AlGaN/GaN HEMTs and HBTs

Size: px
Start display at page:

Download "AlGaN/GaN HEMTs and HBTs"

Transcription

1 AlGaN/GaN HEMTs and HBTs Umesh K. Mishra

2 PART I AlGaN/GaN HEMTs

3 Materials Properties Comparison Material µ ε Eg BFOM JFM Tmax Ratio Ratio Si C GaAs C SiC C GaN C BFOM = Baliga s figure of merit for power transistor performance [K*µ*Ec 3 ] JFM = Johnson s figure of merit for power transistor performance (Breakdown, electron velocity product) [Eb*Vbr/2π] U.S. Department of Defense

4 Advantages of WBG Devices Need Enabling Feature Performance Advantage High Power/Unit Width Wide Bandgap, High Field Compact, Ease of Matching High Voltage Operation High Breakdown Field Eliminate/Reduce Step Down High Linearity High Frequency HEMT Topology High Electron Velocity Optimum Band Allocation Bandwidth, µ-wave/mm-wave High Efficiency High Operating Voltage Power Saving, Reduced Cooling Low Noise High gain, high velocity High dynamic range receivers High Temperature Wide Bandgap Rugged, Reliable, Operation Reduced Cooling Thermal SiC Substrate High power devices with Management reduced cooling needs Technology Leverage Direct Bandgap: Enabler for Lighting Driving Force for Technology: Low Cost

5 Example of Advantage of WBG Devices 10-x power density ( > 10 W/mm) I N GaAs High Power Amplifier Module O U T 10-x reduction in power-combining Improved efficiency (> 60 %) Improved reliability Compact size Superior Performance at reduced cost I O N U T Equivalent High Power GaN Amplifier Module

6 Application Space Watts Ship Radar Airborne Radar Military Commercial Base THAAD Navy Decoy Decoy Station Shipboard Radar,DD21 LONGBOW Satcom Satcom Base Station MMDS, UNII VSAT Driver WLL Hiperlan LMDS MVDS Amp 3G Digital Radio BAT P31 Missile Seekers CAR S C X Ku K Ka Q V W 2 GHz 10 GHz 30 GHz 60 GHz Frequency Band

7 Ball and Stick Diagram of the GaN Crystal

8 Polarization World

9 How does the electron gas form in AlGaN/GaN structures? -A Q, AlGaN π Q, AlGaN π Al x Ga 1-x N GaN Q, GaN π P( x) = ( Qπ, AlGaN ) + ( Qπ, GaN ) Qπ, GaN Q π includes the contribution of spontaneous and piezo-electric contributions

10 How does the electron gas form in AlGaN/GaN structures? -C VAGaN l! EgGaN, + Ev= Maximum Dipole Moment AlGaN GaN Eg, GaN E v p s Q 2 π ( cm ) Q 2 π ( cm ) n s

11 How does the electron gas form in AlGaN/GaN structures? -D E DD AlGaN GaN E F Q ( cm ) N + 2 DD π Q π n s

12 Application of AlGaN/GaN 2DEG transport studies High density 2DEG mobility limited by alloy scattering. Introduce thin AlN interlayer remove alloy scattering by pushing 2DEG wavefunction out of the alloy region. Very useful result for attaining high conductivity 2DEG channels for HEMTs.

13 RF Plasma-Assisted Molecular Beam Epitaxy of AlN/GaN Heterostructures ONR/MURI IMPACT Center AlN MBE GaN ~ 0.3 µm MOCVD GaN ~ 2-3 µm d: Å MBE growth of AlN/GaN structures is performedon GaN templates thick GaN layers grown by MOCVD on (0001) sapphire (0001) Sapphire Templates of two types are employed: (a) unintentionally doped GaN (dislocation density: ~ 5x cm -2 ) (b) semi-insulating GaN (dislocation density: ~ cm -2 ) Ga-stable growth (III/V flux ratio > 1) T S ~ 740 o C AFM image of type (a) GaN template U.S. Department of Defense

14 AlN/GaN Structures Grown on Semi- Insulating GaN Templates ONR/MURI IMPACT Center N S (10 13 cm -2 ) K 77 K AlN thickness (A) Mobility µ (cm 2 /Vs) K 77 K AlN thickness (A) 2DEG sheet density reaches the value of 3.65x10 13 cm -2 in the AlN/GaN structure with a 49 Å barrier Both room-temperature and 77 K electron mobility decrease drastically as AlN barrier width increases

15 AlN/GaN Structures Grown on Unintentionally Doped GaN Templates ONR/MURI IMPACT Center N S (10 13 cm -2 ) T (K) d ~ 35 A d ~ 45 A µ (cm 2 /Vs) /T (K -1 ) AlN ~ 35 Å µ(300 K) = 1460 cm 2 /Vs N 2DEG ª N S (20 K) = 2.2x10 13 cm -2 AlN ~ 45 Å µ(300 K) = 1230 cm 2 /Vs N 2DEG ª N S (20 K) = 2.7x10 13 cm -2 Pessimistic estimate of the 2DEG sheet resistance at 300 K: R < 200 Ω/ AlN ~ 50 Å µ(300 K) = 330 cm 2 /Vs; N S (300 K) = 5.6x10 13 cm -2 µ(77 K) = 660 cm 2 /Vs; N S (77 K) = 3.6x10 13 cm -2

16 Atomic Force Microscopy of AlN/GaN Heterostructures ONR/MURI IMPACT Center 1 µm 3 nm AlN: 24 Å AlN: 49 Å 0 nm Cracks in AlN layer AlN: 37 Å Tensile strain relaxation process begins at d ~ 49 Å

17 Polarization doping concept and demonstration 3D electron slab by Polarization doping demonstrated. Carrier density verified by self consistent Schrodinger Poisson calculations. How do transport properties of the 3DES compare to the donor doped and 2DEG counterparts?

18 Comparison of transport properties

19 DC Device Level Issues (HEMTs) If it ain t DC it ain t goin to be RF I max S G Lg D AlGaN P SP + P PE GaN V V max P = 1V I 8 I= V n υ max max max S Maximize I Maximize n S, ν Maximize n S Maximize P SP, P PE Maximize Al mole fraction without strain relaxation Mazimize ν Minimize effective gate length Minimize Lg and gate length extension Maximize µ Minimize dislocations Smooth interface

20 AlGaN/AlN/GaN Heterostructure 25 nm Al 0.3 Ga 0.7 N 1 nm AlN UID GaN SiC Substrate + High charge + High mobility Hall Data:! Conventional Al 0.3 Ga 0.7 N/GaN HEMT n s = cm -2 µ = 1200 cm 2 /V/s! Al 0.3 Ga 0.7 N/AlN/GaN HEMT n s = cm -2 µ = 1716 cm 2 /V/s

21 Band Diagram of AlGaN/AlN/GaN HEMT 250 Å Al 0.3 GaN/GaN HEMT 250 Å Al 0.3 GaN/ 10 Å AlN/GaN HEMT 3 3 Thin AlN 2 2 Energy (ev) 1 Energy (ev) 1 Effective E C Thickness (A) Thickness (A)! n s = cm -2! Higher charge: n s = cm -2 due to higher effective E C! Higher mobility due to the removal of alloy disorder scattering U.S. Department of Defense

22 Sheet charge density vs. Al mole fraction 3.00E E Å Al x Ga 1-x N/10Å AlN/GaN Experiment Simulation 2DEG Density (cm -2 ) 2.00E E E Al mole fraction x! Strongly dependent on the Al mole fraction

23 Sheet charge density vs. AlGaN thickness 2.00E+013 Al 0.37 Ga 0.63 N/10Å AlN/GaN Experiment of AlGaN/AlN/GaN Simulation of AlGaN/AlN/GaN Simulation of AlGaN/GaN 2DEG Density (cm -2 ) 1.50E E E+012 Conventional AlGaN/GaN 0.00E Thickness of AlGaN (Å)! Weak function of AlGaN thickness! Faster saturation than conventional AlGaN/GaN HEMT

24 Sheet charge density vs. AlN thickness Simulation 2.40E Å Al 0.37 Ga 0.63 N/ AlN /GaN 2DEG Density (cm -2 ) 2.20E E E Thickness of AlN (Å)! 2DEG increases when AlN is thicker

25 Device Performance of AlGaN/AlN/GaN HEMT I D (ma/mm) V G = 2 V V G = 1 V g m = 200 ms/mm Pout (dbm), Gain (db) 35 Pout 8.47 W/mm Gain 30 PAE PAE (%) V DS (V)! I max = 950 ma/mm! g m = 200 ms/mm P in (dbm)! 8.47 W/mm with a PAE of 8GHz! Bias: class AB at 45 V 160 ma/mm! Gate dimension: µm 2

26 Issues With Mazimizing Al Mole Fraction in Al x Ga 1-x N AlN G Eg Al x Ga 1-x N GaN Lattice Constant InN GaN Pseudomorphic Relaxed with Misfit Morphology Mediated By Dislocaton x Al = 0.2 x Al = 0.4 x Al = 0.6 x HC = nm 250 nm 250 nm relaxed DISLOCATIONS LEAD TO PREMATURE RELAXATION OF AlGaN AND A POTENTIAL RELIABILITY PROBLEM BECAUSE OF THE METALLIZED PITS U.S. Department of Defense

27 Minimizing Gate Length Extension ELECTRONS IN SURFACE STATES AND/OR BUFFER TRAPS DEPLETE THE CHANNEL CAUSING GATE LENGTH EXTENSION I d (5 ma) DC Dispersion AC Load line SEVERE CONSEQUENCE: DISPERSION BETWEEN SMALL SIGNAL AND LARGE SIGNAL BEHAVIOR BECAUSE OF THE LARGE TRAP TIME CONSTANTS V ds (V) WHY DO THESE TRAPS ARISE? U.S. Department of Defense

28 Schematic of Device Structure SiN Passivation SOURCE GATE DRAIN AlGaN 2DEG GaN Substrate: Typically Sapphire or SiC Nucleation Layer GaN, AlGaN or AlN

29 Dispersion in AlGaN/Ga HEMTs DC I d (5 ma) Dispersion AC Load line V ds (V)

30 Source Lg GATE Electrons in Surface States AlGaN Drain GaN Depletion of 2DEG caused by occupied surface states

31 Performance of Passivated AlGaN/GaN HEMT on Sapphire

32 Performance of AlGaN/GaN HEMT on SiC (CLC) P out (db), Gain(dB), PAE (%) f=8ghz, Tuned for Power Pout Gain PAE Id P out = 10.3 W/mm PAE= 42% 41.6% I d (ma) P in (db)

33 Drain Bias Dependence of Rf Power (CLC) 10 PAE; P out f=8ghz P out (W/mm) Increasing V ds PAE (%) P in (db) -30

34 Flip-chip AlGaN/GaN HEMT for Thermal Management

35 I-V Curves from 8mm-wide HEMT V g start: +2V, Step: -2 V I d (A/divsion) V ds (V/divsion)

36 Low Flip-chip Wide Bandwidth Amplifier

37 Pulse Power Performance of mm-flipped Device Gain (db), DE(%), PAE(%) Gain DE PAE Pout P out (dbm) P in (dbm)

38 CREE, Inc. 20-Watt Broadband SiC MESFET Amplifier Gain (db) Balanced amplifier with Cree s 10-Watt commercial FETs, CRF W at P 1dB across a 400 MHz band Advantage of wide bandgap transistors: power-bandwidth product greatly exceeding Si LDMOS 8 6 3GPP Test Model 1 with 16 DPCH 4 Gain P1dBm W-CDMA Frequency (GHz) P1dB (dbm)

39 CREE, Inc. 75-Watt SiC MESFET Amplifier 2 GHz test fixture for 60 W MESFET development Input Power (dbm) 75 W CW, 11 db gain demonstrated from a single SiC MESFET Currently being optimized for a 60-Watt Class A MESFET product, targeted for release by the end of the year Output Power (dbm) Power PAE Freq. = 2.0 GHz PAE (%)

40 CREE, Inc. 10-Watt Broadband GaN HEMT Amplifier P1dB (dbm) P1dB (dbm) SS Gain (db) Small Signal Gain (db) Frequency (GHz) 11 W at P 1dB across the GHz band 17 db gain with only ±0.15 db ripple

41 Sponsored by Tom Jenkins, DUS&T/AFRL U.S. Department of Defense CREE, Inc. Demonstration of 100W CW GaN HEMT 2.6 db compression Freq. = 2 GHz V DS = 52V Peak Drain Eff.. = 54% 108 W achieved at P 3dB Output Power (dbm) P out Gain Input Power (dbm) Gain(dB)

42 CREE, Inc. Summary of Technology Status Commercially-available SiC MESFETs 22 W broadband amplifier demonstrates powerbandwidth advantage of this technology 60 W Class A MESFET targeted for release by end of year GaN HEMTS on SiC Substrates excellent broadband and high power performance demonstrated emphasis of development is now on reproducibility and reliability SiC-based MMIC process developed for both technologies 3-inch SI substrates will enable cost-competitive manufacturing U.S. Department of Defense

43 Power Performance vs. Year Cree 108W, CW Cree Power density (W/mm) 11 Power density Early Players Year Cornell CREE Cree HRL Cornell SiC Sapphire 60 Cree 50 Total power (W) Total power SiC Sapphire Early Players Cornell Year Includes ALL LEADING players in the field CREE CREE = Cree Lighting+ Cree-Durham Cree CREE HRL Cree NEC

44 Part II High Voltage Operation (> 330 V) of AlGaN/GaN HBTs

45 Bipolar transistor key issues Injection γ "1 n " 1 [I=I 0 exp (qv/nkt)] Emitter Base Transport -- α " 1 Collector Subcollector Collection C bc " 0 Output Conductance v " v sat [2 x 10 7 cm/s] (Kolnik et. al.) I C / V CE " 0 V br " E crit W C [E crit ~ 2 MV/cm] (Bhapkar and Shur.) ( W B / V CE " 0)

46 Hurdles with GaN bipolar transistors Lack of low damage etch to reveal base Leaky E/B junction Bad base contact No etch stop High R B Poor p-gan base contact Low p-gan base conductivity Deep acceptor (~160 mev) Hard to control junction placement in MOCVD due to memory effect of p-p dopant Mg Emitter Low minority carrier lifetime Surface leakage due to etch damage Base Collector Subcollector Dislocation causes leakage

47 Demonstration of dislocation enhanced leakage LEO used to investigate leakage of devices without dislocations. (Lee McCarthy et al.) AFM scan of wing vs Window on LEO GaN Leakage Current [A] Dislocated LEO Applied Bias [V] Leakage from Collector to Emitter, Wing vs Window Results: LEO device demonstrated Reduction in Leakage Stable operation past 20V Gain unchanged Devices on dislocated material also functional Regrowth Mask LEO GaN Regrowth Mask Standard template Explanation Thick substrate sufficiently reduces dislocations to prevent C/E short in window region Gain (τ e ) not currently limited by dislocation density U.S. Department of Defense

48 Strategy: Thick Collector Decent dislocation density High quality MOCVD templates achieved Dislocation density ~ 5e8 cm -2 Low background doping N D < 1e16 cm -3 (Assuming uniform doping N D and E critical = 2 MV/cm, requires 10 µm to achieve 1 KV breakdown voltage.) Doping vs. Depth (010704GA, 8 µm collector) 1.E+17 Doping (cm -3 ) 1.E+16 1.E+15 1.E Depth (µm)

49 Emitter Regrowth Process Flow Selectively grow MOCVD emitter on base-collector structures. 1. Pattern regrowth mask 2. Regrow emitter layer by MOCVD 3. Remove mask and contact base and etch to collector 4. Contact collector, emitter Mask p Base n - Collector n + Subcollector Sapphire Substrate n + Emitter p Base n - Collector n + Subcollector Sapphire Substrate Regrown emitter n + Pd/Au Emitter p Base n - Collector Al/Au Al/Au n + Emitter p Base n - Collector n + Subcollector Sapphire Substrate n + Subcollector Sapphire Substrate

50 Device structure Utilization of uid GaN spacer and grading layer - HBTs with high emitter injection coefficiency Etch damage and current mask layout limits V br 4 nm GaN:Si (1e18 cm -3 ) contact 4 nm Al 0.05 GaN->GaN:Si (1e18 cm -3 ) grading 105 nm Al 0.05 GaN:Si (1e18 cm -3 ) emitter 8 nm GaN->Al 0.05 GaN (?3e18 cm -3 ) grading 8 nm uid GaN spacer 100 nm GaN:Mg (2e19 cm -3 ) base 8 µm uid GaN (4e15 cm -3 ) collector 2 µm GaN:Si (1e18 cm -3 ) subcollector Sapphire Effective collector thickness ~ 2-3 µm n + Subcollector n + Emitter 1000 Å p Base 8 µm n- collector Sapphire Substrate

51 HBT with 8 mm GaN collector Current gain (β) > 20 Common emitter operation > 300 V Non-passivated Base thickness 1000 Å Al 0.05 GaN emitter Vbr ~330 V

52 Summary Conclusion In selective emitter regrowth, a sharp Mg profile, ~ 40 nm/decade, enables the precise junction placement Improvement of regrown-emitter/base diodes Demonstration of high Vbr (> 300 V) with high β (DC common emitter operation up to 35)

AlGaN/GaN HEMTs and HBTs

AlGaN/GaN HEMTs and HBTs AlGaN/GaN HEMTs and HBTs Umesh K. Mishra PART I AlGaN/GaN HEMTs Materials Properties Comparison Material µ ε Eg BFOM JFM Tmax Ratio Ratio Si 1300 11.4 1.1 1.0 1.0 300 C GaAs 5000 13.1 1.4 9.6 3.5 300 C

More information

International Workshop on Nitride Semiconductors (IWN 2016)

International Workshop on Nitride Semiconductors (IWN 2016) International Workshop on Nitride Semiconductors (IWN 2016) Sheng Jiang The University of Sheffield Introduction The 2016 International Workshop on Nitride Semiconductors (IWN 2016) conference is held

More information

GaN MMIC PAs for MMW Applicaitons

GaN MMIC PAs for MMW Applicaitons GaN MMIC PAs for MMW Applicaitons Miroslav Micovic HRL Laboratories LLC, 311 Malibu Canyon Road, Malibu, CA 9265, U. S. A. mmicovic@hrl.com Motivation for High Frequency Power sources 6 GHz 11 GHz Frequency

More information

Gallium Nitride & Related Wide Bandgap Materials and Devices

Gallium Nitride & Related Wide Bandgap Materials and Devices Gallium Nitride & Related Wide Bandgap Materials and Devices Dr. Edgar J. Martinez Program Manager DARPATech 2000 GaAs IC Markets 1999 Market $11 Billion 2005 Market $20 Billion Consumers 2% Computers

More information

Gallium nitride (GaN)

Gallium nitride (GaN) 80 Technology focus: GaN power electronics Vertical, CMOS and dual-gate approaches to gallium nitride power electronics US research company HRL Laboratories has published a number of papers concerning

More information

GaN power electronics

GaN power electronics GaN power electronics The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Lu, Bin, Daniel Piedra, and

More information

Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials

Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials Kjeld Pedersen Department of Physics and Nanotechnology, AAU SEMPEL Semiconductor Materials for Power Electronics

More information

Ph.D. Defense. Broadband Power Amplifier

Ph.D. Defense. Broadband Power Amplifier Ph.D. Defense GaN HEMTs based Flip-chip Integrated Broadband Power Amplifier Jane Xu University of California at Santa Barbara Committee: Prof. Stephen Long Prof. Umesh Mishra Dr. Yi-feng Wu Prof. Bob

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1 Introduction of Device Technology Digital wireless communication system has become more and more popular in recent years due to its capability for both voice and data communication.

More information

AlGaN Polarization Graded Field Effect Transistors for High Linearity Microwave Applications

AlGaN Polarization Graded Field Effect Transistors for High Linearity Microwave Applications AlGaN Polarization Graded Field Effect Transistors for High Linearity Microwave Applications Shahadat H. Sohel, Hao Xue, Towhidur Razzak, Sanyam Bajaj, Yuewei Zhang, Wu Lu, Siddharth Rajan Department of

More information

N-polar GaN/ AlGaN/ GaN high electron mobility transistors

N-polar GaN/ AlGaN/ GaN high electron mobility transistors JOURNAL OF APPLIED PHYSICS 102, 044501 2007 N-polar GaN/ AlGaN/ GaN high electron mobility transistors Siddharth Rajan a Electrical and Computer Engineering Department, University of California, Santa

More information

Development of Gallium Nitride High Electron Mobility Transistors for Cellular Base Stations

Development of Gallium Nitride High Electron Mobility Transistors for Cellular Base Stations ELECTRONICS Development of Gallium Nitride High Electron Mobility Transistors for Cellular Base Stations Kazutaka INOUE*, Seigo SANO, Yasunori TATENO, Fumikazu YAMAKI, Kaname EBIHARA, Norihiko UI, Akihiro

More information

Chapter 6. Silicon-Germanium Technologies

Chapter 6. Silicon-Germanium Technologies Chapter 6 licon-germanium Technologies 6.0 Introduction The design of bipolar transistors requires trade-offs between a number of parameters. To achieve a fast base transit time, hence achieving a high

More information

100nm GaN on Si: A Pioneering Technology to Enable High RF Power in Millimeter Wave Bands NEW ENGLAND IMAPS SYMPOSIUM MAY 5, 2015

100nm GaN on Si: A Pioneering Technology to Enable High RF Power in Millimeter Wave Bands NEW ENGLAND IMAPS SYMPOSIUM MAY 5, 2015 Innovating with III-V s 100nm GaN on Si: A Pioneering Technology to Enable High RF Power in Millimeter Wave Bands NEW ENGLAND IMAPS SYMPOSIUM MAY 5, 2015 By Dr Fabien ROBERT Sales & Application Team Manager,

More information

Wide Band-Gap Power Device

Wide Band-Gap Power Device Wide Band-Gap Power Device 1 Contents Revisit silicon power MOSFETs Silicon limitation Silicon solution Wide Band-Gap material Characteristic of SiC Power Device Characteristic of GaN Power Device 2 1

More information

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

Customized probe card for on-wafer testing of AlGaN/GaN power transistors

Customized probe card for on-wafer testing of AlGaN/GaN power transistors Customized probe card for on-wafer testing of AlGaN/GaN power transistors R. Venegas 1, K. Armendariz 2, N. Ronchi 1 1 imec, 2 Celadon Systems Inc. Outline Introduction GaN for power switching applications

More information

Composants HEMT InAlGaN/GaN pour applications en bandes Ka et Q.

Composants HEMT InAlGaN/GaN pour applications en bandes Ka et Q. Composants HEMT InAlGaN/GaN pour applications en bandes Ka et Q. Stéphane PIOTROWICZ, Olivier PATARD, Jean-Claude JACQUET, Piero GAMARRA, Christian DUA & Sylvain DELAGE RF & Microwave 22 mars 2018 Copyright

More information

Gallium nitride futures and other stories

Gallium nitride futures and other stories Dr Mike Cooke Gallium nitride-based devices look set to have increasingly wide application, at least if the contributions at December s International Electron Devices Meeting () in Washington DC are anything

More information

600V GaN Power Transistor

600V GaN Power Transistor 600V GaN Power Transistor Sample Available Features Normally-Off Current-Collapse-Free Zero Recovery GaN Power Transistor (TO220 Package) ID(Continuous) : 15A RDS(on) : 65m Qg : 11nC Applications Power

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

Customized probe card for on wafer testing of AlGaN/GaN power transistors

Customized probe card for on wafer testing of AlGaN/GaN power transistors Customized probe card for on wafer testing of AlGaN/GaN power transistors R. Venegas 1, K. Armendariz 2, N. Ronchi 1 1 imec, 2 Celadon Systems Inc. Presented by Bryan Root 2 Outline Introduction GaN for

More information

GaN HBT: Toward an RF Device

GaN HBT: Toward an RF Device IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 48, NO. 3, MARCH 2001 543 GaN HBT: Toward an RF Device Lee S. McCarthy, Ioulia P. Smorchkova, Huili Xing, P. Kozodoy, Paul Fini, J. Limb, David L. Pulfrey, Fellow,

More information

Innovative Technologies for RF & Power Applications

Innovative Technologies for RF & Power Applications Innovative Technologies for RF & Power Applications > Munich > Nov 14, 2017 1 Key Technologies Key Technologies Veeco Market Focus Advanced Packaging, MEMS & RF Lighting, Display & Power Electronics Lithography

More information

GaN/SiC Bare Die Power HEMT DC-15 GHz

GaN/SiC Bare Die Power HEMT DC-15 GHz GaN/SiC Bare Die Power HEMT DC-15 GHz DESCRIPTION AMCOM s is a discrete GaN/SiC HEMT that has a total gate width of mm (Eight 1.mm FETs in parallel). It is a bare die which can be operated up to 15 GHz.

More information

Advance Datasheet Revision: October Applications

Advance Datasheet Revision: October Applications APN149 Applications Military SatCom Phased-Array Radar Applications Point-to-Point Radio Point-to-Multipoint Communications Terminal Amplifiers Product Description X = 4.4mm Y = 2.28mm Product Features

More information

Simulation of GaAs MESFET and HEMT Devices for RF Applications

Simulation of GaAs MESFET and HEMT Devices for RF Applications olume, Issue, January February 03 ISSN 78-6856 Simulation of GaAs MESFET and HEMT Devices for RF Applications Dr.E.N.GANESH Prof, ECE DEPT. Rajalakshmi Institute of Technology ABSTRACT: Field effect transistor

More information

PROCESS DEVELOPMENT FOR SMALL-AREA GaN/AlGaN HBT s

PROCESS DEVELOPMENT FOR SMALL-AREA GaN/AlGaN HBT s PROCESS DEVELOPMENT FOR SMALL-AREA GaN/AlGaN HBT s K.P.Lee (1), A.P.Zhang (1), G.Dang (1), F.Ren (1), J.Han (2), W.S.Hobson (3), J.Lopata (3), C.R.Abernathy (1), S.J.Pearton (1), J.W.Lee (4) (1) University

More information

100+ GHz Transistor Electronics: Present and Projected Capabilities

100+ GHz Transistor Electronics: Present and Projected Capabilities 21 IEEE International Topical Meeting on Microwave Photonics, October 5-6, 21, Montreal 1+ GHz Transistor Electronics: Present and Projected Capabilities Mark Rodwell University of California, Santa Barbara

More information

High Power Wideband AlGaN/GaN HEMT Feedback. Amplifier Module with Drain and Feedback Loop. Inductances

High Power Wideband AlGaN/GaN HEMT Feedback. Amplifier Module with Drain and Feedback Loop. Inductances High Power Wideband AlGaN/GaN HEMT Feedback Amplifier Module with Drain and Feedback Loop Inductances Y. Chung, S. Cai, W. Lee, Y. Lin, C. P. Wen, Fellow, IEEE, K. L. Wang, Fellow, IEEE, and T. Itoh, Fellow,

More information

Development of Microwave and Terahertz Detectors Utilizing AlN/GaN High Electron Mobility Transistors

Development of Microwave and Terahertz Detectors Utilizing AlN/GaN High Electron Mobility Transistors Development of Microwave and Terahertz Detectors Utilizing AlN/GaN High Electron Mobility Transistors L. Liu 1, 2,*, B. Sensale-Rodriguez 1, Z. Zhang 1, T. Zimmermann 1, Y. Cao 1, D. Jena 1, P. Fay 1,

More information

Sub 300 nm Wavelength III-Nitride Tunnel-Injected Ultraviolet LEDs

Sub 300 nm Wavelength III-Nitride Tunnel-Injected Ultraviolet LEDs Sub 300 nm Wavelength III-Nitride Tunnel-Injected Ultraviolet LEDs Yuewei Zhang, Sriram Krishnamoorthy, Fatih Akyol, Sadia Monika Siddharth Rajan ECE, The Ohio State University Andrew Allerman, Michael

More information

CHAPTER 2 HEMT DEVICES AND BACKGROUND

CHAPTER 2 HEMT DEVICES AND BACKGROUND CHAPTER 2 HEMT DEVICES AND BACKGROUND 2.1 Overview While the most widespread application of GaN-based devices is in the fabrication of blue and UV LEDs, the fabrication of microwave power devices has attracted

More information

10W Ultra-Broadband Power Amplifier

10W Ultra-Broadband Power Amplifier (TH1B-01 ) 10W Ultra-Broadband Power Amplifier Amin K. Ezzeddine and Ho. C. Huang AMCOM Communications, Inc 401 Professional Drive, Gaithersburg, MD 20879, USA Tel: 301-353-8400 Email: amin@amcomusa.com

More information

Chapter 13 Insulated Gate Nitride-Based Field Effect Transistors

Chapter 13 Insulated Gate Nitride-Based Field Effect Transistors Chapter 13 Insulated Gate Nitride-Based Field Effect Transistors M. Shur, G. Simin, S. Rumyantsev, R. Jain and R. Gaska Abstract Polarization doping related to the piezoelectric and spontaneous polarization

More information

III-Nitride microwave switches Grigory Simin

III-Nitride microwave switches Grigory Simin Microwave Microelectronics Laboratory Department of Electrical Engineering, USC Research Focus: - Wide Bandgap Microwave Power Devices and Integrated Circuits - Physics, Simulation, Design and Characterization

More information

= 25 C) Parameter 1.0 GHz 2.0 GHz 3.0 GHz 4.0 GHz 5.0 GHz 6.0 GHz Units. Gain db. 32 dbm W

= 25 C) Parameter 1.0 GHz 2.0 GHz 3.0 GHz 4.0 GHz 5.0 GHz 6.0 GHz Units. Gain db. 32 dbm W CMPA006005D 5 W, 0 MHz - 6.0 GHz, GaN MMIC, Power Amplifier Cree s CMPA006005D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC).

More information

Investigations on Compound Semiconductor High Electron Mobility Transistor (HEMT)

Investigations on Compound Semiconductor High Electron Mobility Transistor (HEMT) Investigations on Compound Semiconductor High Electron Mobility Transistor (HEMT) Nov. 26, 2004 Outline I. Introduction: Why needs high-frequency devices? Why uses compound semiconductors? How to enable

More information

GaN: Applications: Optoelectronics

GaN: Applications: Optoelectronics GaN: Applications: Optoelectronics GaN: Applications: Optoelectronics - The GaN LED industry is >10 billion $ today. - Other optoelectronic applications of GaN include blue lasers and UV emitters and detectors.

More information

GaN/SiC Bare Die Power HEMT DC-15 GHz

GaN/SiC Bare Die Power HEMT DC-15 GHz GaN/SiC Bare Die Power HEMT DC-15 GHz DESCRIPTION AMCOM s is a discrete GaN/SiC HEMT that has a total gate width of 5mm (Four 1.mm FETs in parallel). It is a bare die which can be operated up to 15 GHz.

More information

Microwave & RF 22 nd of March 2018 D. FLORIOT

Microwave & RF 22 nd of March 2018 D. FLORIOT Microwave & RF 22 nd of March 2018 D. FLORIOT Outine Introduction GaN technology roadmap GH15-10 : Up to Ka band GH10 : Towards high frequency (Q / V bands) GaN : Technology & Integration 2 UMS at a glance

More information

RADIATION RESPONSE AND RELIABILITY OF HIGH SPEED AlGaN/GaN HEMTS

RADIATION RESPONSE AND RELIABILITY OF HIGH SPEED AlGaN/GaN HEMTS RADIATION RESPONSE AND RELIABILITY OF HIGH SPEED AlGaN/GaN HEMTS By Jin Chen Dissertation Submitted to the Faculty of the Graduate school of Vanderbilt University in partial fulfillment of the requirements

More information

From Bulk Gallium Nitride Material to Vertical GaN Devices

From Bulk Gallium Nitride Material to Vertical GaN Devices From Bulk Gallium Nitride Material to Vertical GaN Devices Thomas Mikolajick 1,2, Stefan Schmult 2, Rico Hentschel 1, Patrick Hofmann 1, and Andre Wachowiak 1 1 NaMLab ggmbh 2 Chair of Nanoelectronic Materials,

More information

InAlN/GaN HEMTs Technologies for Microwave, Fast switching and Mixed Signal Applications

InAlN/GaN HEMTs Technologies for Microwave, Fast switching and Mixed Signal Applications InAlN/GaN HEMTs Technologies for Microwave, Fast switching and Mixed Signal Applications S.DELAGE / S.PIOTROWICZ Summary III-V Lab presentation Motivations Technology for L & S band applications Technology

More information

Advance Datasheet Revision: May 2013

Advance Datasheet Revision: May 2013 Applications Military SatCom Phased-Array Radar Applications Point-to-Point Radio Point-to-Multipoint Communications Terminal Amplifiers X = 4.4mm Y = 2.28mm Product Features RF frequency: 18 to 23 GHz

More information

Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios

Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios The University Of Cincinnati College of Engineering Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios Seth W. Waldstein The University of Cincinnati-Main Campus Miguel A. Barbosa

More information

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs Sanghoon Lee 1*, V. Chobpattana 2,C.-Y. Huang 1, B. J. Thibeault 1, W. Mitchell 1, S. Stemmer

More information

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

More information

& ) > 35W, 33-37% PAE

& ) > 35W, 33-37% PAE Outline Status of Linear and Nonlinear Modeling for GaN MMICs Presented at IMS11 June, 11 Walter R. Curtice, Ph. D. Consulting www.curtice.org State of the Art Modeling considerations, types of models,

More information

GaAs MMIC Power Amplifier

GaAs MMIC Power Amplifier GaAs MMIC Power Amplifier AM1327MM-BM-R AM1327MM-FM-R Aug 2010 Rev 2 DESCRIPTION AMCOM s is part of the GaAs HiFET MMIC power amplifier series. It is a 2-stage GaAs HIFET MESFET MMIC power amplifier biased

More information

Monolithic integration of GaN power transistors integrated with gate drivers

Monolithic integration of GaN power transistors integrated with gate drivers October 3-5, 2016 International Workshop on Power Supply On Chip (PwrSoC 2016) Monolithic integration of GaN power transistors integrated with gate drivers October 4, 2016 Tatsuo Morita Automotive & Industrial

More information

= 25 C) Parameter 0.5 GHz 1.0 GHz 2.5 GHz 4.0 GHz 6.0 GHz Units. Gain db. 23 dbm W

= 25 C) Parameter 0.5 GHz 1.0 GHz 2.5 GHz 4.0 GHz 6.0 GHz Units. Gain db. 23 dbm W CMPA6D Watt, MHz - 6 MHz GaN HEMT MMIC Power Amplifier Cree s CMPA6D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior

More information

Advance Datasheet Revision: April 2015

Advance Datasheet Revision: April 2015 APN 1-1 GHz Advance Datasheet Revision: April Applications Point-to-Point Digital Radios Point-to-Multipoint Digital Radios VSAT Test Instrumentation X = 3 um Y = 3 um Product Features RF frequency: 1

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP015074 TITLE: Channel Recessed 4H-SiC MESFETs with Ft o f14.5ghz and F max of 40GHz DISTRIBUTION: Approved for public release,

More information

Load Pull Validation of Large Signal Cree GaN Field Effect Transistor (FET) Model

Load Pull Validation of Large Signal Cree GaN Field Effect Transistor (FET) Model APPLICATION NOTE Load Pull Validation of Large Signal Cree GaN Field Effect Transistor (FET) Model Introduction Large signal models for RF power transistors, if matched well with measured performance,

More information

Final Report. Contract Number Title of Research Principal Investigator

Final Report. Contract Number Title of Research Principal Investigator Final Report Contract Number Title of Research Principal Investigator Organization N00014-05-1-0135 AIGaN/GaN HEMTs on semi-insulating GaN substrates by MOCVD and MBE Dr Umesh Mishra University of California,

More information

High-Efficiency L-Band 200-W GaN HEMT for Space Applications

High-Efficiency L-Band 200-W GaN HEMT for Space Applications INFOCOMMUNICATIONS High-Efficiency L-Band 200-W GaN HEMT for Space Applications Ken OSAWA*, Hiroyuki YOSHIKOSHI, Atsushi NITTA, Tsuneyuki TANAKA, Eizo MITANI, and Tomio SATOH ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

More information

We are right on schedule for this deliverable. 4.1 Introduction:

We are right on schedule for this deliverable. 4.1 Introduction: DELIVERABLE # 4: GaN Devices Faculty: Dipankar Saha, Subhabrata Dhar, Subhananda Chakrabati, J Vasi Researchers & Students: Sreenivas Subramanian, Tarakeshwar C. Patil, A. Mukherjee, A. Ghosh, Prantik

More information

Investigation of electrically-active defects in AlGaN/GaN high electron mobility

Investigation of electrically-active defects in AlGaN/GaN high electron mobility Investigation of electrically-active defects in AlGaN/GaN high electron mobility transistors by spatially-resolved spectroscopic scanned probe techniques. Dissertation Presented in Partial Fulfillment

More information

Design and Performance of Microwave and. November 1, title slide

Design and Performance of Microwave and. November 1, title slide Design and Performance of Microwave and Millimeter-wave Status of High InP Efficiency HEMT IRAD Power Amplifiers W. Hu, W. Kong, James J. D. Komiak Pritchard November 1, 2001 james.j.komiak@baesystems.com

More information

= 25 C) Parameter 0.5 GHz 1.0 GHz 2.5 GHz 4.0 GHz 6.0 GHz Units. Gain db. 23 dbm W

= 25 C) Parameter 0.5 GHz 1.0 GHz 2.5 GHz 4.0 GHz 6.0 GHz Units. Gain db. 23 dbm W CMPA0060002D 2 Watt, MHz - 6000 MHz GaN HEMT MMIC Power Amplifier Cree s CMPA0060002D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC).

More information

INVESTIGATION OF DEGRADATION EFFECTS DUE TO GATE STRESS. IN GaN-ON-Si HIGH ELECTRON MOBILITY TRANSISTORS THROUGH ANALYSIS OF LOW FREQUENCY NOISE

INVESTIGATION OF DEGRADATION EFFECTS DUE TO GATE STRESS. IN GaN-ON-Si HIGH ELECTRON MOBILITY TRANSISTORS THROUGH ANALYSIS OF LOW FREQUENCY NOISE INVESTIGATION OF DEGRADATION EFFECTS DUE TO GATE STRESS IN GaN-ON-Si HIGH ELECTRON MOBILITY TRANSISTORS THROUGH ANALYSIS OF LOW FREQUENCY NOISE A Thesis presented to the Faculty of California Polytechnic

More information

= 25 C) Parameter 6.0 GHz 7.5 GHz 9.0 GHz 10.5 GHz 12.0 GHz Units Small Signal Gain db P OUT

= 25 C) Parameter 6.0 GHz 7.5 GHz 9.0 GHz 10.5 GHz 12.0 GHz Units Small Signal Gain db P OUT CMPA601C025F 25 W, 6.0-12.0 GHz, GaN MMIC, Power Amplifier The CMPA601C025F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC) on a

More information

ATF Enhancement Mode [1] Pseudomorphic HEMT in SOT 89 Package

ATF Enhancement Mode [1] Pseudomorphic HEMT in SOT 89 Package ATF-3189 Enhancement Mode [1] Pseudomorphic HEMT in SOT 89 Package Data Sheet Description Avago Technologies s ATF-3189 is a single-voltage high linearity, low noise E-pHEMT FET packaged in a low cost

More information

NDA-310-D 4 GENERAL PURPOSE. Gain Stage or Driver Amplifiers for MWRadio/Optical Designs

NDA-310-D 4 GENERAL PURPOSE. Gain Stage or Driver Amplifiers for MWRadio/Optical Designs 7\SLFDO$SSOLFDWLRQV Narrow and Broadband Commercial and Military Radio Designs Linear and Saturated Amplifiers 3URGXFW'HVFULSWLRQ The NDA-310-D GaInP/GaAs HBT MMIC distributed amplifier is a low-cost,

More information

GaN is Finally Here for Commercial RF Applications!

GaN is Finally Here for Commercial RF Applications! GaN is Finally Here for Commercial RF Applications! Eric Higham Director of GaAs & Compound Semiconductor Technologies Strategy Analytics Gallium Nitride (GaN) has been a technology with so much promise

More information

Absolute Maximum Ratings Parameter Rating Unit Drain Voltage (V D ) 150 V Gate Voltage (V G ) -8 to +2 V Gate Current (I G ) 8 ma Operational Voltage

Absolute Maximum Ratings Parameter Rating Unit Drain Voltage (V D ) 150 V Gate Voltage (V G ) -8 to +2 V Gate Current (I G ) 8 ma Operational Voltage 10W GaN ON SIC POWER AMPLIFIER DIE Package: Die Features Broadband Operation DC to 4GHz Advanced GaN HEMT Technology Packaged Small Signal Gain=19dB at 2GHz 48V Typical Performance Output Power: 16W at

More information

Novel III-Nitride HEMTs

Novel III-Nitride HEMTs IEEE EDS Distinguished Lecture Boston Chapter, July 6 2005 Novel III-Nitride HEMTs Professor Kei May Lau Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

RADIATION RESPONSE AND RELIABILITY OF AlGaN/GaN HEMTS

RADIATION RESPONSE AND RELIABILITY OF AlGaN/GaN HEMTS RADIATION RESPONSE AND RELIABILITY OF AlGaN/GaN HEMTS By Jin Chen Thesis Submitted to the Faculty of the Graduate school of Vanderbilt University in partial fulfillment of the requirements For the degree

More information

it to 18 GHz, 2-W Amplifier

it to 18 GHz, 2-W Amplifier it218 to 18 GHz, 2-W Amplifier Description Features Absolute Maximum Ratings Electrical Characteristics (at 2 C) -ohm system V DD = 8 V Quiescent current (I DQ = 1.1 A The it218 is a three-stage, high-power

More information

Record Extrinsic Transconductance (2.45 ms/μm at V DS = 0.5 V) InAs/In 0.53 Ga 0.47 As Channel MOSFETs Using MOCVD Source-Drain Regrowth

Record Extrinsic Transconductance (2.45 ms/μm at V DS = 0.5 V) InAs/In 0.53 Ga 0.47 As Channel MOSFETs Using MOCVD Source-Drain Regrowth Record Extrinsic Transconductance (2.45 ms/μm at = 0.5 V) InAs/In 0.53 Ga 7 As Channel MOSFETs Using MOCVD Source-Drain Regrowth Sanghoon Lee 1*, C.-Y. Huang 1, A. D. Carter 1, D. C. Elias 1, J. J. M.

More information

MECGaNC30. 4 to 6 GHz GaN HEMT Power Amplifier. Main Features. Product Description. Applications

MECGaNC30. 4 to 6 GHz GaN HEMT Power Amplifier. Main Features. Product Description. Applications Main Features 0.25µm GaN HEMT Technology 4.1 5.9 GHz full performances Frequency Range W Output Power @ Pin 27.5 dbm 37% PAE @ Pin 27.5 dbm % PAE @ Pout Watt 27 db Small Signal Gain Product Description

More information

Gallium Nitride (GaN) Technology & Product Development

Gallium Nitride (GaN) Technology & Product Development Gallium Nitride (GaN) Technology & Product Development IEEE IMS / MTT-S 2012 Montreal, Canada GaN A New Enabling Technology Five times faster, higher frequency, faster on-chip logic Five times more power,

More information

Prepared by: Dr. Rishi Prakash, Dept of Electronics and Communication Engineering Page 1 of 5

Prepared by: Dr. Rishi Prakash, Dept of Electronics and Communication Engineering Page 1 of 5 Microwave tunnel diode Some anomalous phenomena were observed in diode which do not follows the classical diode equation. This anomalous phenomena was explained by quantum tunnelling theory. The tunnelling

More information

RF and Microwave Semiconductor Technologies

RF and Microwave Semiconductor Technologies RF and Microwave Semiconductor Technologies Muhammad Fahim Ul Haque, Department of Electrical Engineering, Linköping University muhha@isy.liu.se Note: 1. This presentation is for the course of State of

More information

value of W max for the device. The at band voltage is -0.9 V. Problem 5: An Al-gate n-channel MOS capacitor has a doping of N a = cm ;3. The oxi

value of W max for the device. The at band voltage is -0.9 V. Problem 5: An Al-gate n-channel MOS capacitor has a doping of N a = cm ;3. The oxi Prof. Jasprit Singh Fall 2001 EECS 320 Homework 10 This homework is due on December 6 Problem 1: An n-type In 0:53 Ga 0:47 As epitaxial layer doped at 10 16 cm ;3 is to be used as a channel in a FET. A

More information

E-MODE III-N HIGH-VOLTAGE TRANSISTOR DEVELOPMENT

E-MODE III-N HIGH-VOLTAGE TRANSISTOR DEVELOPMENT 1 E-MODE III-N HIGH-VOLTAGE TRANSISTOR DEVELOPMENT 1 st -Year Final Project Report (Feb 2010 March 2011) Presented to Intersil Corp., Milpitas CA Program Manager: Dr. François Hébert Georgia Tech PIs:

More information

GaAs MMIC Power Amplifier

GaAs MMIC Power Amplifier GaAs MMIC Power Amplifier AM14MM-BM-R AM14MM-FM-R Aug 10 Rev 8 DESCRIPTION AMCOM s is part of the GaAs HiFET MMIC power amplifier series. It is a 2-stage GaAs MESFET MMIC power amplifier biased at 14V.

More information

Data Sheet 2GX. ATF High Linearity Mode [1] Enhancement Pseudomorphic HEMT in SOT 89 Package. Features. Description.

Data Sheet 2GX. ATF High Linearity Mode [1] Enhancement Pseudomorphic HEMT in SOT 89 Package. Features. Description. ATF-2189 High Linearity Mode [1] Enhancement Pseudomorphic HEMT in SOT 89 Package Data Sheet Description Avago Technologies s ATF-2189 is a single-voltage high linearity, low noise E-pHEMT FET packaged

More information

Fundamentals of Power Semiconductor Devices

Fundamentals of Power Semiconductor Devices В. Jayant Baliga Fundamentals of Power Semiconductor Devices 4y Spri ringer Contents Preface vii Chapter 1 Introduction 1 1.1 Ideal and Typical Power Switching Waveforms 3 1.2 Ideal and Typical Power Device

More information

CMPA1D1E025F. 25 W, GHz, 40 V, Ku-Band GaN MMIC, Power Amplifier. Typical Performance Over GHz (T C. Features.

CMPA1D1E025F. 25 W, GHz, 40 V, Ku-Band GaN MMIC, Power Amplifier. Typical Performance Over GHz (T C. Features. CMPA1D1E025F 25 W, 13.75-14.5 GHz, 40 V, Ku-Band GaN MMIC, Power Amplifier Cree s CMPA1D1E025F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated

More information

techniques, and gold metalization in the fabrication of this device.

techniques, and gold metalization in the fabrication of this device. Up to 6 GHz Medium Power Silicon Bipolar Transistor Chip Technical Data AT-42 Features High Output Power: 21. dbm Typical P 1 db at 2. GHz 2.5 dbm Typical P 1 db at 4. GHz High Gain at 1 db Compression:

More information

Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip. Technical Data AT-41400

Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip. Technical Data AT-41400 Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip Technical Data AT-1 Features Low Noise Figure: 1.6 db Typical at 3. db Typical at. GHz High Associated Gain: 1.5 db Typical at 1.5 db Typical at. GHz

More information

ATF High Intercept Low Noise Amplifier for the MHz PCS Band using the Enhancement Mode PHEMT

ATF High Intercept Low Noise Amplifier for the MHz PCS Band using the Enhancement Mode PHEMT ATF-54143 High Intercept Low Noise Amplifier for the 185 191 MHz PCS Band using the Enhancement Mode PHEMT Application Note 1222 Introduction Avago Technologies ATF-54143 is a low noise enhancement mode

More information

Advance Datasheet Revision: January 2015

Advance Datasheet Revision: January 2015 Advance Datasheet Revision: January 215 Applications Military SatCom Phased-Array Radar Applications Terminal Amplifiers X = 3.7mm Y = 3.2mm Product Features RF frequency: 43 to 46 GHz Linear Gain: 2 db

More information

EJERCICIOS DE COMPONENTES ELECTRÓNICOS. 1 er cuatrimestre

EJERCICIOS DE COMPONENTES ELECTRÓNICOS. 1 er cuatrimestre EJECICIOS DE COMPONENTES ELECTÓNICOS. 1 er cuatrimestre 2 o Ingeniería Electrónica Industrial Juan Antonio Jiménez Tejada Índice 1. Basic concepts of Electronics 1 2. Passive components 1 3. Semiconductors.

More information

CGHV60040D. 40 W, 6.0 GHz, GaN HEMT Die. Cellular Infrastructure Class AB, Linear amplifiers suitable for OFDM, W-CDMA, LTE, EDGE, CDMA waveforms

CGHV60040D. 40 W, 6.0 GHz, GaN HEMT Die. Cellular Infrastructure Class AB, Linear amplifiers suitable for OFDM, W-CDMA, LTE, EDGE, CDMA waveforms Rev 1.1 March 2019 CGHV60040D 40 W, 6.0 GHz, GaN HEMT Die Cree s CGHV60040D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT). GaN has superior properties compared to silicon or gallium

More information

Ray Pengelly, Cree RF and Microwave Products, Research Triangle Park, NC October 21, 2010

Ray Pengelly, Cree RF and Microwave Products, Research Triangle Park, NC October 21, 2010 Ray Pengelly, Cree RF and Microwave Products, Research Triangle Park, NC 27709 October 21, 2010 Agenda GaN HEMT Transistor Structures High Power Densities Blessing or Curse? Thermal Management CW, Pulsed

More information

= 25 C), CW. Parameter 1.7 GHz 1.8 GHz 1.9 GHz Units Small Signal Gain db P in. = 38 dbm

= 25 C), CW. Parameter 1.7 GHz 1.8 GHz 1.9 GHz Units Small Signal Gain db P in. = 38 dbm CGHV4PP W, 5 V, GaN HEMT Cree s CGHV4PP is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGHV4PP, operating from a 5 volt rail, offers a general purpose, broadband solution

More information

Ultra High-Speed InGaAs Nano-HEMTs

Ultra High-Speed InGaAs Nano-HEMTs Ultra High-Speed InGaAs Nano-HEMTs 2003. 10. 14 Kwang-Seok Seo School of Electrical Eng. and Computer Sci. Seoul National Univ., Korea Contents Introduction to InGaAsNano-HEMTs Nano Patterning Process

More information

MAGX L00 MAGX L0S

MAGX L00 MAGX L0S Features GaN on SiC Depletion-Mode Transistor Technology Internally Matched Common-Source Configuration Broadband Class AB Operation RoHS* Compliant and 260 C Reflow Compatible +50 V Typical Operation

More information

= 25 C), CW. Parameter 1.7 GHz 1.8 GHz 1.9 GHz Units Small Signal Gain db P in. = 38 dbm

= 25 C), CW. Parameter 1.7 GHz 1.8 GHz 1.9 GHz Units Small Signal Gain db P in. = 38 dbm CGHV42PP 2 W, 5 V, GaN HEMT Cree s CGHV42PP is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGHV42PP, operating from a 5 volt rail, offers a general purpose, broadband

More information

Alternative Channel Materials for MOSFET Scaling Below 10nm

Alternative Channel Materials for MOSFET Scaling Below 10nm Alternative Channel Materials for MOSFET Scaling Below 10nm Doug Barlage Electrical Requirements of Channel Mark Johnson Challenges With Material Synthesis Introduction Outline Challenges with scaling

More information

Three Terminal Devices

Three Terminal Devices Three Terminal Devices - field effect transistor (FET) - bipolar junction transistor (BJT) - foundation on which modern electronics is built - active devices - devices described completely by considering

More information

PRELIMINARY = 25 C) Parameter GHz 14.0 GHz 14.5 GHz Units Small Signal Gain db P SAT. = 26 dbm W P 3dB

PRELIMINARY = 25 C) Parameter GHz 14.0 GHz 14.5 GHz Units Small Signal Gain db P SAT. = 26 dbm W P 3dB CMPADE030D PRELIMINARY 30 W, 3.75-4.5 GHz, 40 V, GaN MMIC, Power Amplifier Cree s CMPADE030D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit

More information

Preliminary Datasheet Revision: January 2016

Preliminary Datasheet Revision: January 2016 Preliminary Datasheet Revision: January 216 Applications Point-to-Point Digital Radios Point-to-Multipoint Digital Radios SATCOM Terminals X = 3.65mm Y = 2.3mm Product Features RF frequency: 27 to 31 GHz

More information

MECXQMM-60W. 8.3 to 10.3 GHz GaN HEMT Power Amplifier

MECXQMM-60W. 8.3 to 10.3 GHz GaN HEMT Power Amplifier Pout (dbm), PAE(%) Functional Block Diagram Main Features 0.25µm GaN HEMT Technology 8.3 10.3 GHz full performances Frequency Range 60W Output Power @ Pin 40.5 dbm PAE > 33% @ Pin 40.5 dbm Linear Gain

More information

30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected Power-combining

30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected Power-combining 2013 IEEE Compound Semiconductor IC Symposium, October 13-15, Monterey, C 30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected Power-combining 1 H.C. Park, 1 S.

More information

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester WK 5 Reg. No. : Question Paper Code : 27184 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Time : Three hours Second Semester Electronics and Communication Engineering EC 6201 ELECTRONIC DEVICES

More information

= 25 C) Parameter 20 MHz 0.5 GHz 1.0 GHz 2.0 GHz 3.0 GHz 4.0 GHz 5.0 GHz 6.0 GHz Units Gain

= 25 C) Parameter 20 MHz 0.5 GHz 1.0 GHz 2.0 GHz 3.0 GHz 4.0 GHz 5.0 GHz 6.0 GHz Units Gain CMPA625F 25 W, 2 MHz-6 MHz, GaN MMIC Power Amplifier Cree s CMPA625F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior

More information