Test strategy towards Massive MIMO

Size: px
Start display at page:

Download "Test strategy towards Massive MIMO"

Transcription

1 Test strategy towards Massive MIMO Using LTE-Advanced Pro efd-mimo Shatrughan Singh, Technical Leader Subramaniam H, Senior Technical Leader Jaison John Puliyathu Mathew, Senior Engg. Project Manager

2 Abstract User throughput is key performance indicator for any wireless network. With the advancement in mobile technology, demand for high user throughput is increasing. To fulfil this requirement, 3rd generation partnership project (3GPP) introduced Multiple Input Multiple Output (MIMO) technology from its initial releases of LTE. Till release-9, MIMO was upto 4-layers. In release-10 (LTE-Advanced), this got extended to 8- layers with the introduction of new reference signal: CSI-RS (upto 8 ports). So, we see an enhancement made in MIMO between LTE and LTE-Advanced. This trend continued in LTE- Advanced Pro as well, where a path towards Massive MIMO is introduced using FD- MIMO/eFD-MIMO with the support of upto 16 CSI-RS ports in 3GPP release-13 and upto 32 CSI-RS ports in release-14. The intent of this paper is to set a test strategy platform and emulate test scenarios of efd- MIMO thereby validating key performance and functional indicators which could be further utilised and extended for Massive MIMO. Motivation behind efd-mimo/massive MIMO 3GPP release-10 introduced 8x8 MIMO with new UE category Cat-8 supporting upto 8 spatial layers and base station supporting upto 8 CSI-RS antenna ports. Now UE can perform channel estimation based on CRS or CSI-RS antenna ports. CSI-RS ports introduced because increasing CRS ports were not feasible as it takes fix amount of downlink resources which cannot be used for data. Also, increasing CRS will introduce more interference in network. CSI-RS has no such restriction and it can be configured based on the need. Number of layers in MIMO scheduling depends on rank reported by UE based on 8-layer CSI-RS channel estimation. And, with different channel conditions of real network, most of the UEs are not able to report higher rank 6,7 or 8 to base station and so unable to get better throughput. This is the driving factors for efd-mimo/massive MIMO, where with increase in CSI-RS antenna ports, base station facilitates UEs to identify better channels in current traffic scenario. This enables more and more UEs to report better rank and reach upto 8-layers data scheduling in downlink. The main motivation is to improve: 1. Cell coverage 2. Cell edge user experience 3. Average spectrum efficiency 4. Optimise load-balancing between cells Massive MIMO Massive MIMO is a feature where base stations have very large numbers of antennas (in hundreds). With 3GPP release-10 eight layer beamforming, channel estimation is based on CSI-RS rather than CRS. To fulfil the need of better spectrum efficiency and overall increased downlink throughput, this approach got enhanced even further as a whole defined as Massive MIMO. In Massive MIMO

3 design, it s possible that base station has more antenna than active users. More number of antenna increases beamforming coverage by sharply focusing transmission on particular point thereby increasing overall network coverage and facilitating better channel estimation by UE. This will enhance possibility for UE to report better CSI with bigger rank/cqi resulting into increased user throughput and spectrum efficiency in downlink. Massive MIMO scheduling will be based on CSI-RS antenna ports. The evolution path for Massive MIMO is mentioned in below table: The evolution path for Massive MIMO is: 3GPP release R10-R12 LTE-A R13 LTE-A Pro R14 LTE-A Pro R15-5G MIMO Technology 2D MIMO FD-MIMO efd-mimo Massive MIMO No. of CSI-RS ports (Base station) >=64 (assumed) Transmission Mode TM9, TM10 TM9, TM10 TM9, TM10 TM9, TM10 CSI-RS transmission NonPrecoded NonPrecoded/ Beamformed No. of layers supported by UE NonPrecoded/ Beamformed (assumed) NonPrecoded/ Beamformed (assumed) (assumed) Since we planned this paper to be based on standards of 3GPP and 3GPP specification for release-15 5G massive MIMO is not yet ready, we have chosen release-14 efd-mimo configuration as a candidate for this paper. FD-MIMO/eFD-MIMO FD-MIMO introduced in 3GPP release-13 with upto 16 CSI-RS antenna ports supported. Later, in release-14 efd- MIMO introduced which is superset of FD-MIMO. efd-mimo supports upto 32 CSI-RS antenna ports. Increased number of CSI-RS antenna helps to cover vertical as well as horizontal propagation using 2D-AAA (Active antenna array) system applied with Kronecker Product (KP). 2D-AAA is nothing but configuration of number of antennas in horizontal (H) and vertical (V) dimension of the array making total antenna H x V. This results into better cell coverage and increased MIMO layers for more UEs because of better/optimal channel estimation by UE. On receiving the CSI-RS configuration from base station, UE performs channel estimation measurement on these resources and sends feedback to base station in

4 uplink. The better the reported rank, the more number of layers gets scheduled by base station to UE resulting into increased downlink throughput to UE. efd-mimo comes with two types of CSI-RS transmission type: 1) CLASS-A (Non-Precoded) 2) CLASS-B (Beamformed) Class-A or Class-B is configurable by base station using higher layer parameter CSI-RS- ConfigEMIMO as mentioned below: 3GPP Section CSI-RS-ConfigEMIMO information elements CSI-RS-ConfigEMIMO-v1430 ::= CHOICE { setup CHOICE { nonprecoded-v1430 CSI-RS-ConfigNonPrecoded-v1430, beamformed-v1430 CSI-RS-ConfigBeamformed-v1430 } } Test strategy for non-precoded CSI-RS transmission (Upto 32 antenna base station) Non-Precoded (Class-A) transmission: This is similar to the previous releases, where CSI-RS is cell specific parameters and is not applied with any precoding. Previously only 8 antenna ports (15-22) were supported with this. However, with efd-mimo there will be upto 32 antenna ports (15-46) supported and configurable by enodeb. Upto 32 CSI-RS ports configuration gets achieved by doing aggregation of multiple CSI-RS configuration, which is explained in table mentioned below:

5 From 3GPP Table : Aggregation of CSI-RS configurations. Total number of antenna ports N CSI CSI res N ports Number of antenna ports per CSI-RS configuration CSI N ports Number of CSI-RS configurations CSI N res Class-A supports only one CSI-RS resource configuration. Same resource configuration gets repeated in multiple numbers to achieve upto 32 ports as one CSI-RS resource configuration can have maximum 8 ports. Number of CSI-RS ports can be determined by higher layer parameters (codebookconfign1, codebookconfign2) configured by base station as below: 3GPP Section CSI-RS-ConfigEMIMO information elements CSI-RS-ConfigNonPrecoded-v1430::= SEQUENCE { codebookconfign1-v1430 ENUMERATED {n5, n6, n7, n10, n12, n14, n16}, codebookconfign2-r1430 ENUMERATED {n5, n6, n7 }, From 3GPP Table : Supported configurations of ( O 1,O 2 ) and ( N ) 1, N 2 Number of CSI-RS antenna ports, P ( 1, N 2) ( ) 1,O 2 8 (2,2) (4,4),(8,8) 12 (2,3) (8,4),(8,8) (3,2) (8,4),(4,4) (2,4) (8,4),(8,8) 16 (4,2) (8,4),(4,4) (8,1) (4,-),(8,-) (2,5) (8,4) 20 (5,2) (4,4) (10,1) (4,-) (2,6) (8,4) (3,4) (8,4) 24 (4,3) (4,4) (6,2) (4,4) (12,1) (4,-) (2,7) (8,4) 28 (7,2) (4,4) (14,1) (4,-) (2,8) (8,4) 32 (4,4) (8,4) (8,2) (4,4) (16,1) (4,-) Above table describes all the possible combinations of (N1, N2) and (O1, O2) w.r.t different CSI-RS antenna ports {8, 12, 16, 20, 24, 28 and 32}. Where, (N1, N2) corresponds to number of antenna ports per polarization in dimension x and (O1, O2) corresponds to spatial oversampling rate in dimension x as used for transmission of CSI reference signals.

6 UE calculates total number of CSI-RS ports configured for measurement which is 2xN1xN2. Based on number of CSI-RS ports configured and UE capability w.r.t number of spatial layers, UE performs channel estimation and reports back optimal CSI and codebook to base station as defined in 3GPP Table to Table Base station schedules data to UE based on the received CSI feedback from UE. Note: Release-8 and release-9 UEs will not benefit from 8x8 MIMO/FD-MIMO/eFD-MIMO and Massive MIMO as all these MIMOs are based on CSI-RS ports (release-10) channel estimation. Since the evolution path for advance MIMO is based on 8x8 rel-10 model, we have not added l feature interaction details. Implicitly, all the combinations available with 8x8 will be valid in FD-MIMO/Massive-MIMO as well. For release-10 and later UEs, maximum number of UE-specific DMRS ports are 8 (ports 7 to 14) and maximum supported layers by UE is still upto 8 even in release-14. So, UE can report only maximum 8 layers (Rank) to enodeb. This clearly indicates that advance MIMO principles are focused on utilising upto 8-layers MIMO and making it a common scenario for most of the UEs within cell. Test strategy for beamformed CSI-RS transmission (Upto 8 antenna base station) Beamformed (Class-B) transmission: This is new method used to transmit CSI- RS where CSI-RS will be precoded like DMRS and specific to UE. This configuration allows only upto 8 number of CSI-RS antenna ports (15-22) with one or more CSI-RS resource configuration. Since this is beamformed precoded signalling, it s not a common signalling but dedicated to selected UE. Based on the number of configured CSI-RS ports, base station selects codebook to precode CSI-RS as defined in 3GPP Table to If UE is configured in this class then it measures the entire beam (CRI-upto 8 beam) configured and reports back optimal CRI (CSI-RS resource index also called beam index) and CSI to enodeb. Base station selects this beam to schedule data to UE. Total number of beam configured to UE is informed by base station higher layer parameter as mentioned below: 3GPP Section CSI-RS-ConfigEMIMO information elements CSI-RS-ConfigBeamformed-v1430::= SEQUENCE { csi-rs-confignzp-aplist-r14 SEQUENCE (SIZE(1..8)) OF CSI-RS-ConfigNZP-r11

7 The mapping of CSI-RS resource element (k,l) is given in section Scenario of Class-A and Class-B transmission Class-A This scenario is applicable when base station does not have current awareness of UE channel condition (during scheduling request for DL traffic). Base station may configure maximum number of upto 32 CSI-RS ports to facilitate UE report highest possible rank. This is applicable for cell-center UEs. Class-B This scenario is applicable when base station does have current awareness of UE channel condition (during on-going traffic with moving users) or UE reporting bad CSI in class-a because of cell edge, user movement, interference etc. Base station may configure different beamformed CSI-RS ports upto 8 layers to facilitate UE report best beam. Based on the feedback, base station schedules data on this beam. This also increases cell coverage area. Conclusion: efd-mimo and future massive MIMO is solid step towards IMT-2020 requirement which demands increase in peak data rate, average data rate, spectrum efficiency, network energy efficiency, area traffic capacity and connection density. FD-MIMO simulation results explained in 3GPP TSG RAN WG1 Meeting #78bis R have shown good improvements over legacy MIMO as summarised below: a) Performance gain with beamforming in elevation dimension (20% gain in cell edge and 5% in cell average) b) Performance gain of load balance with EBF/FD-MIMO in Het-Net (27% average gain and 39% cell edge gain) c) Performance gain of MU-MIMO with EBF/FD-MIMO - 3D-UMa : 98.2% and 91.2% cell average and cell edge performance gain - 3D-UMi : 117.3% cell average and about 116% cell edge performance gain With the introduction of Massive MIMO we will be able to see bigger improvements in all the above areas and possibly meet IMT-2020 requirement. Abbreviations: FD-MIMO : Full Dimensional Multiple Input Multiple Output efd-mimo : Enhanced FD MIMO MU-MIMO : Multi user-mimo CRI : Channel State Information Resource Index CRS : Cell Reference Signal CSI-RS : Channel State Information Reference Signal DMRS : Demodulation Reference Signal DL : Downlink EBF : Elevated Beamforming IMT : International Mobile Telecommunications LTE : Long Term Evolution

8 3D 3GPP UE UMa UMi : 3 Dimensional : 3rd Generation Partnership Project : User Equipment : Urban Macro : Urban Micro References: 1. 3GPP TS , Radio Resource Control (RRC); Protocol specification (Release 14) 2. 3GPP TS , User Equipment (UE) radio access capabilities (Release 14) 3. 3GPP TS , Physical channels and modulation (Release 14) 4. 3GPP TS , Multiplexing and channel coding (Release 14) 5. 3GPP TS , Physical layer procedures (Release 14) 6. 3GPP TR , Study on elevation beamforming / Full-Dimension (FD) Multiple Input Multiple Output (MIMO) for LTE (Release 13) 7. 3GPP TSG RAN WG1 Meeting #78bis R GPP TSG RAN WG1 Meeting #82bis R GPP TSG RAN WG1 #78bis R Recommendation ITU-R M (IMT-2020) Authors Biography: Shatrughan Singh Working with Aricent for past 5+ years and total Telecom domain experience of 10+ years. Currently located in UK, working on LTE advanced releases of protocol and feature testing needs of client Subramaniam H Working with Aricent for past 8+ years and total Telecom domain experience of 12+ years. Currently located in UK, working on LTE protocol and feature testing needs of client Jaison John Puliyathu Mathew Working with Aricent for past 7+ years and has total Telecom domain experience of 14+ years. Currently located in UK and managing onsite testing team of engineers THANK YOU!

Massive MIMO a overview. Chandrasekaran CEWiT

Massive MIMO a overview. Chandrasekaran CEWiT Massive MIMO a overview Chandrasekaran CEWiT Outline Introduction Ways to Achieve higher spectral efficiency Massive MIMO basics Challenges and expectations from Massive MIMO Network MIMO features Summary

More information

NR Physical Layer Design: NR MIMO

NR Physical Layer Design: NR MIMO NR Physical Layer Design: NR MIMO Younsun Kim 3GPP TSG RAN WG1 Vice-Chairman (Samsung) 3GPP 2018 1 Considerations for NR-MIMO Specification Design NR-MIMO Specification Features 3GPP 2018 2 Key Features

More information

Beamforming for 4.9G/5G Networks

Beamforming for 4.9G/5G Networks Beamforming for 4.9G/5G Networks Exploiting Massive MIMO and Active Antenna Technologies White Paper Contents 1. Executive summary 3 2. Introduction 3 3. Beamforming benefits below 6 GHz 5 4. Field performance

More information

3GPP TR V ( )

3GPP TR V ( ) TR 36.871 V11.0.0 (2011-12) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Downlink Multiple

More information

Massive MIMO for the New Radio Overview and Performance

Massive MIMO for the New Radio Overview and Performance Massive MIMO for the New Radio Overview and Performance Dr. Amitabha Ghosh Nokia Bell Labs IEEE 5G Summit June 5 th, 2017 What is Massive MIMO ANTENNA ARRAYS large number (>>8) of controllable antennas

More information

5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc.

5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc. 5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc. Yinan Qi Samsung Electronics R&D Institute UK, Staines, Middlesex TW18 4QE,

More information

Canadian Evaluation Group

Canadian Evaluation Group IEEE L802.16-10/0061 Canadian Evaluation Group Raouia Nasri, Shiguang Guo, Ven Sampath Canadian Evaluation Group (CEG) www.imt-advanced.ca Overview What the CEG evaluated Compliance tables Services Spectrum

More information

WINNER+ IMT-Advanced Evaluation Group

WINNER+ IMT-Advanced Evaluation Group IEEE L802.16-10/0064 WINNER+ IMT-Advanced Evaluation Group Werner Mohr, Nokia-Siemens Networks Coordinator of WINNER+ project on behalf of WINNER+ http://projects.celtic-initiative.org/winner+/winner+

More information

RF exposure impact on 5G rollout A technical overview

RF exposure impact on 5G rollout A technical overview RF exposure impact on 5G rollout A technical overview ITU Workshop on 5G, EMF & Health Warsaw, Poland, 5 December 2017 Presentation: Kamil BECHTA, Nokia Mobile Networks 5G RAN Editor: Christophe GRANGEAT,

More information

LTE-Advanced research in 3GPP

LTE-Advanced research in 3GPP LTE-Advanced research in 3GPP GIGA seminar 8 4.12.28 Tommi Koivisto tommi.koivisto@nokia.com Outline Background and LTE-Advanced schedule LTE-Advanced requirements set by 3GPP Technologies under investigation

More information

Performance Evaluation of Limited Feedback Schemes for 3D Beamforming in LTE-Advanced System

Performance Evaluation of Limited Feedback Schemes for 3D Beamforming in LTE-Advanced System Performance Evaluation of Limited Feedback Scemes for 3D Beamforming in LTE-Advanced System Sang-Lim Ju, Young-Jae Kim, and Won-Ho Jeong Department of Radio and Communication Engineering Cungbuk National

More information

LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany;

LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany; Proceedings of SDR'11-WInnComm-Europe, 22-24 Jun 2011 LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany; meik.kottkamp@rohde-schwarz.com) ABSTRACT From 2009 onwards

More information

5G New Radio Design. Fall VTC-2017, Panel September 25 th, Expanding the human possibilities of technology to make our lives better

5G New Radio Design. Fall VTC-2017, Panel September 25 th, Expanding the human possibilities of technology to make our lives better 5G New Radio Design Expanding the human possibilities of technology to make our lives better Fall VTC-2017, Panel September 25 th, 2017 Dr. Amitabha Ghosh Head of Small Cell Research, Nokia Fellow, IEEE

More information

Improving MU-MIMO Performance in LTE-(Advanced) by Efficiently Exploiting Feedback Resources and through Dynamic Scheduling

Improving MU-MIMO Performance in LTE-(Advanced) by Efficiently Exploiting Feedback Resources and through Dynamic Scheduling Improving MU-MIMO Performance in LTE-(Advanced) by Efficiently Exploiting Feedback Resources and through Dynamic Scheduling Ankit Bhamri, Florian Kaltenberger, Raymond Knopp, Jyri Hämäläinen Eurecom, France

More information

DOWNLINK AIR-INTERFACE...

DOWNLINK AIR-INTERFACE... 1 ABBREVIATIONS... 10 2 FUNDAMENTALS... 14 2.1 INTRODUCTION... 15 2.2 ARCHITECTURE... 16 2.3 INTERFACES... 18 2.4 CHANNEL BANDWIDTHS... 21 2.5 FREQUENCY AND TIME DIVISION DUPLEXING... 22 2.6 OPERATING

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

Chih-Hsuan Chen CHTTL 2016/11/04

Chih-Hsuan Chen CHTTL 2016/11/04 Chih-Hsuan Chen CHTTL 2016/11/04 1/27 Background Rel-13 FD-MIMO Rel-14 efd-mimo NR MIMO 2/27 Spectrum extension Current Capacity Network Densification Spectrum efficiency 3/27 R8/R9 R10 R13 R14 2x2 MIMO

More information

5G NR Update and UE Validation

5G NR Update and UE Validation 5G NR Update and UE Validation Sr. Project Manager/ Keysight JianHua Wu 3GPP Status Update 2 5G Scenarios and Use Cases B R O A D R A N G E O F N E W S E R V I C E S A N D PA R A D I G M S Amazingly fast

More information

3D Beamforming for Capacity Boosting in LTE-Advanced System

3D Beamforming for Capacity Boosting in LTE-Advanced System 3D Beamforming for Capacity Boosting in LTE-Advanced System Hyoungju Ji, Byungju Lee and Byonghyo Shim Seoul National University, Seoul, Korea Email: {hyoungjuji, bjlee}@islabsnuackr, bshim@snuackr Young-Han

More information

Part I Evolution. ZTE All rights reserved

Part I Evolution. ZTE All rights reserved Part I Evolution 2 ZTE All rights reserved 4G Standard Evolution, LTE-A in 3GPP LTE(R8/R9) DL: 100Mbps, UL: 50Mbps MIMO, BF,LCS, embms LTE-A (R10/R11) DL: 1Gbps, UL: 500Mbps CA, Relay, Het-Net CoMP, emimo

More information

3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li

3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li 3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li Mar. 4, 2016 1 Agenda Status Overview of RAN1 Working/Study Items Narrowband Internet of Things (NB-IoT) (Rel-13)

More information

3GPP: Evolution of Air Interface and IP Network for IMT-Advanced. Francois COURAU TSG RAN Chairman Alcatel-Lucent

3GPP: Evolution of Air Interface and IP Network for IMT-Advanced. Francois COURAU TSG RAN Chairman Alcatel-Lucent 3GPP: Evolution of Air Interface and IP Network for IMT-Advanced Francois COURAU TSG RAN Chairman Alcatel-Lucent 1 Introduction Reminder of LTE SAE Requirement Key architecture of SAE and its impact Key

More information

Capacity Enhancement Techniques for LTE-Advanced

Capacity Enhancement Techniques for LTE-Advanced Capacity Enhancement Techniques for LTE-Advanced LG 전자 윤영우연구위원 yw.yun@lge.com 1/28 3GPP specification releases 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 GSM/GPRS/EDGE enhancements

More information

MU-MIMO in LTE/LTE-A Performance Analysis. Rizwan GHAFFAR, Biljana BADIC

MU-MIMO in LTE/LTE-A Performance Analysis. Rizwan GHAFFAR, Biljana BADIC MU-MIMO in LTE/LTE-A Performance Analysis Rizwan GHAFFAR, Biljana BADIC Outline 1 Introduction to Multi-user MIMO Multi-user MIMO in LTE and LTE-A 3 Transceiver Structures for Multi-user MIMO Rizwan GHAFFAR

More information

LTE-Advanced and Release 10

LTE-Advanced and Release 10 LTE-Advanced and Release 10 1. Carrier Aggregation 2. Enhanced Downlink MIMO 3. Enhanced Uplink MIMO 4. Relays 5. Release 11 and Beyond Release 10 enhances the capabilities of LTE, to make the technology

More information

Addressing Future Wireless Demand

Addressing Future Wireless Demand Addressing Future Wireless Demand Dave Wolter Assistant Vice President Radio Technology and Strategy 1 Building Blocks of Capacity Core Network & Transport # Sectors/Sites Efficiency Spectrum 2 How Do

More information

An LTE compatible massive MIMO testbed based on OpenAirInterface. Xiwen JIANG, Florian Kaltenberger EURECOM

An LTE compatible massive MIMO testbed based on OpenAirInterface. Xiwen JIANG, Florian Kaltenberger EURECOM An LTE compatible massive MIMO testbed based on OpenAirInterface Xiwen JIANG, Florian Kaltenberger EURECOM Testbed Overview Open source platform Based on OAI hardware and software 3GPP LTE compatible Incorporate

More information

Potential Throughput Improvement of FD MIMO in Practical Systems

Potential Throughput Improvement of FD MIMO in Practical Systems 2014 UKSim-AMSS 8th European Modelling Symposium Potential Throughput Improvement of FD MIMO in Practical Systems Fangze Tu, Yuan Zhu, Hongwen Yang Mobile and Communications Group, Intel Corporation Beijing

More information

Multiple-Antenna Techniques in LTE-Advanced

Multiple-Antenna Techniques in LTE-Advanced TOPICS IN RADIO COMMUNICATIONS Multiple-Antenna Techniques in LTE-Advanced Federico Boccardi, Bell Labs, Alcatel-Lucent Bruno Clerckx, Imperial College London Arunabha Ghosh, AT&T Labs Eric Hardouin, Orange

More information

Adaptive Beamforming towards 5G systems. Whitepaper 1

Adaptive Beamforming towards 5G systems. Whitepaper 1 Adaptive Beamforming towards 5G systems Whitepaper 1 Abstract MIMO has been the undisputed candidate for wireless communications. It provides high diversity order and increased data-rate. Beamforming is

More information

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) Long Term Evolution (LTE) What is LTE? LTE is the next generation of Mobile broadband technology Data Rates up to 100Mbps Next level of

More information

Testing Carrier Aggregation in LTE-Advanced Network Infrastructure

Testing Carrier Aggregation in LTE-Advanced Network Infrastructure TM500 Family White Paper December 2015 Testing Carrier Aggregation in LTE-Advanced Network Infrastructure Contents Introduction... Error! Bookmark not defined. Evolution to LTE-Advanced... 3 Bandwidths...

More information

Elevation Beamforming with Full Dimension MIMO Architectures in 5G Systems: A Tutorial

Elevation Beamforming with Full Dimension MIMO Architectures in 5G Systems: A Tutorial 1 Elevation Beamforming with Full Dimension MIMO Architectures in 5G Systems: A Tutorial Qurrat-Ul-Ain Nadeem, Student Member, IEEE, Abla Kammoun, Member, IEEE, and Mohamed-Slim Alouini, Fellow, IEEE arxiv:1805.00225v2

More information

5G - The multi antenna advantage. Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology

5G - The multi antenna advantage. Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology 5G - The multi antenna advantage Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology Content What is 5G? Background (theory) Standardization roadmap 5G trials & testbeds 5G product releases

More information

Carrier Aggregation and MU-MIMO: outcomes from SAMURAI project

Carrier Aggregation and MU-MIMO: outcomes from SAMURAI project Carrier Aggregation and MU-MIMO: outcomes from SAMURAI project Presented by Florian Kaltenberger Swisscom workshop 29.5.2012 Eurecom, Sophia-Antipolis, France Outline Motivation The SAMURAI project Overview

More information

3GPP TR V ( )

3GPP TR V ( ) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on CU-DU lower layer split for NR; (Release 15) Technical Report The present document has been developed within

More information

Background: Cellular network technology

Background: Cellular network technology Background: Cellular network technology Overview 1G: Analog voice (no global standard ) 2G: Digital voice (again GSM vs. CDMA) 3G: Digital voice and data Again... UMTS (WCDMA) vs. CDMA2000 (both CDMA-based)

More information

Evolution of cellular wireless systems from 2G to 5G. 5G overview th October Enrico Buracchini TIM INNOVATION DEPT.

Evolution of cellular wireless systems from 2G to 5G. 5G overview th October Enrico Buracchini TIM INNOVATION DEPT. Evolution of cellular wireless systems from 2G to 5G 5G overview 6-13 th October 2017 Enrico Buracchini TIM INNOVATION DEPT. Up to now.we are here. Source : Qualcomm presentation @ 5G Tokyo Bay Summit

More information

WiMAX Summit Testing Requirements for Successful WiMAX Deployments. Fanny Mlinarsky. 28-Feb-07

WiMAX Summit Testing Requirements for Successful WiMAX Deployments. Fanny Mlinarsky. 28-Feb-07 WiMAX Summit 2007 Testing Requirements for Successful WiMAX Deployments Fanny Mlinarsky 28-Feb-07 Municipal Multipath Environment www.octoscope.com 2 WiMAX IP-Based Architecture * * Commercial off-the-shelf

More information

5G: implementation challenges and solutions

5G: implementation challenges and solutions 5G: implementation challenges and solutions University of Bristol / Cambridge Wireless 18 th September 2018 Matthew Baker Nokia Bell-Labs Head of Radio Physical Layer & Coexistence Standardisation Higher

More information

Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G

Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G ICTC 2015 Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G Juho Lee Samsung Electronics Presentation Outline LTE/LTE-Advanced evolution: an overview LTE-Advanced in Rel-13 Expectation for LTE-Advanced

More information

Radio Interface and Radio Access Techniques for LTE-Advanced

Radio Interface and Radio Access Techniques for LTE-Advanced TTA IMT-Advanced Workshop Radio Interface and Radio Access Techniques for LTE-Advanced Motohiro Tanno Radio Access Network Development Department NTT DoCoMo, Inc. June 11, 2008 Targets for for IMT-Advanced

More information

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks Lectio praecursoria Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks Author: Junquan Deng Supervisor: Prof. Olav Tirkkonen Department of Communications and Networking Opponent:

More information

ETSI TS V8.7.0 ( ) Technical Specification

ETSI TS V8.7.0 ( ) Technical Specification TS 136 214 V8.7.0 (2009-10) Technical Specification LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer - Measurements (3GPP TS 36.214 version 8.7.0 Release 8) 1 TS 136 214 V8.7.0

More information

5G: New Air Interface and Radio Access Virtualization. HUAWEI WHITE PAPER April 2015

5G: New Air Interface and Radio Access Virtualization. HUAWEI WHITE PAPER April 2015 : New Air Interface and Radio Access Virtualization HUAWEI WHITE PAPER April 2015 5 G Contents 1. Introduction... 1 2. Performance Requirements... 2 3. Spectrum... 3 4. Flexible New Air Interface... 4

More information

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN Evolved UTRA and UTRAN Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA Evolved UTRA (E-UTRA) and UTRAN represent long-term evolution (LTE) of technology to maintain continuous

More information

3G Evolution HSPA and LTE for Mobile Broadband Part II

3G Evolution HSPA and LTE for Mobile Broadband Part II 3G Evolution HSPA and LTE for Mobile Broadband Part II Dr Stefan Parkvall Principal Researcher Ericsson Research stefan.parkvall@ericsson.com Outline Series of three seminars I. Basic principles Channel

More information

FUTURE SPECTRUM WHITE PAPER DRAFT

FUTURE SPECTRUM WHITE PAPER DRAFT FUTURE SPECTRUM WHITE PAPER DRAFT FUTURE SPECTRUM WHITE PAPER Version: Deliverable Type Draft Version Procedural Document Working Document Confidential Level Open to GTI Operator Members Open to GTI Partners

More information

3GPP TS V ( )

3GPP TS V ( ) TS 36.216 V10.3.1 (2011-09) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical

More information

TECHTRAINED. Foundations Explained. Learn Technology in 10 minutes. Contact:

TECHTRAINED. Foundations Explained. Learn Technology in 10 minutes. Contact: TT 1608: LTE Air Interface Foundations Explained Contact: hello@techtrained.com 469-619-7419 918-908-0336 Course Overview: If you are trying to learn LTE and don t know where to start. You or your technical

More information

System-Level Performance of Downlink Non-orthogonal Multiple Access (NOMA) Under Various Environments

System-Level Performance of Downlink Non-orthogonal Multiple Access (NOMA) Under Various Environments System-Level Permance of Downlink n-orthogonal Multiple Access (N) Under Various Environments Yuya Saito, Anass Benjebbour, Yoshihisa Kishiyama, and Takehiro Nakamura 5G Radio Access Network Research Group,

More information

ARIB STD-T V

ARIB STD-T V ARIB STD-T104-36.307 V11.17.0 Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements on User Equipments (UEs) supporting a release-independent frequency band (Release 11) Refer to Industrial

More information

New Radio for 5G. The future of mobile broadband

New Radio for 5G. The future of mobile broadband New Radio for 5G The future of mobile broadband Table of Contents Abstract...3 1 5G Mobile Communications... 4 1.1 Capabilities and Requirements...5 1.2 IMT-2020 Requirements and Usage Scenarios...5 1.3

More information

MIMO in 4G Wireless. Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC

MIMO in 4G Wireless. Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC MIMO in 4G Wireless Presenter: Iqbal Singh Josan, P.E., PMP Director & Consulting Engineer USPurtek LLC About the presenter: Iqbal is the founder of training and consulting firm USPurtek LLC, which specializes

More information

ETSI TS V ( )

ETSI TS V ( ) TS 136 307 V8.11.0 (2014-03) Technical Specification LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements on User Equipments (UEs) supporting a release-independent frequency band (3GPP

More information

LTE Transmission Modes and Beamforming White Paper

LTE Transmission Modes and Beamforming White Paper LTE Transmission Modes and Beamforming White Paper Multiple input multiple output (MIMO) technology is an integral part of 3GPP E-UTRA long term evolution (LTE). As part of MIMO, beamforming is also used

More information

Evolution of 3GPP LTE-Advanced Standard toward 5G

Evolution of 3GPP LTE-Advanced Standard toward 5G Evolution of 3GPP LTE-Advanced Standard toward 5G KRNet 2013. 6. 24. LG Electronics Byoung-Hoon Kim (bh.kim@lge.com) Communication Standards Evolution Mobility We are here IMT-Advanced Standard High (~350Km/h)

More information

3GPP TR v ( )

3GPP TR v ( ) TR 25.865 v10.0.0 (2010-12) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Improvements of distributed antenna for 1.28Mcps TDD (Release 10) The

More information

Interference management Within 3GPP LTE advanced

Interference management Within 3GPP LTE advanced Interference management Within 3GPP LTE advanced Konstantinos Dimou, PhD Senior Research Engineer, Wireless Access Networks, Ericsson research konstantinos.dimou@ericsson.com 2013-02-20 Outline Introduction

More information

Inter-cell Interference Coordination Schemes via Homo/Hetero-geneous Network Deployment for LTE-Advanced

Inter-cell Interference Coordination Schemes via Homo/Hetero-geneous Network Deployment for LTE-Advanced Inter-cell Interference Coordination Schemes via Homo/Hetero-geneous Network Deployment for LTE-Advanced Daichi IMAMURA Atsushi SUMASU Masayuki HOSHINO Katsuhiko HIRAMATSU April 27, 2010 Tohoku-Univ. GCOE

More information

Feedback Compression Schemes for Downlink Carrier Aggregation in LTE-Advanced. Nguyen, Hung Tuan; Kovac, Istvan; Wang, Yuanye; Pedersen, Klaus

Feedback Compression Schemes for Downlink Carrier Aggregation in LTE-Advanced. Nguyen, Hung Tuan; Kovac, Istvan; Wang, Yuanye; Pedersen, Klaus Downloaded from vbn.aau.dk on: marts, 19 Aalborg Universitet Feedback Compression Schemes for Downlink Carrier Aggregation in LTE-Advanced Nguyen, Hung Tuan; Kovac, Istvan; Wang, Yuanye; Pedersen, Klaus

More information

Proposal for Candidate Radio Interface Technologies for IMT Advanced Based on LTE Release 10 and Beyond (LTE Advanced)

Proposal for Candidate Radio Interface Technologies for IMT Advanced Based on LTE Release 10 and Beyond (LTE Advanced) Proposal for Candidate Radio Interface Technologies for IMT Advanced Based on LTE Release 10 and Beyond (LTE Advanced) Takehiro Nakamura 3GPP TSG RAN Chairman 3GPP 2009

More information

THE USE OF MHZ FOR 5G EARLY ROLLOUT: OPPORTUNITIES AND CHALLENGES

THE USE OF MHZ FOR 5G EARLY ROLLOUT: OPPORTUNITIES AND CHALLENGES THE USE OF 3300-3800 MHZ FOR 5G EARLY ROLLOUT: OPPORTUNITIES AND CHALLENGES 5G Spectrum and Policy Forum 29 June 2017, GSMA MWC Shanghai Global mobile Suppliers Association Hu Wang (wanghu.wanghu@huawei.com)

More information

Introduction to Shortened TTI And Processing Time for LTE. Sam Meng HTC

Introduction to Shortened TTI And Processing Time for LTE. Sam Meng HTC Introduction to Shortened TTI And Processing Time for LTE Sam Meng HTC 1 Table of Contents Background Design Considerations Specification Concluding Remarks 2 3 Background TTI in LTE Short for Transmission

More information

Base station antenna selection for LTE networks

Base station antenna selection for LTE networks White paper Base station antenna selection for LTE networks Ivy Y. Kelly, Ph.D. technology development strategist, Sprint Martin Zimmerman, Ph.D. Base Station Antenna engineering director, CommScope Ray

More information

5G NR network deployment is now let s test!

5G NR network deployment is now let s test! 5G NR network deployment is now let s test! Jibran Siddiqui Technology and Application Engineer Mobile Network Testing Shakil Ahmed Regional Director Mobile Network Testing Contents Market drivers and

More information

2015 SoftBank Trial Akihabara,Tokyo

2015 SoftBank Trial Akihabara,Tokyo 2015 SoftBank Trial Akihabara,Tokyo Adding street pole mounted Small Cells as a 2 nd LTE layer for the Macro deployment in a dense urban area Akihabara Tokyo 500mm Height limit Detached SBA 1 Trial Goals

More information

LTE and NB-IoT. Luca Feltrin. RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna. Telecom Italia Mobile S.p.a. - TIM

LTE and NB-IoT. Luca Feltrin. RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna. Telecom Italia Mobile S.p.a. - TIM LTE and NB-IoT Luca Feltrin RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna Telecom Italia Mobile S.p.a. - TIM Index Ø 3GPP and LTE Specifications Ø LTE o Architecture o PHY Layer o Procedures

More information

LTE Aida Botonjić. Aida Botonjić Tieto 1

LTE Aida Botonjić. Aida Botonjić Tieto 1 LTE Aida Botonjić Aida Botonjić Tieto 1 Why LTE? Applications: Interactive gaming DVD quality video Data download/upload Targets: High data rates at high speed Low latency Packet optimized radio access

More information

Advanced antenna systems for 5G networks

Advanced antenna systems for 5G networks GFMC-18:000530 November 2018 Advanced antenna systems for 5G networks Recent technology developments have made advanced antenna systems (AAS) a viable option for large scale deployments in existing 4G

More information

Application Note. StarMIMO. RX Diversity and MIMO OTA Test Range

Application Note. StarMIMO. RX Diversity and MIMO OTA Test Range Application Note StarMIMO RX Diversity and MIMO OTA Test Range Contents Introduction P. 03 StarMIMO setup P. 04 1/ Multi-probe technology P. 05 Cluster vs Multiple Cluster setups Volume vs Number of probes

More information

Coordinated Joint Transmission in WWAN

Coordinated Joint Transmission in WWAN Coordinated Joint Transmission in WWAN Sreekanth Annapureddy, Alan Barbieri, Stefan Geirhofer, Sid Mallik and Alex Gorokhov May 2 Qualcomm Proprietary Multi-cell system model Think of entire deployment

More information

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

Tuning the Receiver Structure and the Pilot-to-Data Power Ratio in Multiple Input Multiple Output Systems

Tuning the Receiver Structure and the Pilot-to-Data Power Ratio in Multiple Input Multiple Output Systems Tuning the Receiver Structure and the Pilot-to-Data Power Ratio in Multiple Input Multiple Output Systems Gabor Fodor Ericsson Research Royal Institute of Technology 5G: Scenarios & Requirements Traffic

More information

MU-MIMO with Fixed Beamforming for

MU-MIMO with Fixed Beamforming for MU-MIMO with Fixed Beamforming for FDD Systems Manfred Litzenburger, Thorsten Wild, Michael Ohm Alcatel-Lucent R&I Stuttgart, Germany MU-MIMO - Motivation MU-MIMO Supporting multiple users in a cell on

More information

TEPZZ 7Z45Z B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION

TEPZZ 7Z45Z B_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION (19) TEPZZ 7Z4Z B_T (11) EP 2 704 03 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the patent: 31.0.17 Bulletin 17/22 (21) Application number: 12777443.8 (22)

More information

Planning of LTE Radio Networks in WinProp

Planning of LTE Radio Networks in WinProp Planning of LTE Radio Networks in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen mail@awe-communications.com Issue Date Changes V1.0 Nov. 2010 First version of document V2.0

More information

GTI Proof of Concept of 5G System White Paper

GTI Proof of Concept of 5G System White Paper GTI Proof of Concept of 5G System White Paper http://www.gtigroup.org Page 0 White Paper of Proof of Concept of 5G System V 1.0 Version V1.0 Deliverable Type Confidential Level Program Name Working Group

More information

M A R C H 2 6, Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies. 5G New Radio Challenges and Redefining Test

M A R C H 2 6, Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies. 5G New Radio Challenges and Redefining Test M A R C H 2 6, 2 0 1 8 Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies 1 5G Market Trends 5G New Radio Specification and Implications New Measurement Challenges and Redefining Test Summary

More information

ETSI TS V ( )

ETSI TS V ( ) TS 136 216 V14.0.0 (2017-04) TECHNICAL SPECIFICATION Universal Mobile Telecommunications System (UMTS); LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer for relaying operation (3GPP

More information

LTE-Advanced Evolving LTE towards IMT-Advanced

LTE-Advanced Evolving LTE towards IMT-Advanced LTE-Advanced Evolving LTE towards IMT-Advanced Stefan Parkvall, Erik Dahlman, Anders Furuskär, Ylva Jading, Magnus Olsson, Stefan Wänstedt, Kambiz Zangi Ericsson Research 68 Stockholm, Sweden Stefan.Parkvall@ericsson.com

More information

Ultra-broadband mobile networks from LTE-Advanced to 5G: evaluation of massive MIMO and multi-carrier aggregation effectiveness

Ultra-broadband mobile networks from LTE-Advanced to 5G: evaluation of massive MIMO and multi-carrier aggregation effectiveness Ultra-broadband mobile networks from LTE-Advanced to 5G: evaluation of massive MIMO and multi-carrier aggregation effectiveness Marco Neri, Maria-Gabriella Di Benedetto Dept. of Information Engineering,

More information

Performance evaluation of LTE in unlicensed bands for indoor deployment of ultra-broadband mobile networks

Performance evaluation of LTE in unlicensed bands for indoor deployment of ultra-broadband mobile networks Performance evaluation of LTE in unlicensed bands for indoor deployment of ultra-broadband mobile networks Claudio Rasconà, Maria-Gabriella Di Benedetto Dept. of Information Engineering, Electronics and

More information

White paper. Long Term HSPA Evolution Mobile broadband evolution beyond 3GPP Release 10

White paper. Long Term HSPA Evolution Mobile broadband evolution beyond 3GPP Release 10 White paper Long Term HSPA Evolution Mobile broadband evolution beyond 3GPP Release 10 HSPA has transformed mobile networks Contents 3 Multicarrier and multiband HSPA 4 HSPA and LTE carrier 5 HSDPA multipoint

More information

CELLULAR COMMUNICATION AND ANTENNAS. Doç. Dr. Mehmet ÇİYDEM

CELLULAR COMMUNICATION AND ANTENNAS. Doç. Dr. Mehmet ÇİYDEM CELLULAR COMMUNICATION AND ANTENNAS Doç. Dr. Mehmet ÇİYDEM mehmet.ciydem@engitek.com.tr, 533 5160580 1 CONTENT 1 ABOUT ENGİTEK 2 CELLULAR COMMUNICATION 3 BASE STATION ANTENNAS 4 5G CELLULAR COMMUNICATION

More information

5G deployment below 6 GHz

5G deployment below 6 GHz 5G deployment below 6 GHz Ubiquitous coverage for critical communication and massive IoT White Paper There has been much attention on the ability of new 5G radio to make use of high frequency spectrum,

More information

5G new radio architecture and challenges

5G new radio architecture and challenges WHITE PAPER 5G new radio architecture and challenges By Dr Paul Moakes, CTO, CommAgility www.commagility.com 5G New Radio One of the key enabling technologies for 5G will be New Radio (NR). 5G NR standardization

More information

Performance Studies on LTE Advanced in the Easy-C Project Andreas Weber, Alcatel Lucent Bell Labs

Performance Studies on LTE Advanced in the Easy-C Project Andreas Weber, Alcatel Lucent Bell Labs Performance Studies on LTE Advanced in the Easy-C Project 19.06.2008 Andreas Weber, Alcatel Lucent Bell Labs All Rights Reserved Alcatel-Lucent 2007 Agenda 1. Introduction 2. EASY C 3. LTE System Simulator

More information

MIMO Systems and Applications

MIMO Systems and Applications MIMO Systems and Applications Mário Marques da Silva marques.silva@ieee.org 1 Outline Introduction System Characterization for MIMO types Space-Time Block Coding (open loop) Selective Transmit Diversity

More information

Use of Multiple-Antenna Technology in Modern Wireless Communication Systems

Use of Multiple-Antenna Technology in Modern Wireless Communication Systems Use of in Modern Wireless Communication Systems Presenter: Engr. Dr. Noor M. Khan Professor Department of Electrical Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph:

More information

Passive and active antenna systems for base stations of IMT systems

Passive and active antenna systems for base stations of IMT systems Report ITU-R M.2334-0 (11/2014) Passive and active antenna systems for base stations of IMT systems M Series Mobile, radiodetermination, amateur and related satellite services ii Rep. ITU-R M.2334-0 Foreword

More information

TS 5G.201 v1.0 (2016-1)

TS 5G.201 v1.0 (2016-1) Technical Specification KT PyeongChang 5G Special Interest Group (); KT 5th Generation Radio Access; Physical Layer; General description (Release 1) Ericsson, Intel Corp., Nokia, Qualcomm Technologies

More information

NTT DOCOMO Technical Journal. 1. Introduction. 2. Features of an Activeantenna. 2.1 Basic Configuration of Base Station using an Active Antenna

NTT DOCOMO Technical Journal. 1. Introduction. 2. Features of an Activeantenna. 2.1 Basic Configuration of Base Station using an Active Antenna Active Antenna for More Advanced and Economical Radio Base Stations Base Station Active antennas that integrate radio transceiver functions in the antenna unit have been attracting attention as an approach

More information

ETSI TS V (201

ETSI TS V (201 TS 136 307 V11.16.0 (201 16-08) TECHNICAL SPECIFICATION LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); on User Equipments (UEs) supporting a release-independent frequency band Requirements (3GPP

More information

A Novel 3D Beamforming Scheme for LTE-Advanced System

A Novel 3D Beamforming Scheme for LTE-Advanced System A Novel 3D Beamforming Scheme for LTE-Advanced System Yu-Shin Cheng 1, Chih-Hsuan Chen 2 Wireless Communications Lab, Chunghwa Telecom Co, Ltd No 99, Dianyan Rd, Yangmei City, Taoyuan County 32601, Taiwan

More information

Ten Things You Should Know About MIMO

Ten Things You Should Know About MIMO Ten Things You Should Know About MIMO 4G World 2009 presented by: David L. Barner www/agilent.com/find/4gworld Copyright 2009 Agilent Technologies, Inc. The Full Agenda Intro System Operation 1: Cellular

More information

Real-life Indoor MIMO Performance with Ultra-compact LTE Nodes

Real-life Indoor MIMO Performance with Ultra-compact LTE Nodes Real-life Indoor MIMO Performance with Ultra-compact LTE Nodes Arne Simonsson, Maurice Bergeron, Jessica Östergaard and Chris Nizman Ericsson [arne.simonsson, maurice.bergeron, jessica.ostergaard, chris.nizman]@ericsson.com

More information

Daniel Bültmann, Torsten Andre. 17. Freundeskreistreffen Workshop D. Bültmann, ComNets, RWTH Aachen Faculty 6

Daniel Bültmann, Torsten Andre. 17. Freundeskreistreffen Workshop D. Bültmann, ComNets, RWTH Aachen Faculty 6 Cell Spectral Efficiency of a 3GPP LTE-Advanced System Daniel Bültmann, Torsten Andre 17. Freundeskreistreffen Workshop 2010 12.03.2010 2010 D. Bültmann, ComNets, RWTH Aachen Faculty 6 Schedule of IMT-A

More information

Providing Extreme Mobile Broadband Using Higher Frequency Bands, Beamforming, and Carrier Aggregation

Providing Extreme Mobile Broadband Using Higher Frequency Bands, Beamforming, and Carrier Aggregation Providing Extreme Mobile Broadband Using Higher Frequency Bands, Beamforming, and Carrier Aggregation Fredrik Athley, Sibel Tombaz, Eliane Semaan, Claes Tidestav, and Anders Furuskär Ericsson Research,

More information

System Performance of Cooperative Massive MIMO Downlink 5G Cellular Systems

System Performance of Cooperative Massive MIMO Downlink 5G Cellular Systems IEEE WAMICON 2016 April 11-13, 2016 Clearwater Beach, FL System Performance of Massive MIMO Downlink 5G Cellular Systems Chao He and Richard D. Gitlin Department of Electrical Engineering University of

More information