Chapter 9: Serial Communication Interface SCI. The HCS12 Microcontroller. Han-Way Huang. September 2009

Size: px
Start display at page:

Download "Chapter 9: Serial Communication Interface SCI. The HCS12 Microcontroller. Han-Way Huang. September 2009"

Transcription

1 Chapter 9: Serial Communication Interface SCI The HCS12 Microcontroller Han-Way Huang Minnesota State t University, it Mankato September 2009 H. Huang Transparency No.9-1

2 Why Serial Communication? Parallel data transfer requires many I/O pins. This requirement prevents the microcontroller from interfacing with as many devices as desired in the application. Many I/O devices do not have high data rate to justify the use of parallel data transfer. Data synchronization for parallel transfer is difficult to achieve e over a long distance. This requirement is one of the reasons that data communications are always using serial transfer. Cost consideration What is SCI? An interface designed to transfer data only in asynchronous mode that utilizes the EIA- 232 standard. H. Huang Transparency No.9-2

3 Asynchronous Serial Data Communication Often used in data communication between a DTE and a DCE with or without a modem. DTE stands for data terminal equipment and can be either a computer or a terminal. DCE stands for data communication equipment. A modem is a DCE. A basic data communication link is shown in Figure 9.0. There are three kinds of data communication links: 1. Simplex link 2. Half-duplex link 3. Full-duplex link H. Huang Transparency No.9-3

4 Types of communication link configuration The HCS12/MC9S12 Microcontroller The RS232 Standard Was the most widely used physical level interface for data communication Specifies 25 interchange circuits for DTE/DCE use Established in 1960 by Electronics Industry Association (EIA) Revised to RS232C in 1969 Revised to RS232D in 1987 Revised to RS232E in 1992 and renamed as EIA-232-E Revised and renamed to TIA-232F in 1997 there are four aspects: electrical, functional, procedural, and mechanical. H. Huang Transparency No.9-4

5 The EIA-232E Electrical Specifications The interface is rated at a signal rate of < 20 kbps The signal can transfer correctly within 15 meters The maximum driver output voltage (with circuit open) is -25 V to +25 V The minimum driver output voltage (loaded output) is -25 V to -5 V and +5 V to +25 V The minimum driver output resistance when power is off is 300 W The receiver input voltage range is -25 V to +25 V The receiver output is high when input is open circuit A voltage more negative than -3 V at the receiver input is interpreted as a logic 1 A voltage more positive than +3 V at the receiver input is interpreted as a logic 0 H. Huang Transparency No.9-5

6 H. Huang Transparency No.9-6

7 Mechanical Specification H. Huang Transparency No.9-7

8 TIA-232 Procedural Specification Define the sequence of events that occurs during data transmission. The procedure is easier to understand by examples. Case 1. Two DTEs connected via a point-to-point link using a modem. TIA-232 signals involved: Signal ground (GND) Transmitted data (Tx) Received data (Rx) Request to send (RTS) Clear to send (CTS) Data set ready (DSR) Carrier detect (CD) H. Huang Transparency No.9-8

9 H. Huang Transparency No.9-9

10 Sequence of events occurred during data transmission over dedicated link Local 1. DCE asserts DSR 2. DTE asserts RTS 3. DCE asserts CTS Time Remote 4. DTE starts to send data (to local DCE) 5. DCE sends out a carrier and then the modulated data 6. DCE asserts CD 7. DTE waits for arrival of data 8. DCE sends out demodulated received data 9. DTE receives demodulated data H. Huang Transparency No.9-10

11 Case 2. Two DTEs exchange data through a public phone line EIA-232-E signals involved: Signal ground (GND) Transmitted data (Tx) Received data (Rx) Request to send (RTS) Clear to send (CTS) Data set ready (DSR) Carrier detect (CD) Data terminal ready (DTR) Ring indicator (RI) The signal DTR is used by the DTE to indicate its intention to make a call or accept a call. The signal RI is used by the DCE to indicate that there is an incoming call. H. Huang Transparency No.9-11

12 H. Huang Transparency No.9-12

13 Sequence of events occur during data transmission over public phone line Local (transmission side) time Remote (receiving side) Connection establishment phase 1. DTE asserts DTR 2. DCE dials the phone number 3. DCE detects the ring and asserts RI 4DTE 4. asserts DTR to accept the call 6. DCE asserts DSR and CD and also sends out a carrier for full duplex operation 5. DCE sends out a carrier and asserts DSR 7. DCE asserts CD (full duplex operation) H. Huang Transparency No.9-13

14 Sequence of events occur during data transmission (continued) Local (transmission side) time Remote (receiving side) Data transmission phase 1. DTE asserts RTS 2. DCE asserts CTS 3. DTE sends out data to DCE Disconnection phase 4. DCE modulates data and sends it out 5. DCE demodulates data and forwards the data to DTE 6. DTE receives data 1. DTE drops RTS 2. DCE drops CTS and drops the carrier 3. DCE deasserts CD & DSR 4DTEd 4. deasserts DTR H. Huang Transparency No.9-14

15 Data format for asynchronous data communication Data is transmitted character by character bit-serially A character consists of 1. one start bit (0), 2. 7 to 8 data bits, 3. an optional parity bit, 4. one, or one and a half, or two stop bits (1) 5. least significant bit is transmitted first 6. most significant bit is transmitted last H. Huang Transparency No.9-15

16 How to Detect the Arrival of Start Bit? Use a clock signal with frequency at least 16 times that of the data rate to sample the RxD signal. When the RxD pin is idle (high) for at least three sampling times and a falling edge follows, the SCI circuit checks the third, fifth, and seventh samples after the first sample. If the majority of them are low, then the start bit is considered detected. How to Determine the Logic Value of a Data Bit? Use a clock signal with frequency at least 16 times that of the data rate to sample the incoming data. Take the majority function of the eighth, ninth, and tenth samples. If the majority of them are 1s, then the logic value is determined d to be 1. H. Huang Transparency No.9-16

17 Example 9.1 Sketch the output of the letter g when it is transmitted using the format of one start bit, 8 data bit, and 1 stop bit. Solution: The ASCII code of letter g is $67 or % This code will be followed by a stop bit. The output from the DTE should be: H. Huang Transparency No.9-17

18 Data transmission errors Framing error: a character is not properly framed by a stop bit Receiver overrun: one or more characters received but not read by the CPU Parity error: odd number of bits change value Null Modem connection H. Huang Transparency No.9-18

19 The HCS12 SCI Subsystem A HCS12 device may have one or two serial communication interface. These two SCI interfaces are referred to as SCI0 and SCI1. The block diagram is shown in Figure 9.7. The SCI uses the data format of one start, eight or nine data bits, and one stop bit. The collection of the start bit, eight or nine data bits, and the stop bit is called a frame. The SCI function supports parity checking. This option requires the use of 9-bit data format. One SCI channel uses two signal pins from Port S. The SCI0 shares the use of PS0 (RxD0) and PS1 (TxD0), whereas SCI1 shares the use of PS2 (RxD1) and PS3 (TxD1). The SCI has the capability to send break to attract the attention of the other party of communications. A break is defined as the transmission or reception of logic 0 for a frame or longer time. The SCI supports hardware parity for transmission and reception. The SCI supports idling line and address mark wakeup, which is useful in multi-drop environment to reduce the software overhead. H. Huang Transparency No.9-19

20 H. Huang Transparency No.9-20

21 Baud Rate Generation The HCS12 SCI module uses a 13-bit counter to generate this clock signal. This circuit is called baud rate generator. The baud rate generator divides down the E clock to derive the clock signal for reception and transmission. The user writes an appropriate value into the SCIxBDH and SCIxBDL (x = 0 or 1) register pair to set the baud rate. H. Huang Transparency No.9-21

22 The value to be written into the baud rate generator register is the rounding of the following expression: SBR = f E 16 baud rate H. Huang Transparency No.9-22

23 The SCI Control Registers H. Huang Transparency No.9-23

24 H. Huang Transparency No.9-24

25 SCI Status Registers H. Huang Transparency No.9-25

26 H. Huang Transparency No.9-26

27 Character Transmission The block diagram of the SCI transmitter is shown in Figure To transmit a character from the SCI module, the user writes the data bits into the SCIxDRH and SCIxDRL registers. The data bits in SCIxDRH and SCIxDRL registers will be transferred to the transmit shift register and shifted out serially from the TxD pin. Each time the SCI transfers data from the buffer SCIxDRH/L to the transmit shift register, it also sets the TDRE flag in the SCIxSR1 register. The setting of the TDRE flag indicates that the MCU can write new data into the SCI data register. When the transmit shift register is not transmitting data, the TxD signal goes to idle state. When both the transmit data registers and shift register are empty, the TC flag in the SCIxSR1 register is set to 1. An interrupt may be requested to the MCU if the TDRE or TC flag is set to 1. H. Huang Transparency No.9-27

28 H. Huang Transparency No.9-28

29 Send Break Characters A break character is represented by eight or nine logic 0 data bits depending on the character data length. Whenever one party in the data communications discovers an error, it can send break characters to discontinue the communication and start over again. To send break characters, the user sets the SBK bit in the SCIxCR1 register to 1. As long as the SBK bit is 1, the transmitter logic continuously sending out the break character. Idle Characters An idle character contains all 1s and has no start, stop, or parity bit. Depending on the character data length, an idle character can be eight or nine 1s. If the TE bit in the SCIxCR2 register is cleared during a transmission, the TxD signal becomes idle after the completion of the transmission in progress. H. Huang Transparency No.9-29

30 Character Reception The block diagram of the SCI receiver is shown in Figure The SCI receiver can handle either 8- or 9-bit characters. When receiving 9-bit data, the R8 bit of the SCIxDRH register holds the ninth bit. During an SCI reception, the receive shift register shifts in a frame from the RxD pin. After a complete frame is shifted into the receive shift register, the data portion of the frame is transferred to the SCI data register. The receive data register full flag in the SCIxSR1 register is set to 1. An interrupt may be requested to the MCU if it is enabled. H. Huang Transparency No.9-30

31 H. Huang Transparency No.9-31

32 Single-Wire Operation In this operation, the RxD pin is disconnected from the SCI module. The SCI module uses the TxD pin for both receiving and transmitting as illustrated in Figure Single-wire operation is enabled by setting the LOOPS and the RSRC bits in the SCIxCR1 register. Setting the LOOPS bit disables the path from the RxD pin to the receiver. Setting the RSRC bit connects the receiver input to the output of the TxD pin driver. Both transmitter and receiver must be enabled. The TXDIR bit determines whether the TxD pin is going to be used as an input (TXDIR = 0) or output (TXDIR = 1) in this mode of operation. H. Huang Transparency No.9-32

33 Flow Control of UART in Asynchronous Mode The SCI module will transmit data as fast as the baud rate allows. In some circumstances, the software may not be able to read data as fast as the data is received. There is a need for the MCU to tell the transmitting device to suspend transmission of data temporarily. Similarly, the HCS12 may need to be told to suspend transmission temporarily. This is done by flow control. There are two common methods of flow control: XON/XOFF and hardware. XON/XOFF is implemented completely in software but requires a full-duplex communication. When incoming data needs to be suspended, am XOFF byte is transmitted back to the other device that is transmitting. To start the other device transmitting again, an XON character is transmitted. The XON and XOFF characters have the ASCII code of 0x11 and 0x13, respectively. Hardware flow control requires the use of extra signals. Generally, an input pin of the transmitter is controlled by the receiver. Before transmitting any character, the transmitter needs to test the flow control input pin. H. Huang Transparency No.9-33

34 Example 9.2 Write an instruction sequence to configure the SCI0 to operate with the following parameters: 9600 baud (E clock is 24 MHz) one start bit, 8 data bits, one stop bit no interrupt address mark wakeup disable wakeup initially long idle line mode enable transmit and receive no loop back disable parity checking Solution: The following instruction sequence will configure the SCI0 properly: movb #$00,SC0BDH ; set up baud rate movb #156,SC0BDL ; movb #$4C,SC0CR1 ; select 8 data bits, address mark wakeup movb #$0C,SC0CR2 ; enable transmitter and receiver H. Huang Transparency No.9-34

35 Interfacing SCI with EIA-232-E The SCI uses 0 V and 5 V to represent 0 and 1 The TIA-232 signal Tx cannot be driven by the SCI TxD signal without translation The TIA-232 signal Rx cannot drive the SCI RxD signal without translation Voltage level translation is required for the SCI signals to drive and be driven by the TIA-232 signals Examples of TIA-232 driver chips include: (1) LT1080/1081 from Linear technology (2) ST232 from SGS Thompson (3) ICL232 from Intersil (4) MAX232 from MAXIM (5) DS14C232 from National Semiconductor These chips are pin-compatible. The DS14C232 from National Semiconductor will be used in the following illustration. H. Huang Transparency No.9-35

36 H. Huang Transparency No.9-36

37 Interfacing the HCS12 SCI0 to the TIA-232 using the DS14C232 chip and implements the NULL modem connection so that this connection can talk to a PC directly. H. Huang Transparency No.9-37

38 Example 9.3 Write a subroutine to send a break to the communication port controlled by the SCI0 interface. The duration of the break is approximately 24,000 E clock cycles, or 1 ms at 24 MHz. Solution: A break character is represented by ten or eleven consecutive zeros and can be sent out by setting the bit 0 of the SCI0CR2 register. #include "c:\miniide\hcs12.inc" sendbrk bset SCI0CR2,SBK ; turn on send break ldy #1 jsr delayby1ms bclr SCI0CR2,SBK ; turn off send break rts #include c:\miniide\delay.asm H. Huang Transparency No.9-38

39 The C language version of the function: #include c:\cwhcs12\include\hcs12.h #include c:\cwhcs12\include\delay.h void send_break k( (void) { SCI0CR2 = SBK; // start to send break delayby1ms(1); SCI0CR2 &= ~SBK; // stop sending break } H. Huang Transparency No.9-39

40 Example 9.4 Write a subroutine to output the character in accumulator A to the SCI0 channel using the polling method. Solution: - The subroutine will wait until the bit 7 of SCI0SR1 register is set before sending out the character in accumulator A. #include "c:\miniide\hcs12.inc" putcsci0 brclr SCI0SR1,TDRE,* ; wait for TDRE to be set staa SCI0DRL ; output the character rts void putcsci0 (char cx) { while (!(SCI0SR1 & TDRE)); SCI0DRL = cx; } H. Huang Transparency No.9-40

41 Example 9.5 Write a subroutine to read a character from SCI0 using the polling method. Return the character in accumulator A. Solution: #include "c:\miniide\hcs12.inc" getcsci0 brclr SCI0SR1,RDRF,* RDRF ; wait until RDRF bit is set ldaa SCI0DRL ; read the character rts char getcsci0 (void) { while(!(sci0sr1 & RDRF)); return (SCI0DRL); } H. Huang Transparency No.9-41

42 Example 9.6 Write a subroutine to output a string pointed to by index register X to the SCI0 using the polling method. Solution: This subroutine will call putcsci0( ) repeatedly until all characters have been sent. putssci0 ldaa 1,x+ ; get a character and move the pointer beq donep ; is this the end of the string jsr putcsci0 bra putssci0 donep rts void putssci0 (char *cx) { while (!(*cx)) { putcsci0(*cx); cx++; } } H. Huang Transparency No.9-42

43 Example 9.7 Write a subroutine to input a string from SCI0. The string is terminated by the carriage return character and must be stored in a buffer pointed to by index register X. Solution: This subroutine will call getcsci0( ) repeatedly until the carriage return character is getssci0 jsr getch cmpa #CR ; is it a carriage return beq qi staa 0x 0,x ; save the character and increment the pointer jsr putch ; echo it back to SCI0 cmpa #BS ; is it a backspace character? (ASCII code is 0x08) bne nc ; no, continue dex ; decrement the input buffer pointer ldaa #WS ; wipe out the previous character (ASCII code of WS is 0x20) jsr putch ldaa #BS jsr putch bra gets nc inx bra gets qi clr 0x 0,x ; terminate the string by a NULL character rts H. Huang Transparency No.9-43

44 int gets(char *ptr) { char cx; while ((cx = getch())!= 0x0D) { *ptr = cx; putch(cx); if (cx == 0x08) { // is it a backspace character? } } ptr++; ptr--; // move back the string pointer putch(0x20);// output a space putch(0x08);// output another backspace character // move buffer pointer } *ptr = 0; // terminate the string with a NULL character return 0; H. Huang Transparency No.9-44

Microcontrollers. Serial Communication Interface. EECE 218 Microcontrollers 1

Microcontrollers. Serial Communication Interface. EECE 218 Microcontrollers 1 EECE 218 Microcontrollers Serial Communication Interface EECE 218 Microcontrollers 1 Serial Communications Principle: transfer a word one bit at a time Methods:» Simplex: [S] [R]» Duplex: [D1] [D2]» Half

More information

ECE 4510/5530 Microcontroller Applications Week 6 Lab 5

ECE 4510/5530 Microcontroller Applications Week 6 Lab 5 Microcontroller Applications Week 6 Lab 5 Dr. Bradley J. Bazuin Associate Professor Department of Electrical and Computer Engineering College of Engineering and Applied Sciences Lab 5 Element Hardware

More information

Asynchronous Serial Communications The MC9S12 Serial Communications Interface (SCI) Asynchronous Data Transfer

Asynchronous Serial Communications The MC9S12 Serial Communications Interface (SCI) Asynchronous Data Transfer Asynchronous Serial Communications The MC9S12 Serial Communications Interface (SCI) Asynchronous Data Transfer In asynchronous data transfer, there is no clock line between the two devices Both devices

More information

EEL 4744C: Microprocessor Applications. Lecture 9. Part 2. M68HC12 Serial I/O. Dr. Tao Li 1

EEL 4744C: Microprocessor Applications. Lecture 9. Part 2. M68HC12 Serial I/O. Dr. Tao Li 1 EEL 4744C: Microprocessor Applications Lecture 9 Part 2 M68HC12 Serial I/O Dr. Tao Li 1 Reading Assignment Software and Hardware Engineering (new version): Chapter 15 SHE (old version): Chapter 11 HC12

More information

Serial Input/Output. Lecturer: Sri Parameswaran Notes by: Annie Guo

Serial Input/Output. Lecturer: Sri Parameswaran Notes by: Annie Guo Serial Input/Output Lecturer: Sri Parameswaran Notes by: Annie Guo 1 Serial communication Concepts Standards USART in AVR Lecture overview 2 Why Serial I/O? Problems with Parallel I/O: Needs a wire for

More information

HC08 SCI Operation with Various Input Clocks INTRODUCTION

HC08 SCI Operation with Various Input Clocks INTRODUCTION Order this document by /D HC08 SCI Operation with Various Input Clocks By Rick Cramer CSIC MCU Product Engineering Austin, Texas INTRODUCTION This application note describes the operation of the serial

More information

Electronics / Water analogy. Resistor. Inductance. Capacitor. Water Electronics Energy - Energy Pressure - Voltage Flow - Current Volume - Charge

Electronics / Water analogy. Resistor. Inductance. Capacitor. Water Electronics Energy - Energy Pressure - Voltage Flow - Current Volume - Charge Electronics / Water analogy Water Electronics Energy - Energy Pressure - Voltage Flow - Current Volume - Charge Resistor U = R * I 1 Capacitor U 1 i dt C U L di dt Inductance Turbine Flywheel Diode Transistor

More information

Fanuc Serial (RS232) Communications Information

Fanuc Serial (RS232) Communications Information Memex Automation Inc. 777 Walkers Line, Burlington, Ontario Canada L7N 2G1 Fanuc Serial (RS232) Communications Information Contents Signal Description Fanuc Serial Cable Information Timing Chart When The

More information

Lecture #3 RS232 & 485 protocols

Lecture #3 RS232 & 485 protocols SPRING 2015 Integrated Technical Education Cluster At AlAmeeria E-626-A Data Communication and Industrial Networks (DC-IN) Lecture #3 RS232 & 485 protocols Instructor: Dr. Ahmad El-Banna 1 Agenda What

More information

Concept of Serial Communication

Concept of Serial Communication Concept of Serial Communication Agenda Serial v.s. Parallel Simplex, Half Duplex, Full Duplex Communication RS-485 Advantage over RS-232 Serial v.s. Parallel Application: How to Measure the temperature

More information

SC16C650B. 1. General description. 2. Features. 5 V, 3.3 V and 2.5 V UART with 32-byte FIFOs and infrared (IrDA) encoder/decoder

SC16C650B. 1. General description. 2. Features. 5 V, 3.3 V and 2.5 V UART with 32-byte FIFOs and infrared (IrDA) encoder/decoder 5 V, 3.3 V and 2.5 V UART with 32-byte FIFOs and infrared (IrDA) encoder/decoder Rev. 04 14 September 2009 Product data sheet 1. General description 2. Features The is a Universal Asynchronous Receiver

More information

APPLICATION BULLETIN. SERIAL BACKGROUNDER (Serial 101) AB23-1. ICS ICS ELECTRONICS division of Systems West Inc. INTRODUCTION CHAPTER 2 - DATA FORMAT

APPLICATION BULLETIN. SERIAL BACKGROUNDER (Serial 101) AB23-1. ICS ICS ELECTRONICS division of Systems West Inc. INTRODUCTION CHAPTER 2 - DATA FORMAT ICS ICS ELECTRONICS division of Systems West Inc. AB- APPLICATION BULLETIN SERIAL BACKGROUNDER (Serial 0) INTRODUCTION Serial data communication is the most common means of transmitting data from one point

More information

PERIPHERAL INTERFACING Rev. 1.0

PERIPHERAL INTERFACING Rev. 1.0 PERIPHERAL INTERFACING Rev.. This work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 2.5 India License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/in/deed.en

More information

SC16C Description. 2. Features. Dual UART with 32 bytes of transmit and receive FIFOs

SC16C Description. 2. Features. Dual UART with 32 bytes of transmit and receive FIFOs Rev. 04 20 June 2003 Product data 1. Description The is a 2 channel Universal Asynchronous Receiver and Transmitter (UART) used for serial data communications. Its principal function is to convert parallel

More information

Chapter 12: Digital Modulation and Modems

Chapter 12: Digital Modulation and Modems Chapter 12: Digital Modulation and Modems MULTIPLE CHOICE 1. FSK stands for: a. Full-Shift Keying c. Full-Signal Keying b. Frequency-Shift Keying d. none of the above 2. PSK stands for: a. Pulse-Signal

More information

SC16C550 Rev June 2003 Product data General description Features

SC16C550 Rev June 2003 Product data General description Features Universal Asynchronous Receiver/Transmitter (UART) with 16-byte FIFO and infrared (IrDA) encoder/decoder Rev. 05 19 June 2003 Product data 1. General description 2. Features The is a Universal Asynchronous

More information

EIA-232 Information. DTE Signal Direction. DCE Signal Direction. Signal EIA

EIA-232 Information. DTE Signal Direction. DCE Signal Direction. Signal EIA EIA EIA-232 Information This is one of the most misunderstood areas of RS-232. DTE stands for Data Terminal Equipment, and DCE stands for Data Circuit-terminating Equipment or Data Communications Equipment.

More information

King Fahd University of Petroleum & Minerals Computer Engineering Dept

King Fahd University of Petroleum & Minerals Computer Engineering Dept King Fahd University of Petroleum & Minerals Computer Engineering Dept COE 342 Data and Computer Communications Term 021 Dr. Ashraf S. Hasan Mahmoud Rm 22-144 Ext. 1724 Email: ashraf@ccse.kfupm.edu.sa

More information

Part Number Weblink for the part Description Unit Price. Hardware interfacing to the Freescale 9S12C32 MCU on board the CSM-12C32 module

Part Number Weblink for the part Description Unit Price. Hardware interfacing to the Freescale 9S12C32 MCU on board the CSM-12C32 module Global Positioning System Modules This section shows how to connect a GPS module to the CSM-12C32 module and provide several C functions for capturing the latitude, longitude, and UTC time information.

More information

SC16C550B. 1. General description. 2. Features. 5 V, 3.3 V and 2.5 V UART with 16-byte FIFOs

SC16C550B. 1. General description. 2. Features. 5 V, 3.3 V and 2.5 V UART with 16-byte FIFOs Rev. 05 1 October 2008 Product data sheet 1. General description 2. Features The is a Universal Asynchronous Receiver and Transmitter (UART) used for serial data communications. Its principal function

More information

SC16C750B. 1. General description. 2. Features. 5 V, 3.3 V and 2.5 V UART with 64-byte FIFOs

SC16C750B. 1. General description. 2. Features. 5 V, 3.3 V and 2.5 V UART with 64-byte FIFOs Rev. 05 17 October 2008 Product data sheet 1. General description 2. Features The is a Universal Asynchronous Receiver and Transmitter (UART) used for serial data communications. Its principal function

More information

a6850 Features General Description Asynchronous Communications Interface Adapter

a6850 Features General Description Asynchronous Communications Interface Adapter a6850 Asynchronous Communications Interface Adapter September 1996, ver. 1 Data Sheet Features a6850 MegaCore function implementing an asychronous communications interface adapter (ACIA) Optimized for

More information

SC16C652B. 1. General description. 2. Features. 5 V, 3.3 V and 2.5 V dual UART, 5 Mbit/s (max.) with 32-byte FIFOs and infrared (IrDA) encoder/decoder

SC16C652B. 1. General description. 2. Features. 5 V, 3.3 V and 2.5 V dual UART, 5 Mbit/s (max.) with 32-byte FIFOs and infrared (IrDA) encoder/decoder 5 V, 3.3 V and 2.5 V dual UART, 5 M/s (max.) with 32-byte FIFOs and infrared (IrDA) encoder/decoder Rev. 04 1 September 2005 Product data sheet 1. General description 2. Features The is a 2 channel Universal

More information

ANALOG AND DIGITAL PHYSICAL INTERFACES

ANALOG AND DIGITAL PHYSICAL INTERFACES ANALOG AND DIGITAL PHYSICAL INTERFACES Habib Youssef, Ph.D youssef@ccse.kfupm.edu.sa Department of Computer Engineering King Fahd University of Petroleum and Minerals Dhahran, Saudi Arabia COMPUTER NETWORK

More information

DigiPoints Volume 1. Student Workbook. Module 2 Modem Overview

DigiPoints Volume 1. Student Workbook. Module 2 Modem Overview Modem Overview Page 2.1 DigiPoints Volume 1 Module 2 Modem Overview Summary One of the potential advantages the cable telecommunications industry has is the ability to carry data signals at speeds significantly

More information

ECE 4510/5530 Microcontroller Applications Midterm Review

ECE 4510/5530 Microcontroller Applications Midterm Review Microcontroller Applications Midterm Review Dr. Bradley J. Bazuin Associate Professor Department of Electrical and Computer Engineering College of Engineering and Applied Sciences Exam Composition HC12

More information

TCSS 372 Laboratory Project 2 RS 232 Serial I/O Interface

TCSS 372 Laboratory Project 2 RS 232 Serial I/O Interface 11/20/06 TCSS 372 Laboratory Project 2 RS 232 Serial I/O Interface BACKGROUND In the early 1960s, a standards committee, known as the Electronic Industries Association (EIA), developed a common serial

More information

Low Power with Long Range RF Module DATASHEET Description

Low Power with Long Range RF Module DATASHEET Description Wireless-Tag WT-900M Low Power with Long Range RF Module DATASHEET Description WT-900M is a highly integrated low-power half-'duplex RF transceiver module embedding high-speed low-power MCU and high-performance

More information

USER'S MANUAL. Model : K

USER'S MANUAL. Model : K USER'S MANUAL Model : 2000-64K TM GINA MODEL 2000-64K Overview GINA Model 2000-64K is a stand-alone, high frequency data transceiver using spread spectrum technology. GINA 2000-64K capabilities include

More information

ROM/UDF CPU I/O I/O I/O RAM

ROM/UDF CPU I/O I/O I/O RAM DATA BUSSES INTRODUCTION The avionics systems on aircraft frequently contain general purpose computer components which perform certain processing functions, then relay this information to other systems.

More information

TS4000 Radio Modem. User s Manual

TS4000 Radio Modem. User s Manual TS4000 Radio Modem User s Manual Version 6.60C 1729 South Main Street Milpitas, CA 95035 (408) 941-1808 (800) 663-3674 (408) 941-1818 Fax www.teledesignsystems.com productsales@teledesignsystems.com techsupport@teledesignsystems.com

More information

Design and FPGA Implementation of a High Speed UART. Sonali Dhage, Manali Patil,Navnath Temgire,Pushkar Vaity, Sangeeta Parshionikar

Design and FPGA Implementation of a High Speed UART. Sonali Dhage, Manali Patil,Navnath Temgire,Pushkar Vaity, Sangeeta Parshionikar 106 Design and FPGA Implementation of a High Speed UART Sonali Dhage, Manali Patil,Navnath Temgire,Pushkar Vaity, Sangeeta Parshionikar Abstract- The Universal Asynchronous Receiver Transmitter (UART)

More information

RCLK N.C. CS0 CS1 -CS2 -BAUDOUT

RCLK N.C. CS0 CS1 -CS2 -BAUDOUT UART WITH 16-BYTE FIFO s September 2003 GENERAL DESCRIPTION The ST16C550 (550) is a universal asynchronous receiver and transmitter with 16 byte transmit and receive FIFO. It operates at 2.97 to 5.5 volts.

More information

Local Asynchronous Communication. By S.Senthilmurugan Asst.Professor/ICE SRM University. Chennai.

Local Asynchronous Communication. By S.Senthilmurugan Asst.Professor/ICE SRM University. Chennai. Local Asynchronous Communication By S.Senthilmurugan Asst.Professor/ICE SRM University. Chennai. Bitwise Data Transmission Data transmission requires: Encoding bits as energy Transmitting energy through

More information

ST16C450 UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART) GENERAL DESCRIPTION. PLCC Package FEATURES ORDERING INFORMATION.

ST16C450 UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART) GENERAL DESCRIPTION. PLCC Package FEATURES ORDERING INFORMATION. UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART) September 2003 GENERAL DESCRIPTION The ST16C450 is a universal asynchronous receiver and transmitter. The ST16C450 is an improved version of the NS16450

More information

ST16C550. UART WITH 16-BYTE FIFO s GENERAL DESCRIPTION. PLCC Package FEATURES ORDERING INFORMATION

ST16C550. UART WITH 16-BYTE FIFO s GENERAL DESCRIPTION. PLCC Package FEATURES ORDERING INFORMATION UART WITH 16-BYTE FIFO s GENERAL DESCRIPTION The ST16C550 is a universal asynchronous receiver and transmitter with 16 byte transmit and receive FIFO. A programmable baud rate generator is provided to

More information

XR16L570 GENERAL DESCRIPTION FEATURES APPLICATIONS FIGURE 1. BLOCK DIAGRAM. *5 V Tolerant Inputs (Except for CLK) PwrSave. Data Bus Interface

XR16L570 GENERAL DESCRIPTION FEATURES APPLICATIONS FIGURE 1. BLOCK DIAGRAM. *5 V Tolerant Inputs (Except for CLK) PwrSave. Data Bus Interface MAY 2007 REV. 1.0.1 GENERAL DESCRIPTION The XR16L570 (L570) is a 1.62 to 5.5 volt Universal Asynchronous Receiver and Transmitter (UART) with 5 volt tolerant inputs and a reduced pin count. It is software

More information

D16950 IP Core. Configurable UART with FIFO v. 1.03

D16950 IP Core. Configurable UART with FIFO v. 1.03 2017 D16950 IP Core Configurable UART with FIFO v. 1.03 C O M P A N Y O V E R V I E W Digital Core Design is a leading IP Core provider and a SystemonChip design house. The company was founded in 1999

More information

Programmable communications interface (PCI)

Programmable communications interface (PCI) Programmable communicatio interface (PCI) DESCRIPTION The Philips Semiconductors PCI is a universal synchronous/asynchronous data communicatio controller chip designed for microcomputer systems. It interfaces

More information

PART 4 DIGITAL METHODS. Chapter 13 Digital Fundamentals. Parallel Data Transfer. Fig Parallel data handshaking

PART 4 DIGITAL METHODS. Chapter 13 Digital Fundamentals. Parallel Data Transfer. Fig Parallel data handshaking PART 4 DIGITAL METHODS Chapter 13 Digital Fundamentals The remainder of this book will deal with digital methods in modern communications. We will build on the introduction to digital data in Chapter 3,

More information

AT-XTR-7020A-4. Multi-Channel Micro Embedded Transceiver Module. Features. Typical Applications

AT-XTR-7020A-4. Multi-Channel Micro Embedded Transceiver Module. Features. Typical Applications AT-XTR-7020A-4 Multi-Channel Micro Embedded Transceiver Module The AT-XTR-7020A-4 radio data transceiver represents a simple and economical solution to wireless data communications. The employment of an

More information

SC28L General description. 3.3 V, 5 V UART, Mbit/s, with 256-byte FIFO

SC28L General description. 3.3 V, 5 V UART, Mbit/s, with 256-byte FIFO Rev. 01 31 October 2005 Product data sheet 1. General description The is a high performance UART. Its functional and programming features closely match but greatly extend those of previous Philips UARTs.

More information

HR1200. Version 1.00 ATIM RADIOCOMMUNICATION 1/11

HR1200. Version 1.00 ATIM RADIOCOMMUNICATION 1/11 HR1200 Version 1.00 ATIM RADIOCOMMUNICATION 1/11 Contact Information ATIM RADIOCOMMUNICATION Les guillets 38250 Villard de Lans France Tel : +33 (0)4 76 95 50 65 Fax: +33 (0)4 76 95 50 64 Web : www.atim.com

More information

NETWORK. TE = Terminal Equipment (DTE - Data Terminal Equipment) NT = Network - Terminating Equipment (DCE - Data Circuit - Terminating Equipment)

NETWORK. TE = Terminal Equipment (DTE - Data Terminal Equipment) NT = Network - Terminating Equipment (DCE - Data Circuit - Terminating Equipment) NETWORK INTERFACING TE NT NETWORK NT TE Interface Interface TE = Terminal Equipment (DTE - Data Terminal Equipment) NT = Network - Terminating Equipment (DCE - Data Circuit - Terminating Equipment) Interface

More information

Multi-Channel RS-232 Serial RF Transceiver

Multi-Channel RS-232 Serial RF Transceiver RF-232 Multi-Channel RS-232 Serial RF Transceiver The RF-232 subassembly is a multi-channel serial radio transceiver. This device accepts and outputs standard serial data at one of three selectable data

More information

Online Signature Verification by Using FPGA

Online Signature Verification by Using FPGA Online Signature Verification by Using FPGA D.Sandeep Assistant Professor, Department of ECE, Vignan Institute of Technology & Science, Telangana, India. ABSTRACT: The main aim of this project is used

More information

SC16IS General description. 2. Features

SC16IS General description. 2. Features Single UART with I 2 C-bus/SPI interface, 64 bytes of transmit and receive FIFOs, IrDA SIR built-in support Rev. 01 29 April 2010 Product data sheet 1. General description The is a slave I 2 C-bus/SPI

More information

D16550 IP Core. Configurable UART with FIFO v. 2.25

D16550 IP Core. Configurable UART with FIFO v. 2.25 2017 D16550 IP Core Configurable UART with FIFO v. 2.25 C O M P A N Y O V E R V I E W Digital Core Design is a leading IP Core provider and a SystemonChip design house. The company was founded in 1999

More information

Universal RS232/CMOS to RS422/RS485 Converter

Universal RS232/CMOS to RS422/RS485 Converter TOSHIBA INTERNATIONAL CORPORATION Universal RS232/CMOS to RS422/RS485 Converter Rev No.: 2 Page No.: 1 RS232/CMOS to RS422/RS485 Converter converts RS232/CMOS lines to balanced RS422 or RS485 signals.

More information

Unit D. Serial Interfaces. Serial vs. Parallel. Serial Interfaces. Serial Communications

Unit D. Serial Interfaces. Serial vs. Parallel. Serial Interfaces. Serial Communications D.1 Serial Interfaces D.2 Unit D Embedded systems often use a serial interface to communicate with other devices. Serial implies that it sends or receives one bit at a time. Serial Communications Serial

More information

FEATURES PLCC Package RXB RXA -TXRDYB TXA TXB -OPB -CSA -CSB

FEATURES PLCC Package RXB RXA -TXRDYB TXA TXB -OPB -CSA -CSB DUAL UART WITH 16-BYTE TRANSMIT AND RECEIVE FIFO S DESCRIPTION The ST16C2550 (2550) is a dual universal asynchronous receiver and transmitter (UART). The ST16C2550 is an improved version of the NS16C550

More information

Serial Communications RS232, RS485, RS422

Serial Communications RS232, RS485, RS422 Technical Brief AN236 Technical Brief AN236Rev A Serial Communications RS232, RS485, RS422 By John Sonnenberg S u m m a r y Electronic communications is all about interlinking circuits (processors or other

More information

2W UHF MHz Radio Transceiver

2W UHF MHz Radio Transceiver 2W UHF410-470 MHz Radio Transceiver Specification Copyright Javad Navigation Systems, Inc. February, 2006 All contents in this document are copyrighted by JNS. All rights reserved. The information contained

More information

RS-485 Transmit Enable Signal Control Nigel Jones

RS-485 Transmit Enable Signal Control Nigel Jones RMB Consulting Where innovation and execution go hand in hand RS-485 Transmit Enable Signal Control Nigel Jones Quite a few embedded systems include multiple processors. Sometimes these processors stand

More information

Preliminary Information IP0 -IOW -IOR RXB N.C. TXB OP1 OP3 OP5 OP7

Preliminary Information IP0 -IOW -IOR RXB N.C. TXB OP1 OP3 OP5 OP7 Preliminary Information XR88C92/192 DUAL UNIVERSAL ASYNCHRONOUS RECEIVER AND TRANSMITTER DESCRIPTION The XR88C92/192 is a Dual Universal Asynchronous Receiver and Transmitter with 8 (XR88C92) / 16 (XR88C192)

More information

XR88C92/192 DUAL UNIVERSAL ASYNCHRONOUS RECEIVER AND TRANSMITTER DESCRIPTION FEATURES. PLCC Package ORDERING INFORMATION.

XR88C92/192 DUAL UNIVERSAL ASYNCHRONOUS RECEIVER AND TRANSMITTER DESCRIPTION FEATURES. PLCC Package ORDERING INFORMATION. DUAL UNIVERSAL ASYNCHRONOUS RECEIVER AND TRANSMITTER DESCRIPTION August 2016 The XR88C92/192 is a Dual Universal Asynchronous Receiver and Transmitter with 8 (XR88C92) / 16 (XR88C192) bytes transmit and

More information

EXPERIMENT NO:-1. OBJECTIVE: To study Basics of serial communication ports and protocols.

EXPERIMENT NO:-1. OBJECTIVE: To study Basics of serial communication ports and protocols. EXPERIMENT NO:-1 OBJECTIVE: To study Basics of serial communication ports and protocols. EQUIPMENTS: DCT-03 Kit 9 Pin D connector Cables 2 Nos. Computers 2 nos. Connecting Chords. Power Supply. THEORY:

More information

DSP4xxFP SA USER S MANUAL. A01561 Rev. A. This Manual covers all configurations of the DSP4xxSA Modem with the Serial Number SA and up.

DSP4xxFP SA USER S MANUAL. A01561 Rev. A. This Manual covers all configurations of the DSP4xxSA Modem with the Serial Number SA and up. DSP4xxFP SA USER S MANUAL A01561 Rev. A This Manual covers all configurations of the DSP4xxSA Modem with the Serial Number SA700425 and up. DSP4xxSA User s Manual A01561 Rev. X Proprietary Data This document

More information

SC16C General description. 2. Features and benefits

SC16C General description. 2. Features and benefits 2.5 V to 3.3 V UART, 5 Mbit/s (max.) with 128-byte FIFOs, infrared (IrDA), and 16 mode or 68 mode parallel bus interface Rev. 2 11 November 2010 Product data sheet 1. General description The is a 2.5 V

More information

Universal Converter Covers All the Bases- RS-232 to 4-wire RS-422, 2-wire or 4-wire RS-485

Universal Converter Covers All the Bases- RS-232 to 4-wire RS-422, 2-wire or 4-wire RS-485 4WSD9R0712-1/4 Model 4WSD9R Universal Converter Covers All the Bases- RS-232 to 4-wire RS-422, 2-wire or 4-wire RS-485 The 4WSD9R Universal Converter is a port-powered or externally powered two-channel

More information

Home Automation, Inc. Omnistat2. RC-1000 and RC-2000 Communicating Thermostat. Serial Protocol Description

Home Automation, Inc. Omnistat2. RC-1000 and RC-2000 Communicating Thermostat. Serial Protocol Description Home Automation, Inc. Omnistat2 RC-1000 and RC-2000 Communicating Thermostat Serial Protocol Description This document contains the intellectual property of Home Automation, Inc. (HAI). HAI authorizes

More information

APPLICATION NOTE ANI6. Connecting the SP504 Multiprotocol Transceiver to the 85C30 Universal Enhanced Serial Communications Controller (ESCC)

APPLICATION NOTE ANI6. Connecting the SP504 Multiprotocol Transceiver to the 85C30 Universal Enhanced Serial Communications Controller (ESCC) Solved by APPLICATION NOTE ANI6 TM Connecting the SP504 Multiprotocol Transceiver to the 85C30 Universal Enhanced Serial Communications Controller (ESCC) INTRODUCTION The Sipex SP504 is a cost-effective,

More information

ADA-1028L. User manual ADA-1028L. RS232 to Current Loop 2-wire CLO Converter. 1 io_ada-1028l_v.1.10_en. Copyright CEL-MAR sp.j.

ADA-1028L. User manual ADA-1028L. RS232 to Current Loop 2-wire CLO Converter. 1 io_ada-1028l_v.1.10_en. Copyright CEL-MAR sp.j. User manual ADA-1028L to Current Loop 2-wire Converter Copyright 2001-2017 CEL-MAR sp.j. 1 io_ada-1028l_v.1.10_en Contents 1. GENERAL INFORMATION... 3 1.1. WARRANTED INFORMATION... 3 1.2. GENERAL CONDITIONS

More information

CL4790 HARDWARE INTEGRATION GUIDE VERSION 3.0. Americas: Europe: Hong Kong:

CL4790 HARDWARE INTEGRATION GUIDE VERSION 3.0. Americas: Europe: Hong Kong: CL4790 HARDWARE INTEGRATION GUIDE VERSION 3.0 Americas: +1-800-492-2320 FCC Notice WARNING: This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1)

More information

Instruction Sheet UPS SERIES. Serial Control Protocol. I Rev E

Instruction Sheet UPS SERIES. Serial Control Protocol. I Rev E Instruction Sheet UPS SERIES Serial Control Protocol I-00341 Rev E (THIS PAGE INTENTIONALLY LEFT BLANK) Page 1 TABLE OF CONTENTS 1 Protocol Overview...3 1.1 Signal characteristics...3 1.2 Primary DB9 Pin

More information

Chapter 5 Timer Functions ECE 3120 Dr. Mohamed Mahmoud http://iweb.tntech.edu/mmahmoud/ mmahmoud@tntech.edu Outline 5.1 The Timer System 5.2 Programming the Timer System 5.3 Examples and Applications The

More information

Project Final Report: Directional Remote Control

Project Final Report: Directional Remote Control Project Final Report: by Luca Zappaterra xxxx@gwu.edu CS 297 Embedded Systems The George Washington University April 25, 2010 Project Abstract In the project, a prototype of TV remote control which reacts

More information

PRODUCT INFORMATION B&B ELECTRONICS. Port-Powered RS-232 Fiber Optic Modem with Handshake Support. Model 9PFLST. Description. RS-232 Connections

PRODUCT INFORMATION B&B ELECTRONICS. Port-Powered RS-232 Fiber Optic Modem with Handshake Support. Model 9PFLST. Description. RS-232 Connections -01-1/ 00 by B&B Electronics. All rights reserved. Model Port-Powered RS- Fiber Optic Modem with Handshake Support Description The allows any two pieces of RS- asynchronous serial equipment to communicate

More information

9600 bps, Dual Modem 170 Card Private Wire Only

9600 bps, Dual Modem 170 Card Private Wire Only 896 9600 bps, Dual Modem 170 Card Private Wire Only Users Guide 280 Interstate 80 West Exit 1 / PO Box 1330, Verdi, NV 89439 Phone: 775-345-8000 Fax: 775-345-8010 E-mail: traffic@sgdi.net TABLE OF CONTENTS

More information

SC16C2552B. 1. General description. 2. Features. 5 V, 3.3 V and 2.5 V dual UART, 5 Mbit/s (max.), with 16-byte FIFOs

SC16C2552B. 1. General description. 2. Features. 5 V, 3.3 V and 2.5 V dual UART, 5 Mbit/s (max.), with 16-byte FIFOs 5 V, 3.3 V and 2.5 V dual UART, 5 M/s (max.), with 16-byte FIFOs Rev. 03 12 February 2009 Product data sheet 1. General description 2. Features The is a two channel Universal Asynchronous Receiver and

More information

RF1212 RF1212 Ultra-low Power ISM Transceiver Module V2.0

RF1212 RF1212 Ultra-low Power ISM Transceiver Module V2.0 RF1212 Ultra-low Power ISM Transceiver Module V2.0 Application: Features: Home automation Security alarm Telemetry Automatic meter reading Contactless access Wireless data logger Remote motor control Wireless

More information

)454 6 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

)454 6 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU INTERNATIAL TELECOMMUNICATI UNI )454 6 TELECOMMUNICATI STANDARDIZATI SECTOR OF ITU $!4! #/--5.)#!4)/. /6% 4(% 4%,%0(/.%.%47/+,//0 4%34 $%6)#%3 &/ -/$%-3 )454 Recommendation 6 (Extract from the "LUE "OOK)

More information

EE 308: Microcontrollers

EE 308: Microcontrollers EE 308: Microcontrollers Introduction to Communication USART Aly El-Osery Electrical Engineering Department New Mexico Institute of Mining and Technology Socorro, New Mexico, USA February 27, 2018 Aly

More information

Interface converter G kbit/sec

Interface converter G kbit/sec converter User s Guide 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901 Interface converter G.703.1 64 kbit/sec Features Maximum line attenuation

More information

Chapter 12: Analog-to-Digital Converter. EE383: Introduction to Embedded Systems University of Kentucky. Samir Rawashdeh

Chapter 12: Analog-to-Digital Converter. EE383: Introduction to Embedded Systems University of Kentucky. Samir Rawashdeh Chapter 12: Analog-to-Digital Converter EE383: Introduction to Embedded Systems University of Kentucky Samir Rawashdeh With slides based on material by H. Huang Delmar Cengage Learning Basics of A/D Conversion

More information

1 What s in the shipping package?

1 What s in the shipping package? SST 900B 900 MHz RS 232/RS 485 Wireless Modem Quick Start Guide 1 What s in the shipping package? SST-900B Wireless Modem CA-0910 Quick Start CD 3dBi 900M Hz Antenna Guide 2 External switch introduction

More information

Review for Final Exam

Review for Final Exam Review for Final Exam Numbers Decimal to Hex (signed and unsigned) Hex to Decimal (signed and unsigned) Binary to Hex Hex to Binary Addition and subtraction of fixed-length hex numbers Overflow, Carry,

More information

V62/03626 REVISIONS LTR DESCRIPTION DATE APPROVED REV PAGE REV PAGE REV REV STATUS OF PAGES PAGE

V62/03626 REVISIONS LTR DESCRIPTION DATE APPROVED REV PAGE REV PAGE REV REV STATUS OF PAGES PAGE REVISIONS LTR DESCRIPTION DTE PPROVED Prepared in accordance with SME Y14.24 Vendor item drawing REV PGE REV PGE 18 19 20 REV STTUS OF PGES REV PGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 PMIC N/ Original

More information

RS-232 / 20mA Interface Converter ELO E00Q. Operation manual

RS-232 / 20mA Interface Converter ELO E00Q. Operation manual RS-232 / 20mA Interface Converter ELO E00Q Operation manual 2 ELOE00QZKE001 1.0 Introduction 4 1.1 Use of the converter 4 2.0 Operation principles 4 3.0 Installation 4 3.1 Converter connection to RS-232

More information

Stat-4 Stat-8 Stat-24

Stat-4 Stat-8 Stat-24 JULY 1993 MX864A MX866A MX868A Stat-4 Stat-8 Stat-24 STAT-4 POWER MAIN 1 2 3 4 SYNC ERR OVF TEST 1 2 3 4 RESET STAT-24 STAT-8 POWER MAIN 1 2 3 4 5 6 7 8 SYNC ERR OVF TEST 1 2 3 4 5 6 7 8 TEST SYNC 23 24

More information

XR19L400 SINGLE CHANNEL INTEGRATED UART AND RS-485 TRANSCEIVER

XR19L400 SINGLE CHANNEL INTEGRATED UART AND RS-485 TRANSCEIVER XR9L4 SINGLE CHANNEL INTEGRATED UART AND RS-485 TRANSCEIVER JULY 29 REV...3 GENERAL DESCRIPTION The XR9L4 (L4) is a highly integrated device that combines a full-featured single channel Universal Asynchronous

More information

MODEL PAXCDC -SERIAL COMMUNICATIONS PLUG-IN OPTION CARDS

MODEL PAXCDC -SERIAL COMMUNICATIONS PLUG-IN OPTION CARDS Tel +1 (717) 767-6511 Fax +1 (717) 764-0839 www.redlion.net Bulletin No. PAXCDC-E Drawing No. LP0402 Released 3/05 MODEL PAXCDC -SERIAL COMMUNICATIONS PLUG-IN OPTION CARDS DESCRIPTION This bulletin serves

More information

This document is designed to be used in conjunction with the CMX869A data sheet.

This document is designed to be used in conjunction with the CMX869A data sheet. CML Microcircuits COMMUICATIO SEMICODUCTORS Publication: A/Telecom/869A/1 May 2006 Application ote Bell 212A Implementation with CMX869A 1 Introduction The Bell 212A data communications protocol, originally

More information

CHAPTER 5 TRANSMISSION OF DIGITAL DATA INTERFACES & MODEMS

CHAPTER 5 TRANSMISSION OF DIGITAL DATA INTERFACES & MODEMS CHAPTER 5 TRANSMISSION OF DIGITAL DATA INTERFACES & MODEMS Information generated by a source need to be encoded into a suitable format for transmission. To transmit the encoded signals generated by the

More information

CDR-915 Data Radio Module INTEGRATOR S GUIDE

CDR-915 Data Radio Module INTEGRATOR S GUIDE CDR-915 Data Radio Module Coyote DataCom, Inc. 3941 Park Drive, Suite 20-266, El Dorado Hills, CA 95762 Tel. 916-933-9981 Fax 916-913-0951 www.coyotedatacom.com TABLE OF CONTENTS General Information and

More information

For Direct computer control see the Data Out connector description. For Radio control see the Data In connector description.

For Direct computer control see the Data Out connector description. For Radio control see the Data In connector description. Transceiver interface Operation for Steppir For Direct computer control see the Data Out connector description. For Radio control see the Data In connector description. The following radios are supported:

More information

EECE494: Computer Bus and SoC Interfacing. Serial Communication: RS-232. Dr. Charles Kim Electrical and Computer Engineering Howard University

EECE494: Computer Bus and SoC Interfacing. Serial Communication: RS-232. Dr. Charles Kim Electrical and Computer Engineering Howard University EECE494: Computer Bus and SoC Interfacing Serial Communication: RS-232 Dr. Charles Kim Electrical and Computer Engineering Howard University Spring 2014 1 Many types of wires/pins in the communication

More information

Datasheet LT1110 Wireless Module. Version 3.1

Datasheet LT1110 Wireless Module. Version 3.1 A Version 3.1 REVISION HISTORY Version Date Notes Approver 3.0 13 Jan 2014 Separated into two separate docs: Hardware Integration Guide and User Guide. Marked as Rev 3.0 to match User Guide. Sue White

More information

Model 4xx. Plug-in Series Of FSK Modems USER GUIDE. (TI) 20 Jan 06 DWG: A GDI COMMUNICATIONS LLC PO Box I-80 Exit 1 Verdi, NV 89439

Model 4xx. Plug-in Series Of FSK Modems USER GUIDE. (TI) 20 Jan 06 DWG: A GDI COMMUNICATIONS LLC PO Box I-80 Exit 1 Verdi, NV 89439 Model 4xx Plug-in Series Of FSK s USER GUIDE (TI) 20 Jan 06 DWG: A01164 GDI COMMUNICATIONS LLC PO Box 1330 280 I-80 Exit 1 Verdi, NV 89439 Phone: (775) 345-8000 Fax: (775) 345-8010 Web: www.sgdi.com Email:

More information

Installation and Operation Manual HS-R. 4-Channel Low Speed Data Module with V.110 Rate Adaptation MEGAPLEX-2100 MODULE

Installation and Operation Manual HS-R. 4-Channel Low Speed Data Module with V.110 Rate Adaptation MEGAPLEX-2100 MODULE Installation and Operation Manual HS-R 4-Channel Low Speed Data Module with V110 Rate Adaptation MEGAPLEX-2100 MODULE MEGAPLEX-2100 MODULE HS-R 4-Channel Low Speed Data Module with V110 Rate Adaptation

More information

Lecture 12 Timer Functions

Lecture 12 Timer Functions CPE 390: Microprocessor Systems Spring 2018 Lecture 12 Timer Functions Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ 07030 Adapted from HCS12/9S12

More information

Integrity Instruments

Integrity Instruments Integrity Instruments XP-A/I User Manual Integrity Instruments P.O. Box Order Phone 00-0-00 Pine River Minnesota Fax Phone -- USA Tech Phone --0 http://www.integrityusa.com XP-A ISOLATED XP-I RS- to RS-

More information

SC16C554B/554DB. 1. General description. 2. Features. 5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 16-byte FIFOs

SC16C554B/554DB. 1. General description. 2. Features. 5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 16-byte FIFOs 5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 16-byte FIFOs Rev. 03 1 September 2005 Product data sheet 1. General description 2. Features The is a 4-channel Universal Asynchronous Receiver and

More information

G3P-R232. User Manual. Release. 2.06

G3P-R232. User Manual. Release. 2.06 G3P-R232 User Manual Release. 2.06 1 INDEX 1. RELEASE HISTORY... 3 1.1. Release 1.01... 3 1.2. Release 2.01... 3 1.3. Release 2.02... 3 1.4. Release 2.03... 3 1.5. Release 2.04... 3 1.6. Release 2.05...

More information

CONTROL MICROSYSTEMS SCADAWave Radio Transceiver. Hardware Manual

CONTROL MICROSYSTEMS SCADAWave Radio Transceiver. Hardware Manual 5908 SCADAWave Radio Transceiver Hardware Manual CONTROL MICROSYSTEMS SCADA products... for the distance 48 Steacie Drive Telephone: 613-591-1943 Kanata, Ontario Facsimile: 613-591-1022 K2K 2A9 Technical

More information

A50/A51/A60. June 2008 (4th Edition) All Rights Reserved

A50/A51/A60. June 2008 (4th Edition) All Rights Reserved A50/A51/A60 June 2008 (4th Edition) All Rights Reserved Part I - A50/A51 RS-232 to RS-422/RS-485 Converter A50/A51 RS-232 to RS-422/RS-485 Bidirectional Converter Part II - A60 RS-232 Surge Protection

More information

+3.3V-Powered, EIA/TIA-562 Dual Transceiver with Receivers Active in Shutdown

+3.3V-Powered, EIA/TIA-562 Dual Transceiver with Receivers Active in Shutdown 19-0198; Rev 0; 10/9 +.Powered, EIA/TIA-5 Dual Transceiver General Description The is a +.powered EIA/TIA-5 transceiver with two transmitters and two receivers. Because it implements the EIA/TIA-5 standard,

More information

EE 314 Spring 2003 Microprocessor Systems

EE 314 Spring 2003 Microprocessor Systems EE 314 Spring 2003 Microprocessor Systems Laboratory Project #9 Closed Loop Control Overview and Introduction This project will bring together several pieces of software and draw on knowledge gained in

More information

March 30, W65C51N Asynchronous Communications Interface Adapter (ACIA)

March 30, W65C51N Asynchronous Communications Interface Adapter (ACIA) March 30, 2010 W65C51N Asynchronous Communications Interface Adapter (ACIA) WDC reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

More information

Stensat Transmitter Module

Stensat Transmitter Module Stensat Transmitter Module Stensat Group LLC Introduction The Stensat Transmitter Module is an RF subsystem designed for applications where a low-cost low-power radio link is required. The Transmitter

More information