Area Delay Efficient Novel Adder By QCA Technology

Size: px
Start display at page:

Download "Area Delay Efficient Novel Adder By QCA Technology"

Transcription

1 Area Delay Efficient Novel Adder By QCA Technology 1 Mohammad Mahad, 2 Manisha Waje 1 Research Student, Department of ETC, G.H.Raisoni College of Engineering, Pune, India 2 Assistant Professor, Department of ETC, G.H.Raisoni College of Engineering, Pune, India Abstract-Today we have complex circuits to implement over a small area. As the transistor cannot go much smaller than their present size, we have come up with QCA Technology. This is emerging technology is much faster, low area and power consumption. Computation is based on the position of electrons ( 0 and 1 ). The majority gates together realize any logic design as required. In this paper, we make design to overcome complexity, area, delay and power utilization than any other design. This design uses 64 bit adder and provides better trade off than other type of adder using Xilinx &FPGA. II.BACKGROUND A quantum dot cellular automaton (QCA) is a promising alternative of the CMOS VLSI technology at a nanoscale designing. A QCA is a cell has four quantum dots with two free electrons for tunneling action. The quantum dot cellular automaton is a novel computing paradigm in nanotechnology that can implement digital circuits with faster speed, smaller size and low power consumption. Quantum cell have one of two states logic 0 or logic 1.logic state 0 is the polarized P=-1 and logic state 1 is the polarized P=+1shown in figure 1. Index terms- quantum-dot cellular; adder; carry lookahead, parallel prefix adder; I.INTRODUCTION Quantum-dot cellular automata (QCA) is an attractive emerging technology better than CMOS suitable for the development of ultra-dense low-power high performance digital circuits. This is the reason QCA has received a great deal of attention in the last few years. In QCA emphasis on the arithmetic circuits by all the state of art of design to make the same calculus. The architecture reference considered in QCA is from traditional CMOS designs for new design environment. In literature we have different adders like Ripple-carry (RCA), carry look-ahead (CLA), and conditional sum adders but these adders have to wait until carry is passed from one after the other i.e. Serially. Now here comes parallel type of adders known as parallel prefix adders. Based on the architecture, these are Brent Kung (BKA), Kogge Stone, Ladner Fischer, and Han Carlson adders. These were analyzed and implemented in QCA. Recently, more efficient designs were proposed in for the CLA and the BKA, and in for the CLA and the CFA. The rest of the paper is organized as follows. In Section II, we introduce some background material on QCA technology. In Section III We discussed some of the existing adders available in literature Ripple-carry (RCA), carry look-ahead (CLA), Brent Kung (BKA), Kogge Stone, Ladner Fischer, and Han Carlson adders. In Section IV we propose a new QCA addition algorithm and the corresponding one-bit QCA adder structure that reduces the number of majority gates and inverters required by existing designs. Then we demonstrate that, using this structure, we can obtain efficient n-bit CLA QCA adders. In Section V we use simulation results obtained from Xilinx to compare our new adder design with previously published designs. Finally, we conclude the paper in Section VI. Fig.1 Quantum Cell The basic building block of QCA Technology is majority voter gate. One majority gate has three inputs and a output. Majority logic is a way of implementing digital operations based on the principles of majority decision. Output will be logical 1 from majority when majority at input is logic 1 and vice-versa. Design Implementation of any circuit is realized by using majority gate and inverter shown in figure 2 and 3. Fig.2 Majority Gate The equation for Majority gate is given as: M (A, B, C) =AB+BC+AC Fig.3 Inverter 970

2 We can realize AND and OR gate by fixing any one input of majority gate. If we fix one input to logic 1 the gate will act as a AND gate, similarly for logic 0 it will act as OR gate which is shown below. M (a, b, 0) =ab clock phase 0,that is switching state, quantum cell have low potential barriers but are raised during this phase i.e. it takes logic 0 or logic 1 from the input cell or neighbor cell. In the next phase (phase 1) next cell goes in switch state (). At the same time, previous phase cells goes to hold state which is high level period and hold its polarity. In release state, the QCA cell releases its polarity and it s not affected by the input signals or neighbor cells. Next clock phase is relax state the QCA cell go to the relax state. In the relax state the QCA cell has no polarity and can t be affected by neighbor cells. M (a, b, 1) =a+b Clocking in QCA: For controllable data flow, we have a different clock zones for quantum cells. There are four clock signals in QCA each is phase shifted to 90degree (1/4th the clock signal time) which is shown in figure 4. Fig.5 Clock Phase in QCA III.EXISTING SYSTEM: The novel n-bit adder carry chain block and the novel n-bit adder sum block which were implemented for designing the 64-bit adder are shown in figure 6(a) and 6(b). Fig.4 Clock Zone scheme in QCA For each clock zone we have four clock phases. These clock phases correspond to switch, hold, and release and relax shown in figure 5. When cells is at Fig.6 (a) Carry Block 971

3 addition, one level of the CLA logic is required, to compute the carry signal for each factor of four in the operands word-length. It clearly shows to process n bit addends, levels of CLA logic are required, each contributing to the computational path with four cascaded MGs. For Final sum computation two further cascaded MGs and one inverter needed. Fig.6 (b) Sum Block The 64-bit QCA full adder as designed previously runs in the RCA fashion. However, it also exhibits some drawbacks. The design fails to compute the input combination (a 0 b 0 c in ) = (010) for 1-bit operation as the computed sum gives S 0 =0 instead of 1. The drawback of this adder design is also modified for correctness in the new proposed method. Literature Review: The adders in existence which have the sum structure and architecture as that of ripple carry adder with only a difference of optimized layout.these optimized circuit gives rise to very high delays knows as carry flow adders. In Carry Flow Adder number of gate counts and more delay. The n-bit operands can be processed in RCA and the CFA by cascading n full-adders. Even though FAs use different fashion of architecture, these adders have only one MG as carry-in to carry-out path and carry-in to sum bit path contains two MGs plus one inverter. The worst case computational paths of the n- bit RCA and n-bit CFA made of (n+2) MGs and one inverter. A CLA architecture made up of 4-bit slices was also presented. The first stages propagate and generate signals of n-bit operand slices are computed for each bit of the operands and then they are grouped four by four. This design of n-bit CLA has a worst case computational path containing of 7+4 (log4n) cascaded MGs and one inverter, Which can be easily verified by observing design. For computing grouped propagate and grouped generate, cascaded structure of four MGs is introduced in worst case computational path. In The basic CLA are less efficient than parallel prefix adders. One of parallel prefix adder BKA can achieve lower computational delay over the previously described adders; the BKA can achieve lower computational delay. For n-bit operands the worst case computational path consists of 4 log2n-3 cascaded MGs and one inverter. Rather than propagate and generate signals, the prefix tree has 2 log2n-2 stages. From logic equations, it can be easily seen that the first stage of the tree introduces in the computational path just one MG. In the last stage of adder the tree contributes with only one MG provided that the intermediate stages introduce in the critical path two cascaded MG each. Final computation of sum stage requires two cascaded MGs and one inverter. Our prime objective is to tradeoff area and delay, the hybrid adder (HYBA) described combines a parallel prefix adder with the RCA. The worst computational path for n-bit architecture consisting of 2 cascaded MGs and one inverter. When method of proposed architecture was exploited, the worst case path of the CLA is reduced to 4 [log4n] + 2 [log4n] 1 MGs and one inverter. The abovementioned approach can be applied also to design the BKA. In this case the overall area is reduced with respect to, but maintaining the same computational path. Straightforward realization of parallel prefix QCA adders would implement the group generate, propagate, and carry signals, based on QCA AND and OR gates, with total of two majority gates per parallel prefix node. P i = a i + b i (1) G i = a i.b i (2) The PG block has a generate output, G i that indicates that a carry is generated at bit position and a propagate output P i that indicates that a carry entering bit position will propagate to the next bit position. They are used to produce all the carries in parallel at the successive blocks. The block PG section produces and transfers block generate/propagate signals to the next higher level. The CLA and block CLA sections are virtually identical except for the different hierarchy of their positions and additional bypassing 972

4 signals. Their outputs and PG outputs are used to calculate the final sum at each bit position. Due to the pipeline design, all sum signals are available at the same clock period. Carry Generation Stage: Here carry is generated separately for the entire incoming bit. These carries are the small pieces of all the process carried out in parallel fashion. These intermediate signals carry generate and carry propagate are used in the final stage of sum and carry out. also known as pre-processing stage. The equation for propagate and generate can be given as: C i+2 =g i+1 + p i+1.g i +p i+1.p i.c i C i+2 =M (M (a i+1, bi +1, gi) M (a i+1, bi +1, pi) ci) The n bit adder is implemented by cascading n/2 2- bit modules as shown in figure 7. CP= P i and P iprev...(3) CG = G i or ( Pi and G iprev )..(4) Post Processing Stage: This is the final step or stage of the KSA which is common for all types of adders, i.e. calculation of summation of the bits given by the logical Equations (5) and (6): C i = (P i and C in ) or G i..... (5) S i = P i xor C i-1... (6) IV.PROPOSED METHOD: For realization of novel 2-bit addition slice formulations demonstrated in for CLA and parallel-prefix adders. The carry propagates through two subsequent bit-positions which have a delay of only one majority gate (MG). The top level module leads to avoid unnecessary clock phases due to long interconnections, hence, very compact layouts. Proposed RCA fashion exploited design have delay lower than all state of art competitors and achieves the lowest area-delay product (ADP). The novel architecture can be implemented by using ripple carry adder in QCA. Consider two n-bit operands A=a n 1... a 0 and B=b n 1... b 0 and suppose that for the i th bit position (with i = n ).As we are going to make calculation faster, we are going to use parallel prefix method(kogge-stone). In this we make the auxiliary propagate and generate signals Fig.7 Novel 2 bit module For carry we proceed with this assumption c in =0, the adder does not require p0 signal and work with a least significant bit so novel 2 bit design goes simpler. For sum here we have to note down that the time critical addition is performed when a carry is generated at the least significant bit position(i.e., g 0 = 1) and then only it is propagated through the subsequent bit positions to the most significant one. In this case, the first 2-bit module computes c 2,with worst case computational path of cascaded 2 MG.The subsequent 2-bit modules require only one MG each, this shows us a total number of cascaded MGs equal to (n 2)are needed. The two MGs and one inverter are required to compute the sum bits which has the worst case path of the novel adder consists of (n/2) + 3 MGs and one inverter. 973

5 V.EXPERIMENTAL RESULT Fig.8 64-bit QCA adder Figure 8 shows the internal RTL Schematic of novel 64-bit QCA Adder. As stated above, this can be obtained by using Xilinx. 974

6 Fig.9 basic modules used in adder The figure 9 shows the technology schematic of novel 64-bit QCA adder obtained by using Xilinx. The operation of this can be explained with the help of above RTL schematic. As this is structure based design of Adder, some of its basic elementary blocks are given above in RTL view. Fig.10 Simulation Result The simulation output result is shown in figure 10 for 64 bit adder. The simulation result shows that the 64 bit QCA adder calculates the amount of delays and it reduces the number of cell count as well 975

7 VI.CONCLUSION In this paper we propose new design approach oriented to the implementation of full adders in QCA majority gates. We try to reduce the optimization parameters like complexity, area delay and power consumption. we achieved better performance based on the above mentioned criteria, it is shown in the below table-1 And the output of both adders is simulated in Xilinx and model simulator and implement by using FPGA. Advantage: An emerging computational nanotechnology called QCA has been a great help in learning more about the majority gates, as it happens to be its primary logic primitive. Characterizing the three variable Boolean functions to a simplifying majority illustration using the Karnaugh maps (Kamp s) is one of the easiest applications of majority gates. The fundamental logic primitive gate is three inputs majority gate. Majority logic helps in the implementation of digital operations based on the principles of majority decisions. The logic elements a majority gate has an odd number of binary inputs and binary output. The output we get from majority gate is logical 1 when the majority of input is logic 1 and logical 0 when the majority of input is logic 0. We can implement any function or logical design as per requirement using a majority gates along with inverter. Reference [1] Stefania Perri cirsonello, and Giuseppe cocorullo, Area-Delay Efficient Binary Adders in QCA,IEEE Trans. On very large scale integration systems, vol.22, no.5, 5May 2014 [2] H. Cho and E.E. Swartzlander, Jr., Adder Designs and Analyses for Quantum-Dot Cellular Automata, IEEE Trans. Nanotechnology, vol. 6, no. 3, pp , May 2007 [3] H. Cho and E. E. Swartzlander, Adder and multiplier design in quantum-dot cellular automata, IEEE Trans. Comput., vol. 58, no. 6, pp , Jun [4] S.Perri and P.Corsonello, New methodology for the design of efficient binary addition in QCA, IEEE Trans. Nanotechnol., vol. 11, no. 6, pp , Nov [5] Kodam Latha,M.NandaMaharshi, Design Of Adders Using QCA,International Journal of Advances in Engineering & Technology, Sept IJAET ISSN: [6] Bhuvaneswaran M,Shankar N.K., Efficient Design of MAC Hybrid Adder in Quantum-Dot Cellular Automata,International Journal of Advanced Research in Electrical, Electronics and Instrumentation EngineeringVol. 2, Issue 4, April 2013 [7] K.Walus, T. Dysart, G. Jullien, and R. Budiman, QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata, IEEE Trans. Nanotechnol., vol. 3, no. 1, pp , Jan [8] R. Zhang, K.Walus, W. Wang, and G. Jullien, Performance comparison of quantum-dot cellular automata adders, In IEEE International Symposium on Circuits and Systems, 2005, pages , 2005 [9 ] L. Lu, W. Liu, M. O Neill, and E. E. Swartzlander, Jr., QCA systolic array design, IEEE Trans. Comput., vol. 62, no. 3, pp , Mar.2013 [10] J. Huang and F. Lombardi, Design and Test of Digital Circuits by Quantum-Dot Cellular Automata. Norwood, MA, USA: Artech House, [11] K Kong, Y. Shang, and R. Lu, An optimized majority logic synthesis methology for quantum-dot cellular automata, IEEE Trans. Nanotechnol., vol. 9, no. 2, pp , Mar

A Novel 128-Bit QCA Adder

A Novel 128-Bit QCA Adder International Journal of Emerging Engineering Research and Technology Volume 2, Issue 5, August 2014, PP 81-88 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) A Novel 128-Bit QCA Adder V Ravichandran

More information

DESIGN AND IMPLEMENTATION OF 128-BIT QUANTUM-DOT CELLULAR AUTOMATA ADDER

DESIGN AND IMPLEMENTATION OF 128-BIT QUANTUM-DOT CELLULAR AUTOMATA ADDER DESIGN AND IMPLEMENTATION OF 128-BIT QUANTUM-DOT CELLULAR AUTOMATA ADDER 1 K.RAVITHEJA, 2 G.VASANTHA, 3 I.SUNEETHA 1 student, Dept of Electronics & Communication Engineering, Annamacharya Institute of

More information

Binary Adder- Subtracter in QCA

Binary Adder- Subtracter in QCA Binary Adder- Subtracter in QCA Kalahasti. Tanmaya Krishna Electronics and communication Engineering Sri Vishnu Engineering College for Women Bhimavaram, India Abstract: In VLSI fabrication, the chip size

More information

Area-Delay Efficient Binary Adders in QCA

Area-Delay Efficient Binary Adders in QCA RESEARCH ARTICLE OPEN ACCESS Area-Delay Efficient Binary Adders in QCA Vikram. Gowda Research Scholar, Dept of ECE, KMM Institute of Technology and Science, Tirupathi, AP, India. ABSTRACT In this paper,

More information

Design and Analysis of Adders using Nanotechnology Based Quantum dot Cellular Automata

Design and Analysis of Adders using Nanotechnology Based Quantum dot Cellular Automata Journal of Computer Science 7 (7): 1072-1079, 2011 ISSN 1549-3636 2011 Science Publications Design and Analysis of Adders using Nanotechnology Based Quantum dot Cellular Automata 1 S. Karthigai Lakshmi

More information

An Optimized Wallace Tree Multiplier using Parallel Prefix Han-Carlson Adder for DSP Processors

An Optimized Wallace Tree Multiplier using Parallel Prefix Han-Carlson Adder for DSP Processors An Optimized Wallace Tree Multiplier using Parallel Prefix Han-Carlson Adder for DSP Processors T.N.Priyatharshne Prof. L. Raja, M.E, (Ph.D) A. Vinodhini ME VLSI DESIGN Professor, ECE DEPT ME VLSI DESIGN

More information

QCA Based Design of Serial Adder

QCA Based Design of Serial Adder QCA Based Design of Serial Adder Tina Suratkar Department of Electronics & Telecommunication, Yeshwantrao Chavan College of Engineering, Nagpur, India E-mail : tina_suratkar@rediffmail.com Abstract - This

More information

A Novel Approach For Designing A Low Power Parallel Prefix Adders

A Novel Approach For Designing A Low Power Parallel Prefix Adders A Novel Approach For Designing A Low Power Parallel Prefix Adders R.Chaitanyakumar M Tech student, Pragati Engineering College, Surampalem (A.P, IND). P.Sunitha Assistant Professor, Dept.of ECE Pragati

More information

Efficient Implementation of Parallel Prefix Adders Using Verilog HDL

Efficient Implementation of Parallel Prefix Adders Using Verilog HDL Efficient Implementation of Parallel Prefix Adders Using Verilog HDL D Harish Kumar, MTech Student, Department of ECE, Jawaharlal Nehru Institute Of Technology, Hyderabad. ABSTRACT In Very Large Scale

More information

Analysis of Parallel Prefix Adders

Analysis of Parallel Prefix Adders Analysis of Parallel Prefix Adders T.Sravya M.Tech (VLSI) C.M.R Institute of Technology, Hyderabad. D. Chandra Mohan Assistant Professor C.M.R Institute of Technology, Hyderabad. Dr.M.Gurunadha Babu, M.Tech,

More information

Design and Comparative Analysis of Conventional Adders and Parallel Prefix Adders K. Madhavi 1, Kuppam N Chandrasekar 2

Design and Comparative Analysis of Conventional Adders and Parallel Prefix Adders K. Madhavi 1, Kuppam N Chandrasekar 2 Design and Comparative Analysis of Conventional Adders and Parallel Prefix Adders K. Madhavi 1, Kuppam N Chandrasekar 2 1 M.Tech scholar, GVIC, Madhanapally, A.P, India 2 Assistant Professor, Dept. of

More information

Novel Design of n-bit Controllable Inverter by Quantum-dot Cellular Automata

Novel Design of n-bit Controllable Inverter by Quantum-dot Cellular Automata Int. J. Nanosci. Nanotechnol., Vol. 10, No. 2, June 2014, pp. 117-126 Novel Design of n-bit Controllable Inverter by Quantum-dot Cellular Automata M. Kianpour 1, R. Sabbaghi-Nadooshan 2 1- Electrical Engineering

More information

CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA

CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA 90 CHAPTER 5 DESIGN OF COMBINATIONAL LOGIC CIRCUITS IN QCA 5.1 INTRODUCTION A combinational circuit consists of logic gates whose outputs at any time are determined directly from the present combination

More information

Design of High Speed and Low Power Adder by using Prefix Tree Structure

Design of High Speed and Low Power Adder by using Prefix Tree Structure Design of High Speed and Low Power Adder by using Prefix Tree Structure V.N.SREERAMULU Abstract In the technological world development in the field of nanometer technology leads to maximize the speed and

More information

PROMINENT SPEED ARITHMETIC UNIT ARCHITECTURE FOR PROFICIENT ALU

PROMINENT SPEED ARITHMETIC UNIT ARCHITECTURE FOR PROFICIENT ALU PROMINENT SPEED ARITHMETIC UNIT ARCHITECTURE FOR PROFICIENT ALU R. Rashvenee, D. Roshini Keerthana, T. Ravi and P. Umarani Department of Electronics and Communication Engineering, Sathyabama University,

More information

Adder (electronics) - Wikipedia, the free encyclopedia

Adder (electronics) - Wikipedia, the free encyclopedia Page 1 of 7 Adder (electronics) From Wikipedia, the free encyclopedia (Redirected from Full adder) In electronics, an adder or summer is a digital circuit that performs addition of numbers. In many computers

More information

Serial Parallel Multiplier Design in Quantum-dot Cellular Automata

Serial Parallel Multiplier Design in Quantum-dot Cellular Automata Serial Parallel ultiplier Design in Quantum-dot Cellular Automata Heumpil Cho Qualcomm, Inc. 5775 orehouse Dr. San Diego, California 92121 Email: hpcho@qualcomm.com Earl E. Swartzlander, Jr. Department

More information

Implementation of 32-Bit Carry Select Adder using Brent-Kung Adder

Implementation of 32-Bit Carry Select Adder using Brent-Kung Adder Journal From the SelectedWorks of Kirat Pal Singh Winter November 17, 2016 Implementation of 32-Bit Carry Select Adder using Brent-Kung Adder P. Nithin, SRKR Engineering College, Bhimavaram N. Udaya Kumar,

More information

Design and Implementation of High Speed Area Efficient Carry Select Adder Using Spanning Tree Adder Technique

Design and Implementation of High Speed Area Efficient Carry Select Adder Using Spanning Tree Adder Technique 2018 IJSRST Volume 4 Issue 11 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology DOI : https://doi.org/10.32628/ijsrst184114 Design and Implementation of High Speed Area

More information

A Novel Architecture for Quantum-Dot Cellular Automata Multiplexer

A Novel Architecture for Quantum-Dot Cellular Automata Multiplexer www.ijcsi.org 55 A Novel Architecture for Quantum-Dot Cellular Automata Multiplexer Arman Roohi 1, Hossein Khademolhosseini 2, Samira Sayedsalehi 3, Keivan Navi 4 1,2,3 Department of Computer Engineering,

More information

Design and Implementation of Wallace Tree Multiplier Using Kogge Stone Adder and Brent Kung Adder

Design and Implementation of Wallace Tree Multiplier Using Kogge Stone Adder and Brent Kung Adder International Journal of Emerging Engineering Research and Technology Volume 3, Issue 8, August 2015, PP 110-116 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Design and Implementation of Wallace Tree

More information

ISSN:

ISSN: 421 DESIGN OF BRAUN S MULTIPLIER USING HAN CARLSON AND LADNER FISCHER ADDERS CHETHAN BR 1, NATARAJ KR 2 Dept of ECE, SJBIT, Bangalore, INDIA 1 chethan.br44@gmail.com, 2 nataraj.sjbit@gmail.com ABSTRACT

More information

An Efficient Design of Low Power Speculative Han-Carlson Adder Using Concurrent Subtraction

An Efficient Design of Low Power Speculative Han-Carlson Adder Using Concurrent Subtraction An Efficient Design of Low Power Speculative Han-Carlson Adder Using Concurrent Subtraction S.Sangeetha II ME - VLSI Design Akshaya College of Engineering and Technology Coimbatore, India S.Kamatchi Assistant

More information

Design of Efficient Han-Carlson-Adder

Design of Efficient Han-Carlson-Adder Design of Efficient Han-Carlson-Adder S. Sri Katyayani Dept of ECE Narayana Engineering College, Nellore Dr.M.Chandramohan Reddy Dept of ECE Narayana Engineering College, Nellore Murali.K HoD, Dept of

More information

Implementation of 4x4 Vedic Multiplier using Carry Save Adder in Quantum-Dot Cellular Automata

Implementation of 4x4 Vedic Multiplier using Carry Save Adder in Quantum-Dot Cellular Automata International Conference on Communication and Signal Processing, April 6-8, 2016, India Implementation of 4x4 Vedic Multiplier using Carry Save Adder in Quantum-Dot Cellular Automata Ashvin Chudasama,

More information

Parallel Prefix Han-Carlson Adder

Parallel Prefix Han-Carlson Adder Parallel Prefix Han-Carlson Adder Priyanka Polneti,P.G.STUDENT,Kakinada Institute of Engineering and Technology for women, Korangi. TanujaSabbeAsst.Prof, Kakinada Institute of Engineering and Technology

More information

Design and Implementation of Hybrid Parallel Prefix Adder

Design and Implementation of Hybrid Parallel Prefix Adder International Journal of Emerging Engineering Research and Technology Volume 3, Issue 8, August 2015, PP 117-124 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Design and Implementation of Hybrid Parallel

More information

Index terms: Gate Diffusion Input (GDI), Complementary Metal Oxide Semiconductor (CMOS), Digital Signal Processing (DSP).

Index terms: Gate Diffusion Input (GDI), Complementary Metal Oxide Semiconductor (CMOS), Digital Signal Processing (DSP). GDI Based Design of Low Power Adders and Multipliers B.Shanmukhi Abstract: The multiplication and addition are the important operations in RISC Processor and DSP units. Specifically, speed and power efficient

More information

Design and Estimation of delay, power and area for Parallel prefix adders

Design and Estimation of delay, power and area for Parallel prefix adders Design and Estimation of delay, power and area for Parallel prefix adders Abstract: Attunuri Anusha M.Tech Student, Vikas Group Of Institutions, Nunna,Vijayawada. In Very Large Scale Integration (VLSI)

More information

A Novel Design of High-Speed Carry Skip Adder Operating Under a Wide Range of Supply Voltages

A Novel Design of High-Speed Carry Skip Adder Operating Under a Wide Range of Supply Voltages A Novel Design of High-Speed Carry Skip Adder Operating Under a Wide Range of Supply Voltages Jalluri srinivisu,(m.tech),email Id: jsvasu494@gmail.com Ch.Prabhakar,M.tech,Assoc.Prof,Email Id: skytechsolutions2015@gmail.com

More information

Modelling Of Adders Using CMOS GDI For Vedic Multipliers

Modelling Of Adders Using CMOS GDI For Vedic Multipliers Modelling Of Adders Using CMOS GDI For Vedic Multipliers 1 C.Anuradha, 2 B.Govardhana, 3 Madanna, 1 PG Scholar, Dept Of VLSI System Design, Geetanjali College Of Engineering And Technology, 2 Assistant

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK DESIGN OF A CARRY TREE ADDER VISHAL R. NAIK 1, SONIA KUWELKAR 2 1. Microelectronics

More information

Area-Delay Efficient Binary Adders in QCA

Area-Delay Efficient Binary Adders in QCA 1174 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 5, MAY 2014 Fig. 5 compares two valid decomposition schemes provided by the basic decomposition method and our decomposition

More information

Study and Simulation of Fault Tolerant Quantum Cellular Automata Structures

Study and Simulation of Fault Tolerant Quantum Cellular Automata Structures Study and Simulation of Fault Tolerant Quantum Cellular Automata Structures Dr. E.N.Ganesh, 2 R.Kaushik Ragavan, M.Krishna Kumar and V.Krishnan Abstract Quantum cellular automata (QCA) is a new technology

More information

International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online

International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online RESEARCH ARTICLE ISSN: 2321-7758 ANALYSIS & SIMULATION OF DIFFERENT 32 BIT ADDERS SHAHZAD KHAN, Prof. M. ZAHID ALAM, Dr. RITA JAIN Department of Electronics and Communication Engineering, LNCT, Bhopal,

More information

AREA AND DELAY EFFICIENT DESIGN FOR PARALLEL PREFIX FINITE FIELD MULTIPLIER

AREA AND DELAY EFFICIENT DESIGN FOR PARALLEL PREFIX FINITE FIELD MULTIPLIER AREA AND DELAY EFFICIENT DESIGN FOR PARALLEL PREFIX FINITE FIELD MULTIPLIER 1 CH.JAYA PRAKASH, 2 P.HAREESH, 3 SK. FARISHMA 1&2 Assistant Professor, Dept. of ECE, 3 M.Tech-Student, Sir CR Reddy College

More information

A Taxonomy of Parallel Prefix Networks

A Taxonomy of Parallel Prefix Networks A Taxonomy of Parallel Prefix Networks David Harris Harvey Mudd College / Sun Microsystems Laboratories 31 E. Twelfth St. Claremont, CA 91711 David_Harris@hmc.edu Abstract - Parallel prefix networks are

More information

Performance Analysis of Advanced Adders Under Changing Technologies

Performance Analysis of Advanced Adders Under Changing Technologies Performance Analysis of Advanced s Under Changing Technologies H.V Ravish Aradhya 1, Apoorva Raghunandan 2 1,2 Department of Electronics and Communication Engineering R V College of Engineering, Bangalore,

More information

Structural VHDL Implementation of Wallace Multiplier

Structural VHDL Implementation of Wallace Multiplier International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1829 Structural VHDL Implementation of Wallace Multiplier Jasbir Kaur, Kavita Abstract Scheming multipliers that

More information

Design of a Power Optimal Reversible FIR Filter ASIC Speech Signal Processing

Design of a Power Optimal Reversible FIR Filter ASIC Speech Signal Processing Design of a Power Optimal Reversible FIR Filter ASIC Speech Signal Processing Yelle Harika M.Tech, Joginpally B.R.Engineering College. P.N.V.M.Sastry M.S(ECE)(A.U), M.Tech(ECE), (Ph.D)ECE(JNTUH), PG DIP

More information

DESIGN OF HYBRID ADDER USING QCA WITH IMPLEMENTATION OF WALLACE TREE MULTIPLIER

DESIGN OF HYBRID ADDER USING QCA WITH IMPLEMENTATION OF WALLACE TREE MULTIPLIER DESIGN OF HYBRID ADDER USING QCA WITH IMPLEMENTATION OF WALLACE TREE MULTIPLIER Vijayalakshmi.P 1 and Kirthika.N 2 1 PG Scholar & 2 Assistant Professor, Deptt. of VLSI Design, Sri Ramakrishna Engg. College,

More information

Five-Input Majority Gate Based QCA Decoder

Five-Input Majority Gate Based QCA Decoder , pp.95-99 http://dx.doi.org/10.14257/astl.2016.122.18 Five-Input Majority Gate Based QCA Decoder Jun-Cheol Jeon Department of Computer Engineering at Kumoh National Institute of Technology, Gumi, Korea

More information

Robust Adders Based on Quantum-Dot Cellular Automata

Robust Adders Based on Quantum-Dot Cellular Automata Robust Adders Based on Quantum-Dot Cellular Automata Ismo Hänninen and Jarmo Takala Institute of Digital and Computer Systems Tampere University of Technology PL 553, 33101 Tampere, Finland [ismo.hanninen,

More information

Implementation of Code Converters in QCAD Pallavi A 1 N. Moorthy Muthukrishnan 2

Implementation of Code Converters in QCAD Pallavi A 1 N. Moorthy Muthukrishnan 2 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 6, 214 ISSN (online): 2321-613 Implementation of Code Converters in QCAD Pallavi A 1 N. Moorthy Muthukrishnan 2 1 Student

More information

Implementation and Performance Evaluation of Prefix Adders uing FPGAs

Implementation and Performance Evaluation of Prefix Adders uing FPGAs IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) ISSN: 2319 4200, ISBN No. : 2319 4197 Volume 1, Issue 1 (Sep-Oct. 2012), PP 51-57 Implementation and Performance Evaluation of Prefix Adders uing

More information

Design of an optimized multiplier based on approximation logic

Design of an optimized multiplier based on approximation logic ISSN:2348-2079 Volume-6 Issue-1 International Journal of Intellectual Advancements and Research in Engineering Computations Design of an optimized multiplier based on approximation logic Dhivya Bharathi

More information

A Novel High-Speed, Higher-Order 128 bit Adders for Digital Signal Processing Applications Using Advanced EDA Tools

A Novel High-Speed, Higher-Order 128 bit Adders for Digital Signal Processing Applications Using Advanced EDA Tools A Novel High-Speed, Higher-Order 128 bit Adders for Digital Signal Processing Applications Using Advanced EDA Tools K.Sravya [1] M.Tech, VLSID Shri Vishnu Engineering College for Women, Bhimavaram, West

More information

Design and Implementation of Complex Multiplier Using Compressors

Design and Implementation of Complex Multiplier Using Compressors Design and Implementation of Complex Multiplier Using Compressors Abstract: In this paper, a low-power high speed Complex Multiplier using compressor circuit is proposed for fast digital arithmetic integrated

More information

A NOVEL IMPLEMENTATION OF HIGH SPEED MULTIPLIER USING BRENT KUNG CARRY SELECT ADDER K. Golda Hepzibha 1 and Subha 2

A NOVEL IMPLEMENTATION OF HIGH SPEED MULTIPLIER USING BRENT KUNG CARRY SELECT ADDER K. Golda Hepzibha 1 and Subha 2 A NOVEL IMPLEMENTATION OF HIGH SPEED MULTIPLIER USING BRENT KUNG CARRY SELECT ADDER K. Golda Hepzibha 1 and Subha 2 ECE Department, Sri Manakula Vinayagar Engineering College, Puducherry, India E-mails:

More information

Analysis and Design of Modified Parity Generator and Parity Checker using Quantum Dot Cellular Automata

Analysis and Design of Modified Parity Generator and Parity Checker using Quantum Dot Cellular Automata Analysis and Design of odified Parity Generator and Parity Checker using Quantum Dot Cellular Automata P.Ilanchezhian Associate Professor, Department of IT, Sona College of Technology, Salem Dr.R..S.Parvathi

More information

Design and simulation of a QCA 2 to 1 multiplexer

Design and simulation of a QCA 2 to 1 multiplexer Design and simulation of a QCA 2 to 1 multiplexer V. MARDIRIS, Ch. MIZAS, L. FRAGIDIS and V. CHATZIS Information Management Department Technological Educational Institute of Kavala GR-65404 Kavala GREECE

More information

High Speed, Low power and Area Efficient Processor Design Using Square Root Carry Select Adder

High Speed, Low power and Area Efficient Processor Design Using Square Root Carry Select Adder IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 2, Ver. VII (Mar - Apr. 2014), PP 14-18 High Speed, Low power and Area Efficient

More information

Design Of 64-Bit Parallel Prefix VLSI Adder For High Speed Arithmetic Circuits

Design Of 64-Bit Parallel Prefix VLSI Adder For High Speed Arithmetic Circuits International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 1 Issue 8 ǁ Dec 2013 ǁ PP.28-32 Design Of 64-Bit Parallel Prefix VLSI Adder

More information

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 6, JUNE Adder and Multiplier Design in Quantum-Dot Cellular Automata

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 6, JUNE Adder and Multiplier Design in Quantum-Dot Cellular Automata IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 6, JUNE 2009 721 Adder and Multiplier Design in Quantum-Dot Cellular Automata Heumpil Cho, Member, IEEE, and Earl E. Swartzlander, Jr., Fellow, IEEE Abstract

More information

Combinational Circuit Design using Advanced Quantum Dot Cellular Automata

Combinational Circuit Design using Advanced Quantum Dot Cellular Automata Combinational Circuit Design using Advanced Quantum Dot Cellular Automata Aditi Dhingra, Aprana Goel, Gourav Verma, Rashmi Chawla Department of Electronics and Communication Engineering YMCAUST, Faridabad

More information

Design and Implementation of High Speed Carry Select Adder Korrapatti Mohammed Ghouse 1 K.Bala. 2

Design and Implementation of High Speed Carry Select Adder Korrapatti Mohammed Ghouse 1 K.Bala. 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 07, 2015 ISSN (online): 2321-0613 Design and Implementation of High Speed Carry Select Adder Korrapatti Mohammed Ghouse

More information

A Highly Efficient Carry Select Adder

A Highly Efficient Carry Select Adder IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 4 October 2015 ISSN (online): 2349-784X A Highly Efficient Carry Select Adder Shiya Andrews V PG Student Department of Electronics

More information

Comparison among Different Adders

Comparison among Different Adders IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 6, Ver. I (Nov -Dec. 2015), PP 01-06 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Comparison among Different Adders

More information

DESIGN OF HIGH SPEED 32 BIT UNSIGNED MULTIPLIER USING CLAA AND CSLA

DESIGN OF HIGH SPEED 32 BIT UNSIGNED MULTIPLIER USING CLAA AND CSLA DESIGN OF HIGH SPEED 32 BIT UNSIGNED MULTIPLIER USING CLAA AND CSLA G. Lakshmanarao 1, P. Dalinaidu 2 1 PG Scholar Dept. Of ECE, SVCET, Srikakulam, AP, (India) 2 Asst.Professor Dept. Of ECE, SVCET, Srikakulam,

More information

Design and Analysis of Decoder Circuit Using Quantum Dot Cellular Automata (QCA)

Design and Analysis of Decoder Circuit Using Quantum Dot Cellular Automata (QCA) Design and Analysis of Decoder Circuit Using Quantum Dot Cellular Automata (QCA) M. Prabakaran 1, N.Indhumathi 2, R.Vennila 3 and T.Kowsalya 4 PG Scholars, Department of E.C.E, Muthayammal Engineering

More information

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing EE878 Special Topics in VLSI Computer Arithmetic for Digital Signal Processing Part 5b Fast Addition - II Spring 2017 Koren Part.5b.1 Carry-Look-Ahead Addition Revisited Generalizing equations for fast

More information

Implementation Of Radix-10 Matrix Code Using High Speed Adder For Error Correction

Implementation Of Radix-10 Matrix Code Using High Speed Adder For Error Correction Implementation Of Radix-10 Matrix Code Using High Speed For Error Correction Grace Abraham 1, Nimmy M Philip 2, Deepa N R 3 1 M.Tech Student (VLSI & ES), Dept. Of ECE, FISAT, MG University, Kerala, India

More information

VLSI IMPLEMENTATION OF AREA, DELAYANDPOWER EFFICIENT MULTISTAGE SQRT-CSLA ARCHITECTURE DESIGN

VLSI IMPLEMENTATION OF AREA, DELAYANDPOWER EFFICIENT MULTISTAGE SQRT-CSLA ARCHITECTURE DESIGN VLSI IMPLEMENTATION OF AREA, DELAYANDPOWER EFFICIENT MULTISTAGE SQRT-CSLA ARCHITECTURE DESIGN #1 KANTHALA GAYATHRI Pursuing M.Tech, #2 K.RAVI KUMAR - Associate Professor, SREE CHAITANYA COLLEGE OF ENGINEERING,

More information

High Speed Binary Counters Based on Wallace Tree Multiplier in VHDL

High Speed Binary Counters Based on Wallace Tree Multiplier in VHDL High Speed Binary Counters Based on Wallace Tree Multiplier in VHDL E.Sangeetha 1 ASP and D.Tharaliga 2 Department of Electronics and Communication Engineering, Tagore College of Engineering and Technology,

More information

A Structured Ultra-Dense QCA One-Bit Full-Adder Cell

A Structured Ultra-Dense QCA One-Bit Full-Adder Cell RESEARCH ARTICLE Copyright 2015 American Scientific Publishers All rights reserved Printed in the United States of America Quantum Matter Vol. 4, 1 6, 2015 A Structured Ultra-Dense QCA One-Bit Full-Adder

More information

JDT EFFECTIVE METHOD FOR IMPLEMENTATION OF WALLACE TREE MULTIPLIER USING FAST ADDERS

JDT EFFECTIVE METHOD FOR IMPLEMENTATION OF WALLACE TREE MULTIPLIER USING FAST ADDERS JDT-002-2013 EFFECTIVE METHOD FOR IMPLEMENTATION OF WALLACE TREE MULTIPLIER USING FAST ADDERS E. Prakash 1, R. Raju 2, Dr.R. Varatharajan 3 1 PG Student, Department of Electronics and Communication Engineeering

More information

Design of Delay Efficient PASTA by Using Repetition Process

Design of Delay Efficient PASTA by Using Repetition Process Design of Delay Efficient PASTA by Using Repetition Process V.Sai Jaswana Department of ECE, Narayana Engineering College, Nellore. K. Murali HOD, Department of ECE, Narayana Engineering College, Nellore.

More information

Comparative Analysis of Various Adders using VHDL

Comparative Analysis of Various Adders using VHDL International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-3, Issue-4, April 2015 Comparative Analysis of Various s using VHDL Komal M. Lineswala, Zalak M. Vyas Abstract

More information

TIME EFFICIENT PARITY GENERATOR BASED ON QUANTUM-DOT CELLULAR AUTOMATA

TIME EFFICIENT PARITY GENERATOR BASED ON QUANTUM-DOT CELLULAR AUTOMATA International Journal of Civil Engineering and Technology (IJCIET) Volume 10, Issue 02, February 2019, pp. 715-723, Article ID: IJCIET_10_02_069 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=10&itype=02

More information

FPGA IMPLEMENTATION OF 32-BIT WAVE-PIPELINED SPARSE- TREE ADDER

FPGA IMPLEMENTATION OF 32-BIT WAVE-PIPELINED SPARSE- TREE ADDER FPGA IMPLEMENTATION OF 32-BIT WAVE-PIPELINED SPARSE- TREE ADDER Kasharaboina Thrisandhya *1, LathaSahukar *2 1 Post graduate (M.Tech) in ATRI, JNTUH University, Telangana, India. 2 Associate Professor

More information

FPGA Implementation of Area-Delay and Power Efficient Carry Select Adder

FPGA Implementation of Area-Delay and Power Efficient Carry Select Adder International Journal of Innovative Research in Electronics and Communications (IJIREC) Volume 2, Issue 8, 2015, PP 37-49 ISSN 2349-4042 (Print) & ISSN 2349-4050 (Online) www.arcjournals.org FPGA Implementation

More information

SIGNED PIPELINED MULTIPLIER USING HIGH SPEED COMPRESSORS

SIGNED PIPELINED MULTIPLIER USING HIGH SPEED COMPRESSORS INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 SIGNED PIPELINED MULTIPLIER USING HIGH SPEED COMPRESSORS 1 T.Thomas Leonid, 2 M.Mary Grace Neela, and 3 Jose Anand

More information

64 Bit Pipelined Hybrid Sparse Kogge-Stone Adder Using Different Valance

64 Bit Pipelined Hybrid Sparse Kogge-Stone Adder Using Different Valance International Journal of Research Studies in Science, Engineering and Technology Volume 2, Issue 12, December 2015, PP 22-28 ISSN 2349-4751 (Print) & ISSN 2349-476X (Online) 64 Bit Pipelined Hybrid Sparse

More information

DESIGN OF LOW POWER HIGH SPEED ERROR TOLERANT ADDERS USING FPGA

DESIGN OF LOW POWER HIGH SPEED ERROR TOLERANT ADDERS USING FPGA International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 10, Issue 1, January February 2019, pp. 88 94, Article ID: IJARET_10_01_009 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=10&itype=1

More information

FPGA Implementation of Multiplication and Accumulation Unit using Vedic Multiplier and Parallel Prefix adders in SPARTAN 3E

FPGA Implementation of Multiplication and Accumulation Unit using Vedic Multiplier and Parallel Prefix adders in SPARTAN 3E FPGA Implementation of Multiplication and Accumulation Unit using Vedic Multiplier and Parallel Prefix... FPGA Implementation of Multiplication and Accumulation Unit using Vedic Multiplier and Parallel

More information

International Journal Of Scientific Research And Education Volume 3 Issue 6 Pages June-2015 ISSN (e): Website:

International Journal Of Scientific Research And Education Volume 3 Issue 6 Pages June-2015 ISSN (e): Website: International Journal Of Scientific Research And Education Volume 3 Issue 6 Pages-3529-3538 June-2015 ISSN (e): 2321-7545 Website: http://ijsae.in Efficient Architecture for Radix-2 Booth Multiplication

More information

Presenting a New Efficient QCA Full Adder Based on Suggested MV32 Gate

Presenting a New Efficient QCA Full Adder Based on Suggested MV32 Gate Int. J. Nanosci. Nanotechnol., Vol. 12, No. 1, March. 2016, pp. 55-69 Short Communication Presenting a New Efficient QCA Full Adder Based on Suggested MV2 Gate A. Safavi and M. Mosleh* Department of Computer

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 5b Fast Addition - II Israel Koren ECE666/Koren Part.5b.1 Carry-Look-Ahead Addition Revisited

More information

Design, Implementation and performance analysis of 8-bit Vedic Multiplier

Design, Implementation and performance analysis of 8-bit Vedic Multiplier Design, Implementation and performance analysis of 8-bit Vedic Multiplier Sudhir Dakey 1, Avinash Nandigama 2 1 Faculty,Department of E.C.E., MVSR Engineering College 2 Student, Department of E.C.E., MVSR

More information

Minimization of Area and Power in Digital System Design for Digital Combinational Circuits

Minimization of Area and Power in Digital System Design for Digital Combinational Circuits Indian Journal of Science and Technology, Vol 9(29), DOI: 10.17485/ijst/2016/v9i29/93237, August 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Minimization of Area and Power in Digital System

More information

An Efficient SQRT Architecture of Carry Select Adder Design by HA and Common Boolean Logic PinnikaVenkateswarlu 1, Ragutla Kalpana 2

An Efficient SQRT Architecture of Carry Select Adder Design by HA and Common Boolean Logic PinnikaVenkateswarlu 1, Ragutla Kalpana 2 An Efficient SQRT Architecture of Carry Select Adder Design by HA and Common Boolean Logic PinnikaVenkateswarlu 1, Ragutla Kalpana 2 1 M.Tech student, ECE, Sri Indu College of Engineering and Technology,

More information

An Optimized Design of High-Speed and Energy- Efficient Carry Skip Adder with Variable Latency Extension

An Optimized Design of High-Speed and Energy- Efficient Carry Skip Adder with Variable Latency Extension An Optimized Design of High-Speed and Energy- Efficient Carry Skip Adder with Variable Latency Extension Monisha.T.S 1, Senthil Prakash.K 2 1 PG Student, ECE, Velalar College of Engineering and Technology

More information

Performance Enhancement of Han-Carlson Adder

Performance Enhancement of Han-Carlson Adder Performance Enhancement of Han-Carlson Adder Subha Jeyamala K 2, Aswathy B.S 1 Abstract:- To make addition operations more efficient parallel prefix addition is a better method. In this paper 16-bit parallel

More information

Design of 16-bit Heterogeneous Adder Architectures Using Different Homogeneous Adders

Design of 16-bit Heterogeneous Adder Architectures Using Different Homogeneous Adders Design of 16-bit Heterogeneous Adder Architectures Using Different Homogeneous Adders K.Gowthami 1, Y.Yamini Devi 2 PG Student [VLSI/ES], Dept. of ECE, Swamy Vivekananda Engineering College, Kalavarai,

More information

High-speed Multiplier Design Using Multi-Operand Multipliers

High-speed Multiplier Design Using Multi-Operand Multipliers Volume 1, Issue, April 01 www.ijcsn.org ISSN 77-50 High-speed Multiplier Design Using Multi-Operand Multipliers 1,Mohammad Reza Reshadi Nezhad, 3 Kaivan Navi 1 Department of Electrical and Computer engineering,

More information

Modified Booth Multiplier Based Low-Cost FIR Filter Design Shelja Jose, Shereena Mytheen

Modified Booth Multiplier Based Low-Cost FIR Filter Design Shelja Jose, Shereena Mytheen Modified Booth Multiplier Based Low-Cost FIR Filter Design Shelja Jose, Shereena Mytheen Abstract A new low area-cost FIR filter design is proposed using a modified Booth multiplier based on direct form

More information

An Optimized Implementation of CSLA and CLLA for 32-bit Unsigned Multiplier Using Verilog

An Optimized Implementation of CSLA and CLLA for 32-bit Unsigned Multiplier Using Verilog An Optimized Implementation of CSLA and CLLA for 32-bit Unsigned Multiplier Using Verilog 1 P.Sanjeeva Krishna Reddy, PG Scholar in VLSI Design, 2 A.M.Guna Sekhar Assoc.Professor 1 appireddigarichaitanya@gmail.com,

More information

Domino CMOS Implementation of Power Optimized and High Performance CLA adder

Domino CMOS Implementation of Power Optimized and High Performance CLA adder Domino CMOS Implementation of Power Optimized and High Performance CLA adder Kistipati Karthik Reddy 1, Jeeru Dinesh Reddy 2 1 PG Student, BMS College of Engineering, Bull temple Road, Bengaluru, India

More information

Copyright. Vignesh Naganathan

Copyright. Vignesh Naganathan Copyright by Vignesh Naganathan 2015 The Report Committee for Vignesh Naganathan Certifies that this is the approved version of the following report: A Comparative Analysis of Parallel Prefix Adders in

More information

CHAPTER 3 ANALYSIS OF LOW POWER, AREA EFFICIENT AND HIGH SPEED ADDER TOPOLOGIES

CHAPTER 3 ANALYSIS OF LOW POWER, AREA EFFICIENT AND HIGH SPEED ADDER TOPOLOGIES 44 CHAPTER 3 ANALYSIS OF LOW POWER, AREA EFFICIENT AND HIGH SPEED ADDER TOPOLOGIES 3.1 INTRODUCTION The design of high-speed and low-power VLSI architectures needs efficient arithmetic processing units,

More information

IJCSIET--International Journal of Computer Science information and Engg., Technologies ISSN

IJCSIET--International Journal of Computer Science information and Engg., Technologies ISSN An efficient add multiplier operator design using modified Booth recoder 1 I.K.RAMANI, 2 V L N PHANI PONNAPALLI 2 Assistant Professor 1,2 PYDAH COLLEGE OF ENGINEERING & TECHNOLOGY, Visakhapatnam,AP, India.

More information

A New network multiplier using modified high order encoder and optimized hybrid adder in CMOS technology

A New network multiplier using modified high order encoder and optimized hybrid adder in CMOS technology Inf. Sci. Lett. 2, No. 3, 159-164 (2013) 159 Information Sciences Letters An International Journal http://dx.doi.org/10.12785/isl/020305 A New network multiplier using modified high order encoder and optimized

More information

Simulation study of brent kung adder using cadence tool

Simulation study of brent kung adder using cadence tool ISSN: 2454-132X Impact factor: 4.295 (Volume 4, Issue 3) Available online at: www.ijariit.com Simulation study of brent kung adder using cadence tool T. Vamshi Krishna vamshi27496@gmail.com School of Engineering

More information

Design and Analysis of Row Bypass Multiplier using various logic Full Adders

Design and Analysis of Row Bypass Multiplier using various logic Full Adders Design and Analysis of Row Bypass Multiplier using various logic Full Adders Dr.R.Naveen 1, S.A.Sivakumar 2, K.U.Abhinaya 3, N.Akilandeeswari 4, S.Anushya 5, M.A.Asuvanti 6 1 Associate Professor, 2 Assistant

More information

An Efficient Higher Order And High Speed Kogge-Stone Based CSLA Using Common Boolean Logic

An Efficient Higher Order And High Speed Kogge-Stone Based CSLA Using Common Boolean Logic RESERCH RTICLE OPEN CCESS n Efficient Higher Order nd High Speed Kogge-Stone Based Using Common Boolean Logic Kuppampati Prasad, Mrs.M.Bharathi M. Tech (VLSI) Student, Sree Vidyanikethan Engineering College

More information

Power Efficient Weighted Modulo 2 n +1 Adder

Power Efficient Weighted Modulo 2 n +1 Adder Power Efficient Weighted Modulo 2 n +1 Adder C.Venkataiah #1 C.Vijaya Bharathi *2 M.Narasimhulu #3 # Assistant Professor, Dept. Of Electronics &Communication Engg, RGMCET, Nandyal, Kurnool (dist),andhra

More information

LOW POWER HIGH SPEED MODIFIED SQRT CSLA DESIGN USING D-LATCH & BK ADDER

LOW POWER HIGH SPEED MODIFIED SQRT CSLA DESIGN USING D-LATCH & BK ADDER LOW POWER HIGH SPEED MODIFIED SQRT DESIGN USING D-LATCH & BK ADDER Athira.V.S 1, Shankari. C 2, R. Arun Sekar 3 1 (PG Student, Department of ECE, SNS College of Technology, Coimbatore-35, India, athira.sudhakaran.39@gmail.com)

More information

CLAA, CSLA and PPA based Shift and Add Multiplier for General Purpose Processor

CLAA, CSLA and PPA based Shift and Add Multiplier for General Purpose Processor ; 1(4): 144-148 ISSN (online): 2349-0020 http://ijraonline.com E L E C T R O N I C S R E S E A R C H A R T I C L E CLAA, CSLA and PPA based Shift and Add Multiplier for General Purpose Processor A. Sowjanya

More information

DESIGN AND IMPLEMENTATION OF 64- BIT CARRY SELECT ADDER IN FPGA

DESIGN AND IMPLEMENTATION OF 64- BIT CARRY SELECT ADDER IN FPGA DESIGN AND IMPLEMENTATION OF 64- BIT CARRY SELECT ADDER IN FPGA Shaik Magbul Basha 1 L. Srinivas Reddy 2 magbul1000@gmail.com 1 lsr.ngi@gmail.com 2 1 UG Scholar, Dept of ECE, Nalanda Group of Institutions,

More information

Design and Implementation of High Speed Carry Select Adder

Design and Implementation of High Speed Carry Select Adder Design and Implementation of High Speed Carry Select Adder P.Prashanti Digital Systems Engineering (M.E) ECE Department University College of Engineering Osmania University, Hyderabad, Andhra Pradesh -500

More information