detector Sean Leavey Supervisors: Dr Stefan Hild and Prof Ken Strain Institute for Gravitational Research, University of Glasgow 6th May 2015 Gravitational Wave Interferometry

More information

Development of Optical lever system of the 40 meter interferometer

Development of Optical lever system of the 40 meter interferometer LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO- CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note x/xx/99 LIGO-T99xx- - D Development of Optical lever system

More information

Stable Recycling Cavities for Advanced LIGO

Stable Recycling Cavities for Advanced LIGO Stable Recycling Cavities for Advanced LIGO Guido Mueller University of Florida 08/16/2005 Table of Contents Stable vs. unstable recycling cavities Design of stable recycling cavity Design drivers Spot

More information

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT In this chapter, the experimental results for fine-tuning of the laser wavelength with an intracavity liquid crystal element

More information

Adaptive Optics for LIGO

Adaptive Optics for LIGO Adaptive Optics for LIGO Justin Mansell Ginzton Laboratory LIGO-G990022-39-M Motivation Wavefront Sensor Outline Characterization Enhancements Modeling Projections Adaptive Optics Results Effects of Thermal

More information

Polarization Experiments Using Jones Calculus

Polarization Experiments Using Jones Calculus Polarization Experiments Using Jones Calculus Reference http://chaos.swarthmore.edu/courses/physics50_2008/p50_optics/04_polariz_matrices.pdf Theory In Jones calculus, the polarization state of light is

More information

Notes on Laser Resonators

Notes on Laser Resonators Notes on Laser Resonators 1 He-Ne Resonator Modes The mirrors that make up the laser cavity essentially form a reflecting waveguide. A stability diagram that will be covered in lecture is shown in Figure

More information

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2003 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

should be easy to arrange in the 40m vacuum envelope. Of course, some of the f 1 sidebands will also go out the asymmetric port of the BS. Because f 1

should be easy to arrange in the 40m vacuum envelope. Of course, some of the f 1 sidebands will also go out the asymmetric port of the BS. Because f 1 21 RF sidebands, cavity lengths and control scheme. There will be two pairs of phase-modulated sidebands, placed on the main beam just downstream of the PSL, in air, using two fast- and high-powered Pockels

More information

Installation and Characterization of the Advanced LIGO 200 Watt PSL

Installation and Characterization of the Advanced LIGO 200 Watt PSL Installation and Characterization of the Advanced LIGO 200 Watt PSL Nicholas Langellier Mentor: Benno Willke Background and Motivation Albert Einstein's published his General Theory of Relativity in 1916,

More information

The Pre Stabilized Laser for the LIGO Caltech 40m Interferometer: Stability Controls and Characterization.

The Pre Stabilized Laser for the LIGO Caltech 40m Interferometer: Stability Controls and Characterization. LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Document Type LIGO-T010159-00-R 10/15/01 The Pre Stabilized Laser for the

More information

Simulations of Advanced LIGO: Comparisons between Twiddle and E2E

Simulations of Advanced LIGO: Comparisons between Twiddle and E2E LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Document Type LIGO-T010160-00-R 10/15/01 Simulations of Advanced LIGO:

More information

Results from the Stanford 10 m Sagnac interferometer

Results from the Stanford 10 m Sagnac interferometer INSTITUTE OF PHYSICSPUBLISHING Class. Quantum Grav. 19 (2002) 1585 1589 CLASSICAL ANDQUANTUM GRAVITY PII: S0264-9381(02)30157-6 Results from the Stanford 10 m Sagnac interferometer Peter T Beyersdorf,

More information

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature:

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature: Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: PID: Signature: CLOSED BOOK. TWO 8 1/2 X 11 SHEET OF NOTES (double sided is allowed), AND SCIENTIFIC POCKET CALCULATOR

More information

Optical design of shining light through wall experiments

Optical design of shining light through wall experiments Optical design of shining light through wall experiments Benno Willke Leibniz Universität Hannover (member of the ALPS collaboration) Vistas in Axion Physics: A Roadmap for Theoretical and Experimental

More information

In this chapter we describe the history of GW detectors and the design of the LIGO GW detectors,

In this chapter we describe the history of GW detectors and the design of the LIGO GW detectors, 19 Chapter 3 Introduction to LIGO In this chapter we describe the history of GW detectors and the design of the LIGO GW detectors, which have been built for the detection of GWs. This description is broken

More information

The Virgo detector. L. Rolland LAPP-Annecy GraSPA summer school L. Rolland GraSPA2013 Annecy le Vieux

The Virgo detector. L. Rolland LAPP-Annecy GraSPA summer school L. Rolland GraSPA2013 Annecy le Vieux The Virgo detector The Virgo detector L. Rolland LAPP-Annecy GraSPA summer school 2013 1 Table of contents Principles Effect of GW on free fall masses Basic detection principle overview Are the Virgo mirrors

More information

DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE

DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE 1 DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE PRESENTED BY- ARPIT RAWANKAR THE GRADUATE UNIVERSITY FOR ADVANCED STUDIES, HAYAMA 2 INDEX 1. Concept

More information

visibility values: 1) V1=0.5 2) V2=0.9 3) V3=0.99 b) In the three cases considered, what are the values of FSR (Free Spectral Range) and

visibility values: 1) V1=0.5 2) V2=0.9 3) V3=0.99 b) In the three cases considered, what are the values of FSR (Free Spectral Range) and EXERCISES OF OPTICAL MEASUREMENTS BY ENRICO RANDONE AND CESARE SVELTO EXERCISE 1 A CW laser radiation (λ=2.1 µm) is delivered to a Fabry-Pérot interferometer made of 2 identical plane and parallel mirrors

More information

Interferometer Techniques for Gravitational-Wave Detection

Interferometer Techniques for Gravitational-Wave Detection Interferometer Techniques for Gravitational-Wave Detection Charlotte Bond School of Physics and Astronomy University of Birmingham Birmingham, B15 2TT, UK email: czb@star.sr.bham.ac.uk Daniel Brown School

More information

Output Mode Cleaner Design

Output Mode Cleaner Design LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO LIGO Laboratory / LIGO Scientific Collaboration LIGO-T04xxxx 9 February 2004 Output Mode Cleaner Design P Fritschel Distribution of this draft:

More information

Principles of Optics for Engineers

Principles of Optics for Engineers Principles of Optics for Engineers Uniting historically different approaches by presenting optical analyses as solutions of Maxwell s equations, this unique book enables students and practicing engineers

More information

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical

More information

An Off-Axis Hartmann Sensor for Measurement of Wavefront Distortion in Interferometric Detectors

An Off-Axis Hartmann Sensor for Measurement of Wavefront Distortion in Interferometric Detectors An Off-Axis Hartmann Sensor for Measurement of Wavefront Distortion in Interferometric Detectors Aidan Brooks, Peter Veitch, Jesper Munch Department of Physics, University of Adelaide Outline of Talk Discuss

More information

Cavity with a deformable mirror for tailoring the shape of the eigenmode

Cavity with a deformable mirror for tailoring the shape of the eigenmode Cavity with a deformable mirror for tailoring the shape of the eigenmode Peter T. Beyersdorf, Stephan Zappe, M. M. Fejer, and Mark Burkhardt We demonstrate an optical cavity that supports an eigenmode

More information

Properties of Structured Light

Properties of Structured Light Properties of Structured Light Gaussian Beams Structured light sources using lasers as the illumination source are governed by theories of Gaussian beams. Unlike incoherent sources, coherent laser sources

More information

Length-Sensing OpLevs for KAGRA

Length-Sensing OpLevs for KAGRA Length-Sensing OpLevs or KAGRA Simon Zeidler Basics Length-Sensing Optical Levers are needed in order to measure the shit o mirrors along the optical path o the incident main-laser beam with time. The

More information

A novel tunable diode laser using volume holographic gratings

A novel tunable diode laser using volume holographic gratings A novel tunable diode laser using volume holographic gratings Christophe Moser *, Lawrence Ho and Frank Havermeyer Ondax, Inc. 85 E. Duarte Road, Monrovia, CA 9116, USA ABSTRACT We have developed a self-aligned

More information

Interferometer for LCGT 1st Korea Japan Workshop on Korea University Jan. 13, 2012 Seiji Kawamura (ICRR, Univ. of Tokyo)

Interferometer for LCGT 1st Korea Japan Workshop on Korea University Jan. 13, 2012 Seiji Kawamura (ICRR, Univ. of Tokyo) Interferometer for LCGT 1st Korea Japan Workshop on LCGT @ Korea University Jan. 13, 2012 Seiji Kawamura (ICRR, Univ. of Tokyo) JGW G1200781 v01 Outline Resonant Sideband Extraction interferometer Length

More information

Toward the Advanced LIGO optical configuration investigated in 40meter prototype

Toward the Advanced LIGO optical configuration investigated in 40meter prototype Toward the Advanced LIGO optical configuration investigated in 4meter prototype Aspen winter conference Jan. 19, 25 O. Miyakawa, Caltech and the 4m collaboration LIGO- G547--R Aspen winter conference,

More information

This is a brief report of the measurements I have done in these 2 months.

This is a brief report of the measurements I have done in these 2 months. 40m Report Kentaro Somiya This is a brief report of the measurements I have done in these 2 months. Mach-Zehnder MZ noise spectrum is measured in various conditions. HEPA filter enhances the noise level

More information

Compensating thermal lensing in Faraday rotators.

Compensating thermal lensing in Faraday rotators. Compensating thermal lensing in Faraday rotators. Donovan McFeron University of Florida. New Physics Building Corner of Museum and North South Drive Gainesville, FL 36 ( August 3, 000) ABSTRACT An analyzer

More information

Modeling and Commisioning of the 10m Prototype Autoalignment System

Modeling and Commisioning of the 10m Prototype Autoalignment System Modeling and Commisioning of the 10m Prototype Autoalignment System Luis F. Ortega Albert Einstein Institute Max Planck Insitute Leibniz Universität and University of Florida Department of Physics (Dated:

More information

Module 5. DC to AC Converters. Version 2 EE IIT, Kharagpur 1

Module 5. DC to AC Converters. Version 2 EE IIT, Kharagpur 1 Module 5 DC to AC Converters Version 2 EE IIT, Kharagpur 1 Lesson 37 Sine PWM and its Realization Version 2 EE IIT, Kharagpur 2 After completion of this lesson, the reader shall be able to: 1. Explain

More information

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 20 at the start of class PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

More information

Chapter 22. Electromagnetic Waves

Chapter 22. Electromagnetic Waves Ch-22-1 Chapter 22 Electromagnetic Waves Questions 1. The electric field in an EM wave traveling north oscillates in an east-west plane. Describe the direction of the magnetic field vector in this wave.

More information

The VIRGO detection system

The VIRGO detection system LIGO-G050017-00-R Paolo La Penna European Gravitational Observatory INPUT R =35 R=0.9 curv =35 0m 95 MOD CLEAN ER (14m )) WI N d:yag plar=0 ne.8 =1λ 064nm 3km 20W 6m 66.4m M odulat or PR BS N I sing lefrequ

More information

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Document Type LIGO--T000094-01 - E Sep. 2000 Han2k - End User s Guide

More information

Tutorial Zemax 9: Physical optical modelling I

Tutorial Zemax 9: Physical optical modelling I Tutorial Zemax 9: Physical optical modelling I 2012-11-04 9 Physical optical modelling I 1 9.1 Gaussian Beams... 1 9.2 Physical Beam Propagation... 3 9.3 Polarization... 7 9.4 Polarization II... 11 9 Physical

More information

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember Günter Toesko - Laserseminar BLZ im Dezember 2009 1 Aberrations An optical aberration is a distortion in the image formed by an optical system compared to the original. It can arise for a number of reasons

More information

User s Guide Modulator Alignment Procedure

User s Guide Modulator Alignment Procedure User s Guide Modulator Alignment Procedure Models 350, 360, 370, 380, 390 series Warranty Information ConOptics, Inc. guarantees its products to be free of defects in materials and workmanship for one

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

7th Edoardo Amaldi Conference on Gravitational Waves (Amaldi7)

7th Edoardo Amaldi Conference on Gravitational Waves (Amaldi7) Journal of Physics: Conference Series (8) 4 doi:.88/74-6596///4 Lock Acquisition Studies for Advanced Interferometers O Miyakawa, H Yamamoto LIGO Laboratory 8-34, California Institute of Technology, Pasadena,

More information

Interference [Hecht Ch. 9]

Interference [Hecht Ch. 9] Interference [Hecht Ch. 9] Note: Read Ch. 3 & 7 E&M Waves and Superposition of Waves and Meet with TAs and/or Dr. Lai if necessary. General Consideration 1 2 Amplitude Splitting Interferometers If a lightwave

More information

The Mathematics of the Stewart Platform

The Mathematics of the Stewart Platform The Mathematics of the Stewart Platform The Stewart Platform consists of 2 rigid frames connected by 6 variable length legs. The Base is considered to be the reference frame work, with orthogonal axes

More information

Light: Reflection and Refraction Light Reflection of Light by Plane Mirror Reflection of Light by Spherical Mirror Formation of Image by Mirror Sign Convention & Mirror Formula Refraction of light Through

More information

Signals. Periodic vs. Aperiodic. Signals

Signals. Periodic vs. Aperiodic. Signals Signals 1 Periodic vs. Aperiodic Signals periodic signal completes a pattern within some measurable time frame, called a period (), and then repeats that pattern over subsequent identical periods R s.

More information

Department of Electrical Engineering and Computer Science

Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE of TECHNOLOGY Department of Electrical Engineering and Computer Science 6.161/6637 Practice Quiz 2 Issued X:XXpm 4/XX/2004 Spring Term, 2004 Due X:XX+1:30pm 4/XX/2004 Please utilize

More information

Arm Cavity Finesse for Advanced LIGO

Arm Cavity Finesse for Advanced LIGO LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note LIGO-T070303-01-D Date: 2007/12/20 Arm Cavity Finesse

More information

Multi-pass Slab CO 2 Amplifiers for Application in EUV Lithography

Multi-pass Slab CO 2 Amplifiers for Application in EUV Lithography Multi-pass Slab CO 2 Amplifiers for Application in EUV Lithography V. Sherstobitov*, A. Rodionov**, D. Goryachkin*, N. Romanov*, L. Kovalchuk*, A. Endo***, K. Nowak*** *JSC Laser Physics, St. Petersburg,

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Outline. Noise and Distortion. Noise basics Component and system noise Distortion INF4420. Jørgen Andreas Michaelsen Spring / 45 2 / 45

Outline. Noise and Distortion. Noise basics Component and system noise Distortion INF4420. Jørgen Andreas Michaelsen Spring / 45 2 / 45 INF440 Noise and Distortion Jørgen Andreas Michaelsen Spring 013 1 / 45 Outline Noise basics Component and system noise Distortion Spring 013 Noise and distortion / 45 Introduction We have already considered

More information

Using Stock Optics. ECE 5616 Curtis

Using Stock Optics. ECE 5616 Curtis Using Stock Optics What shape to use X & Y parameters Please use achromatics Please use camera lens Please use 4F imaging systems Others things Data link Stock Optics Some comments Advantages Time and

More information

Optical Recombination of the LIGO 40-m Gravitational Wave Interferometer

Optical Recombination of the LIGO 40-m Gravitational Wave Interferometer Optical Recombination of the LIGO 40-m Gravitational Wave Interferometer T.T. Lyons, * A. Kuhnert, F.J. Raab, J.E. Logan, D. Durance, R.E. Spero, S. Whitcomb, B. Kells LIGO Project, California Institute

More information

Channel. Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Multi-Path Fading. Dr. Noor M Khan EE, MAJU

Channel. Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Multi-Path Fading. Dr. Noor M Khan EE, MAJU Instructor: Prof. Dr. Noor M. Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office), 186 (Lab) Fax: +9

More information

Analysis of spatial mode sensitivity of a gravitational wave interferometer and a targeted search for gravitational radiation from the Crab pulsar

Analysis of spatial mode sensitivity of a gravitational wave interferometer and a targeted search for gravitational radiation from the Crab pulsar Analysis of spatial mode sensitivity of a gravitational wave interferometer and a targeted search for gravitational radiation from the Crab pulsar by Joseph Betzwieser Submitted to the Department of Physics

More information

Techniques for the stabilization of the ALPS-II optical cavities

Techniques for the stabilization of the ALPS-II optical cavities Techniques for the stabilization of the ALPS-II optical cavities Robin Bähre for the ALPS collaboration 9th PATRAS workshop for Axions, WIMPs and WISPs Schloss Waldthausen, Mainz 2013 Jun 26th Outline

More information

Quantum States of Light and Giants

Quantum States of Light and Giants Quantum States of Light and Giants MIT Corbitt, Bodiya, Innerhofer, Ottaway, Smith, Wipf Caltech Bork, Heefner, Sigg, Whitcomb AEI Chen, Ebhardt-Mueller, Rehbein QEM-2, December 2006 Ponderomotive predominance

More information

LIGO Photodiode Development and Optical Platform for LIGO Photodetectors Testing

LIGO Photodiode Development and Optical Platform for LIGO Photodetectors Testing LIGO Photodiode Development and Optical Platform for LIGO Photodetectors Testing EOPM EOAM PBS EOPM EOAM Ke-Xun Sun Photodiodes --- with Rana Adhikari, Peter Fritschel, Osamu Miyakawa, Allan Weinstein,

More information

Alignment control of GEO 600

Alignment control of GEO 600 INSTITUTE OF PHYSICS PUBLISHING Class. Quantum Grav. 1 (4) S441 S449 CLASSICAL AND QUANTUM GRAVITY PII: S64-9381(4)683-1 Alignment of GEO 6 HGrote 1, G Heinzel 1,AFreise 1,SGoßler 1, B Willke 1,HLück 1,

More information

Department of Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, , China

Department of Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, , China 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer (MMEBC 16) Precision Measurement of Displacement with Two Quasi-Orthogonal Signals for Linear Diffraction Grating

More information

Mechanical Characterization of a LISA Telescope Test Structure

Mechanical Characterization of a LISA Telescope Test Structure UNIVERSITY OF TRENTO Faculty of Mathematical, Physical and Natural Sciences Undergraduate school in Physics Mechanical Characterization of a LISA Telescope Test Structure Candidate Ilaria Pucher Advisors

More information

Ph 77 ADVANCED PHYSICS LABORATORY ATOMICANDOPTICALPHYSICS

Ph 77 ADVANCED PHYSICS LABORATORY ATOMICANDOPTICALPHYSICS Ph 77 ADVANCED PHYSICS LABORATORY ATOMICANDOPTICALPHYSICS Expt. 71 Fabry-Perot Cavities and FM Spectroscopy I. BACKGROUND Fabry-Perot cavities (also called Fabry-Perot etalons) are ubiquitous elements

More information

Optical Vernier Technique for Measuring the Lengths of LIGO Fabry-Perot Resonators

Optical Vernier Technique for Measuring the Lengths of LIGO Fabry-Perot Resonators LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO- CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note LIGO-T97074-0- R 0/5/97 Optical Vernier Technique for

More information

Supplementary Figure 1. Effect of the spacer thickness on the resonance properties of the gold and silver metasurface layers.

Supplementary Figure 1. Effect of the spacer thickness on the resonance properties of the gold and silver metasurface layers. Supplementary Figure 1. Effect of the spacer thickness on the resonance properties of the gold and silver metasurface layers. Finite-difference time-domain calculations of the optical transmittance through

More information

Laser Shaping for High Brightness Photoelectron Sources

Laser Shaping for High Brightness Photoelectron Sources Laser Shaping for High Brightness Photoelectron Sources Henry Timmers The College of Wooster, Wooster, OH 44691, USA (Dated: August 23, 27) It was demonstrated that a 632 nm HeNe laser could be transversely

More information

VIRGO. The status of VIRGO. & INFN - Sezione di Roma 1. 1 / 6/ 2004 Fulvio Ricci

VIRGO. The status of VIRGO. & INFN - Sezione di Roma 1. 1 / 6/ 2004 Fulvio Ricci The status of VIRGO Fulvio Ricci Dipartimento di Fisica - Università di Roma La Sapienza & INFN - Sezione di Roma 1 The geometrical effect of Gravitational Waves The signal the metric tensor perturbation

More information

About Doppler-Fizeau effect on radiated noise from a rotating source in cavitation tunnel

About Doppler-Fizeau effect on radiated noise from a rotating source in cavitation tunnel PROCEEDINGS of the 22 nd International Congress on Acoustics Signal Processing in Acoustics (others): Paper ICA2016-111 About Doppler-Fizeau effect on radiated noise from a rotating source in cavitation

More information

Thermal correction of the radii of curvature of mirrors for GEO 600

Thermal correction of the radii of curvature of mirrors for GEO 600 INSTITUTE OF PHYSICS PUBLISHING Class. Quantum Grav. 21 (2004) S985 S989 CLASSICAL AND QUANTUM GRAVITY PII: S0264-9381(04)68250-5 Thermal correction of the radii of curvature of mirrors for GEO 600 HLück

More information

Week IV: FIRST EXPERIMENTS WITH THE ADVANCED OPTICS SET

Week IV: FIRST EXPERIMENTS WITH THE ADVANCED OPTICS SET Week IV: FIRST EXPERIMENTS WITH THE ADVANCED OPTICS SET The Advanced Optics set consists of (A) Incandescent Lamp (B) Laser (C) Optical Bench (with magnetic surface and metric scale) (D) Component Carriers

More information

Multiply Resonant EOM for the LIGO 40-meter Interferometer

Multiply Resonant EOM for the LIGO 40-meter Interferometer LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY LIGO-XXXXXXX-XX-X Date: 2009/09/25 Multiply Resonant EOM for the LIGO

More information

LIGO SURF Report: Three Input Matching/Driving System for Electro-Optic Modulators

LIGO SURF Report: Three Input Matching/Driving System for Electro-Optic Modulators LIGO SURF Report: Three Input Matching/Driving System for Electro-Optic Modulators Lucas Koerner, Northwestern University Mentors: Dr. Dick Gustafson and Dr. Paul Schwinberg, LIGO Hanford Abstract LIGO

More information

OPTI 511L Fall (Part 1 of 2)

OPTI 511L Fall (Part 1 of 2) Prof. R.J. Jones OPTI 511L Fall 2016 (Part 1 of 2) Optical Sciences Experiment 1: The HeNe Laser, Gaussian beams, and optical cavities (3 weeks total) In these experiments we explore the characteristics

More information

International Conference on Space Optics ICSO 2000 Toulouse Labège, France 5 7 December 2000

International Conference on Space Optics ICSO 2000 Toulouse Labège, France 5 7 December 2000 ICSO 000 5 7 December 000 Edited by George Otrio Spatialized interferometer in integrated optics A. Poupinet, L. Pujol, O. Sosnicki, J. Lizet, et al. ICSO 000, edited by George Otrio, Proc. of SPIE Vol.

More information

The Beam Characteristics of High Power Diode Laser Stack

The Beam Characteristics of High Power Diode Laser Stack IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS The Beam Characteristics of High Power Diode Laser Stack To cite this article: Yuanyuan Gu et al 2018 IOP Conf. Ser.: Mater. Sci.

More information

Beam Profiling. Introduction. What is Beam Profiling? by Michael Scaggs. Haas Laser Technologies, Inc.

Beam Profiling. Introduction. What is Beam Profiling? by Michael Scaggs. Haas Laser Technologies, Inc. Beam Profiling by Michael Scaggs Haas Laser Technologies, Inc. Introduction Lasers are ubiquitous in industry today. Carbon Dioxide, Nd:YAG, Excimer and Fiber lasers are used in many industries and a myriad

More information

Laser Telemetric System (Metrology)

Laser Telemetric System (Metrology) Laser Telemetric System (Metrology) Laser telemetric system is a non-contact gauge that measures with a collimated laser beam (Refer Fig. 10.26). It measure at the rate of 150 scans per second. It basically

More information

Multi-Path Fading Channel

Multi-Path Fading Channel Instructor: Prof. Dr. Noor M. Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office), 186 (Lab) Fax: +9

More information

The Core Optics. Input Mirror T ~ 3% T ~ 3% Signal Recycling Photodetector

The Core Optics. Input Mirror T ~ 3% T ~ 3% Signal Recycling Photodetector The Core Optics End Mirror Power Recycling Mirror Input Mirror T ~ 3% T ~ 3% End Mirror T ~ 10 ppm Laser Nd:Yag 6 W 100 W 12 kw 20 m 4000 m Signal Recycling Photodetector Mirror (dark fringe) Fold mirrors

More information

A gravitational wave is a differential strain in spacetime. Equivalently, it is a differential tidal force that can be sensed by multiple test masses.

A gravitational wave is a differential strain in spacetime. Equivalently, it is a differential tidal force that can be sensed by multiple test masses. A gravitational wave is a differential strain in spacetime. Equivalently, it is a differential tidal force that can be sensed by multiple test masses. Plus-polarization Cross-polarization 2 Any system

More information

2. Pulsed Acoustic Microscopy and Picosecond Ultrasonics

2. Pulsed Acoustic Microscopy and Picosecond Ultrasonics 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Picosecond Ultrasonic Microscopy of Semiconductor Nanostructures Thomas J GRIMSLEY

More information

Possibility of Upgrading KAGRA

Possibility of Upgrading KAGRA The 3 rd KAGRA International Workshop @ Academia Sinica May 22, 2017 Possibility of Upgrading KAGRA Yuta Michimura Department of Physics, University of Tokyo with much help from Kentaro Komori, Yutaro

More information

Plans for DC Readout Experiment at the 40m Lab

Plans for DC Readout Experiment at the 40m Lab Plans for DC Readout Experiment at the 40m Lab Alan Weinstein for the 40m Lab July 19, 2005 Ben Abbott, Rana Adhikari, Dan Busby, Jay Heefner, Keita Kawabe, Osamu Miyakawa, Virginio Sannibale, Mike Smith,

More information

Photonic time-stretching of 102 GHz millimeter waves using 1.55 µm nonlinear optic polymer EO modulators

Photonic time-stretching of 102 GHz millimeter waves using 1.55 µm nonlinear optic polymer EO modulators Photonic time-stretching of 10 GHz millimeter waves using 1.55 µm nonlinear optic polymer EO modulators H. Erlig Pacific Wave Industries H. R. Fetterman and D. Chang University of California Los Angeles

More information