ECEN5817 Lecture 44. On-campus students: Pick up final exam Due by 2pm on Wednesday, May 9 in the instructor s office

Size: px
Start display at page:

Download "ECEN5817 Lecture 44. On-campus students: Pick up final exam Due by 2pm on Wednesday, May 9 in the instructor s office"

Transcription

1 ECEN5817 Lecture 44 On-campus students: Pick up final exam Due by 2pm on Wednesday, May 9 in the instructor s office Off-campus students: Pick up and submit the exam via D2L Exam is due in 5 days from the start time but no work will be accepted after 5pm MT on Wednesday, May 16 1

2 ECEN5817 Lecture 44 Dual-active-bridge converter* Q 1 Q 3 Q 5 Q 7 + v 2 v 4 1:n v 6 v 8 V g + V Q 2 Q 4 Q 6 Q 8 _ * R.W.A.A. De Doncker, D.M. Divan, M.H. Kheraluwala, "A Three-phase Soft-Switched High-Power-Density DC-DC Converter for High-Power Applications," IEEE Tran. on Industry Applications, Jan/Feb 1991, Vol. 27, No. 1, pp

3 DCX (V/nV g = 1) waveforms neglecting resonant transitions Q 1 v 2 i l Q 3 v 4 L l 1:n Q 5 v 6 Q 7 v 8 i o + Phase shift 0 < d < 1 dt s /2 V g v p v s Q 2 Q 4 Q 6 Q 8 V _ v p ni ( 1 d) I o 2V pk T g s 2 I pk d Ll 2 v s /n V g dt s I pk Ll 2 i l VgTs Io d( (1 d ) 2nL ni o I pk ni Note how phase o shift d controls the DCX power flow l T s /2 3 T s

4 Dual Active Bridge (DAB) DC-DC Converter Q 1 Q 3 Q 5 Q 7 i o C p C p C s C s L l 1:n t V i + + g l vp v s C out R out Q 2 Q 4 Q 6 Q 8 C p C p C s C s + V out 150-to-12 V, 100 W 1 MHz Efficiency: 97.5% i l Zero-voltage switching of all transistors v ds6 Relatively low peak and RMS v ds2 v ds4 current stresses Circuit design trade-offs driven by primary-side device C p, and secondary-side device R on [1] D. Costinett, H. Nguyen, R. Zane, D. Maksimovic, GaN-FET based dual active bridge DC-DC converter, IEEE APEC [2] D. Costinett, R. Zane, D. Maksimovic, "Automatic voltage and dead time control for efficiency optimization in a dual active bridge converter," IEEE APEC

5 Effects of primary-side device capacitance 1:n 0 t V + + g P v v out i l v p L l v s I l [A] i l time [ sec] RMS currents [A] to-12 V, 100 W I g,rms n t i out,rms L L l C p [pf] L l [μh] V p [V] v p C p = 70 pf C p = 40 pf C p = 20 pf time [ sec] Primary ZVS minimizes primary-side switching losses A larger device C p requires larger L l, and longer transition times, which results in larger peak and RMS currents, i.e. larger conduction loss on both primary and secondary sides

6 Device comparison for DAB application Si vs. GaN Transistors, 200V Si vs. GaN Transistors, 20-40V C oss R R on [pf Ω] C oss R R on [pf Ω] Q g R on [nc Ω] Q g R on [pc Ω] Data-sheet based comparison of Si and GaN (EPC 2011) devices Dt Datasheet tcc oss at 100V or 20V, and Q g at rated voltage V GS DAB circuit design trade-offs decided by primary-side C oss R on, and secondary-side device Q g R on 6

7 Device Loss Comparison: V DAB Secondary Gate Drive Loss Primary Gate Drive Loss Secondary Conduction Loss Primary Conduction Loss Power Loss [W W] 7

8 Efficiency optimization via control to-(10-12) V conversion 100 W i l v gs v gs2 v gs4 Effic ciency Manual Optimization Constant V out Automatic V Regulation out Output Power [W] 80W 20W V out /V g conversion ratio controlled to maximize efficiency over wider power range 8

9 Dual active bridge DC-DC converter summary At V/nV g = 1 (DCX), waveforms are close to ideal if F << 1 ZVS of all semiconductors for loads greater than a minimum ZVS can be extended to lighter loads by adjusting conversion ratio Phase shift can be used to control the conversion ratio (non-dcx operation) High step-down, or high step-up conversion ratios feasible at high efficiencies (well above 90%). Bidirectional power flow is possible For standard unidirectional applications, the secondary-side bridge can be just diodes (operation is similar, but not the same) Half-bridge and push-pull variations are available Some DAB issues: Transformer saturation (may require a series blocking capacitor) Switching frequency trade-offs (F << 1; transformer and inductor core and proximity losses) Significant new developments in Power Electronics based on emerging compound semiconductor (elements from 2 or more groups of the periodic table) devices (e.g. GaN, GaAs, SiC) 9

10 Application example: Automotive battery power management in a fuel-cell vehicle* *F. Krismer, J.W.Kolar, Accurate Power Loss Model Derivation of a High-Current Dual Active Bridge Converter for an Automotive Application, IEEE Trans. On Industrial Electronics, March

11 Efficiency results 11

12 Power flow control in 3-phase AC power distribution* Purpose: control active and reactive power flow; increasingly important function in AC power distribution systems with distributed resources Solution above requires bulky 50/60 Hz transformers, e.g. for a 6.6 kv, 1 MVA unit, each transformer weights around 4,000 kg * A. Inoue, H. Akagi, A Bidirectional Isolated DC DC Converter as a Core Circuit of the Next- Generation Medium-Voltage Power Conversion System, IEEE Trans. on Power Elect., March

13 Solution based on modular DCX Each cell can be switched as +E, -E, or 0 With N = 9 cells, a total 19 levels are available to synthesize high-quality sine-wave 13

14 Converter realization 14

15 Spring 2013: ECEN 5807 Modeling and Control of Power Electronics Averaged switch modeling and simulation (Section 7.4 and Appendix B) Techniques of Design-Oriented Analysis, with Application to Switching Converters Middlebrook's Extra Element Theorem (Appendix C) Input Filter Design (Chapter 10) The n-extra Element Theorem Middlebrook's Feedback Theorem Dynamic modeling and simulation of converters operating in discontinuous conduction mode (Chapter 11 and Appendix B) Introduction to sampled-data modeling Current Programmed Control (Chapter 12 and Appendix B) Introduction to Digital Control of Switching Converters Power-Factor Correction Rectifiers (Chapters 16-18) 15

16 Professional Certificate in Power Electronics Awarded upon completion of ECEN5797, ECEN5807 and ECEN5817 Send a request to Adam Sadoff, ECEE graduate program administrator sadoff@schof.colorado.ed 16

17 New courses offered in Fall 2012 and Spring 2013 ECEN5017 Power Electronics for Electric Drive Vehicles Fall

18 New courses offered in Fall 2012 and Spring 2013 ECEN5737 Adjustable Speed AC Drives Spring

19 New DOE GATE Center: Innovative Drivetrains in Electric Automotive Technology Education (IDEATE) Joint center between CU-Boulder and UC Colorado Springs campuses Graduate certificate in battery controls and electric drivetrains 19 19

20 Thank you for your hard work, good luck with the finals 20

DC Transformer. DCX derivation: basic idea

DC Transformer. DCX derivation: basic idea DC Transformer Ultimate switched-mode power converter: Minimum possible voltage and current stresses on all components Zero-voltage switching of all semiconductor devices It is possible to approach the

More information

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics Resonant and Soft-Switching Techniques in Power Electronics Instructor: Dragan Maksimovic office: ECOT 346 phone: 303-492-4863 maksimov@colorado.edu Prerequisite: ECEN5797 Introduction to Power Electronics

More information

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics. ECEN5817 website:

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics. ECEN5817 website: Resonant and Soft-Switching Techniques in Power Electronics Instructor: Dragan Maksimovic office: ECOT 346 phone: 303-492-4863 maksimov@colorado.edu Prerequisite: ECEN5797 Introduction to Power Electronics

More information

Simulation and Comparision of Back To Back System using Bidirectional Isolated DC-DC Converter with Active Energy Storage

Simulation and Comparision of Back To Back System using Bidirectional Isolated DC-DC Converter with Active Energy Storage International Journal of Electrical Engineering. ISSN 0974-2158 Volume 5, Number 3 (2012), pp. 231-238 International Research Publication House http://www.irphouse.com Simulation and Comparision of Back

More information

ECEN4797/5797 Lecture #11

ECEN4797/5797 Lecture #11 ECEN4797/5797 Lecture #11 Announcements On-campus students: pick up graded HW2, turn in HW3 Homework 4 is due in class on Friday, Sept. 23. The grace-period for offcampus students expires 5pm (Mountain)

More information

Fundamentals of Power Electronics

Fundamentals of Power Electronics Fundamentals of Power Electronics SECOND EDITION Robert W. Erickson Dragan Maksimovic University of Colorado Boulder, Colorado Preface 1 Introduction 1 1.1 Introduction to Power Processing 1 1.2 Several

More information

A Bidirectional Series-Resonant Converter For Energy Storage System in DC Microgrids

A Bidirectional Series-Resonant Converter For Energy Storage System in DC Microgrids IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 PP 01-09 www.iosrjen.org A Bidirectional Series-Resonant Converter For Energy Storage System in DC Microgrids Limsha T M 1,

More information

Dr.R.Seyezhai* *Associate Professor, Department of EEE, SSN College of Engineering, Chennai

Dr.R.Seyezhai* *Associate Professor, Department of EEE, SSN College of Engineering, Chennai Performance Evaluation of Modulation strategies for Dual Active Bridge Multiport DC-DC Converter ABSTRACT Dr.R.Seyezhai* *Associate Professor, Department of EEE, SSN College of Engineering, Chennai Multiport

More information

BIDIRECTIONAL CURRENT-FED FLYBACK-PUSH-PULL DC-DC CONVERTER

BIDIRECTIONAL CURRENT-FED FLYBACK-PUSH-PULL DC-DC CONVERTER BIDIRECTIONAL CURRENT-FED FLYBACK-PUSH-PULL DC-DC CONVERTER Eduardo Valmir de Souza and Ivo Barbi Power Electronics Institute - INEP Federal University of Santa Catarina - UFSC www.inep.ufsc.br eduardovs@inep.ufsc.br,

More information

Incorporating Active-Clamp Technology to Maximize Efficiency in Flyback and Forward Designs

Incorporating Active-Clamp Technology to Maximize Efficiency in Flyback and Forward Designs Topic 2 Incorporating Active-Clamp Technology to Maximize Efficiency in Flyback and Forward Designs Bing Lu Agenda 1. Basic Operation of Flyback and Forward Converters 2. Active Clamp Operation and Benefits

More information

Power Electronics for Inductive Power Transfer Systems

Power Electronics for Inductive Power Transfer Systems Power Electronics for Inductive Power Transfer Systems George Kkelis g.kkelis13@imperial.ac.uk Power Electronics Centre Imperial Open Day, July 2015 System Overview Transmitting End Inductive Link Receiving

More information

Dual Active Bridge Converter

Dual Active Bridge Converter Dual Active Bridge Converter Amit Jain Peregrine Power LLC now with Intel Corporation Lecture : Operating Principles Sinusoidal Voltages Bi-directional transfer Lagging current V o V 0 P VV sin L jl 0

More information

Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session

Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session March 24 th 2016 Dan Kinzer, COO/CTO dan.kinzer@navitassemi.com 1 Mobility (cm 2 /Vs) EBR Field (MV/cm) GaN vs. Si WBG GaN material

More information

ECEN 5807 Modeling and Control of Power Electronic Systems

ECEN 5807 Modeling and Control of Power Electronic Systems ECEN 5807 Modeling and Control of Power Electronic Systems Instructor: Prof. Bob Erickson Office telephone: (303) 492-7003 Fax: (303) 492-2758 Email: rwe@colorado.edu Course web page http://ece.colorado.edu/~ecen5807

More information

DUAL BRIDGE LLC RESONANT CONVERTER WITH FREQUENCY ADAPTIVE PHASE-SHIFT MODULATION CONTROL FOR WIDE VOLTAGE GAIN RANGE

DUAL BRIDGE LLC RESONANT CONVERTER WITH FREQUENCY ADAPTIVE PHASE-SHIFT MODULATION CONTROL FOR WIDE VOLTAGE GAIN RANGE DUAL BRIDGE LLC RESONANT CONVERTER WITH FREQUENCY ADAPTIVE PHASE-SHIFT MODULATION CONTROL FOR WIDE VOLTAGE GAIN RANGE S M SHOWYBUL ISLAM SHAKIB ELECTRICAL ENGINEERING UNIVERSITI OF MALAYA KUALA LUMPUR,

More information

High frequency Soft Switching Half Bridge Series-Resonant DC-DC Converter Utilizing Gallium Nitride FETs

High frequency Soft Switching Half Bridge Series-Resonant DC-DC Converter Utilizing Gallium Nitride FETs Downloaded from orbit.dtu.dk on: Jun 29, 2018 High frequency Soft Switching Half Bridge Series-Resonant DC-DC Converter Utilizing Gallium Nitride FETs Nour, Yasser; Knott, Arnold; Petersen, Lars Press

More information

Implementation of high-power Bidirectional dc-dc Converter for Aerospace Applications

Implementation of high-power Bidirectional dc-dc Converter for Aerospace Applications Implementation of high-power Bidirectional dc-dc Converter for Aerospace Applications Sabarinadh.P 1,Barnabas 2 and Paul glady.j 3 1,2,3 Electrical and Electronics Engineering, Sathyabama University, Jeppiaar

More information

A High Power Density Drivetrain-Integrated Electric Vehicle Charger

A High Power Density Drivetrain-Integrated Electric Vehicle Charger A High Power Density Drivetrain-Integrated Electric Vehicle Charger Usama Anwar, Hyeokjin Kim, Hua Chen, Robert Erickson, Dragan Maksimović and Khurram K. Afridi Colorado Power Electronics Center Department

More information

Power Management for Computer Systems. Prof. C Wang

Power Management for Computer Systems. Prof. C Wang ECE 5990 Power Management for Computer Systems Prof. C Wang Fall 2010 Course Outline Fundamental of Power Electronics cs for Computer Systems, Handheld Devices, Laptops, etc More emphasis in DC DC converter

More information

Evaluation and Design of a SiC-Based Bidirectional Isolated. DC/DC Converter

Evaluation and Design of a SiC-Based Bidirectional Isolated. DC/DC Converter Evaluation and Design of a SiC-Based Bidirectional Isolated DC/DC Converter Alex Chu Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of

More information

Design Guide. 100 khz Dual Active Bridge for 3.3kW Bi-directional Battery Charger. Introduction. Converter Design

Design Guide. 100 khz Dual Active Bridge for 3.3kW Bi-directional Battery Charger. Introduction. Converter Design 100 khz Dual Active Bridge for 3.3kW Bidirectional Battery Charger Introduction Dual Active Bridge (DAB) is a classic topology for bidirectional power conversion requiring a wide range of voltage transfer

More information

Bidirectional DC-DC Converter Using Resonant PWM Technique

Bidirectional DC-DC Converter Using Resonant PWM Technique Bidirectional DC-DC Converter Using Resonant PWM Technique Neethu P Uday, Smitha Paulose, Sini Paul PG Scholar, EEE Department, Mar Athanasius College of Engineering, Kothamangalam, neethuudayanan@gmail.com,

More information

GaN is Crushing Silicon. EPC - The Leader in GaN Technology IEEE PELS

GaN is Crushing Silicon. EPC - The Leader in GaN Technology IEEE PELS GaN is Crushing Silicon EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 1 Agenda How egan FETs work Hard Switched DC-DC converters High Efficiency point-of-load converter Envelope Tracking

More information

High Power Density Drivetrain Integrated Electric Vehicle Charger

High Power Density Drivetrain Integrated Electric Vehicle Charger University of Colorado, Boulder CU Scholar Electrical, Computer & Energy Engineering Graduate Theses & Dissertations Electrical, Computer & Energy Engineering Spring 1-1-2016 High Power Density Drivetrain

More information

The Quest for High Power Density

The Quest for High Power Density The Quest for High Power Density Welcome to the GaN Era Power Conversion Technology Drivers Key design objectives across all applications: High power density High efficiency High reliability Low cost 2

More information

Resonant Power Conversion

Resonant Power Conversion Resonant Power Conversion Prof. Bob Erickson Colorado Power Electronics Center Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Outline. Introduction to resonant

More information

High-Power-Density 400VDC-19VDC LLC Solution with GaN HEMTs

High-Power-Density 400VDC-19VDC LLC Solution with GaN HEMTs High-Power-Density 400VDC-19VDC LLC Solution with GaN HEMTs Yajie Qiu, Lucas (Juncheng) Lu GaN Systems Inc., Ottawa, Canada yqiu@gansystems.com Abstract Compared to Silicon MOSFETs, GaN Highelectron-Mobility

More information

A BI-DIRECTIONAL DC-DC CONVERTER TOPOLOGY FOR LOW POWER APPLICATION 1

A BI-DIRECTIONAL DC-DC CONVERTER TOPOLOGY FOR LOW POWER APPLICATION 1 A BI-DIRECTIONAL DC-DC CONVERTER TOPOLOGY FOR LOW POWER APPLICATION 1 Khyati K Champaneria, 2 Urvi T. Jariwala 1 PG Student, 2 Professor, Electrical Engineering Department, Sarvajanik College of Engineering

More information

Comparing investigation for a Bi-directional Isolated DC/DC Converter using Series Voltage Compensation

Comparing investigation for a Bi-directional Isolated DC/DC Converter using Series Voltage Compensation Comparing investigation for a Bi-directional Isolated DC/DC Converter using Series Voltage Compensation Satoshi Miyawaki Nagaoka University of Technology Niigata, Japan miyawaki@stn.nagaokaut.ac.jp Jun-ichi

More information

International Journal of Current Research and Modern Education (IJCRME) ISSN (Online): & Impact Factor: Special Issue, NCFTCCPS -

International Journal of Current Research and Modern Education (IJCRME) ISSN (Online): & Impact Factor: Special Issue, NCFTCCPS - HIGH VOLTAGE BOOST-HALF- BRIDGE (BHB) CELLS USING THREE PHASE DC-DC POWER CONVERTER FOR HIGH POWER APPLICATIONS WITH REDUCED SWITCH V. Saravanan* & R. Gobu** Excel College of Engineering and Technology,

More information

Design Considerations of Highly-Efficient Active Clamp Flyback Converter Using GaNFast Power ICs

Design Considerations of Highly-Efficient Active Clamp Flyback Converter Using GaNFast Power ICs Design Considerations of Highly-Efficient Active Clamp Flyback Converter Using GaNFast Power ICs Lingxiao (Lincoln) Xue March 29 th 2017 How to Improve Power Adapter Density? Traditional Travel Adapter

More information

International Journal of Science Engineering and Advance Technology, IJSEAT, Vol 2, Issue 8, August ISSN

International Journal of Science Engineering and Advance Technology, IJSEAT, Vol 2, Issue 8, August ISSN Performance Analysis of PV Standalone System with High-Power DC DC Converter Application to Induction Machine Drive Shaik A Johny Begam M.Tech Student Scholar Department of Electrical & Electronics Engineering,

More information

Breaking Speed Limits with GaN Power ICs March 21 st 2016 Dan Kinzer, COO/CTO

Breaking Speed Limits with GaN Power ICs March 21 st 2016 Dan Kinzer, COO/CTO Breaking Speed Limits with GaN Power ICs March 21 st 2016 Dan Kinzer, COO/CTO dan.kinzer@navitassemi.com 1 Efficiency The Need for Speed Tomorrow? Today 100kHz 1MHz 10MHz Bulky, Heavy Small, Light & Expensive

More information

Soft-Switched Dual-Input DC-DC Converter Combining a Boost-Half-Bridge Cell and a Voltage-Fed Full-Bridge Cell

Soft-Switched Dual-Input DC-DC Converter Combining a Boost-Half-Bridge Cell and a Voltage-Fed Full-Bridge Cell IEEE TRANSACTIONS ON POWER ELECTRONICS 1 Soft-Switched Dual-Input DC-DC Converter Combining a Boost-Half-Bridge Cell and a Voltage-Fed Full-Bridge Cell Zhe Zhang, Member, IEEE, Ole C. Thomsen, Member,

More information

A Novel Bidirectional DC-DC Converter with high Step-up and Step-down Voltage Gains

A Novel Bidirectional DC-DC Converter with high Step-up and Step-down Voltage Gains International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 9, Issue 11 (February 2014), PP. 63-71 A Novel Bidirectional DC-DC Converter with

More information

A High Efficient DC-DC Converter with Soft Switching for Stress Reduction

A High Efficient DC-DC Converter with Soft Switching for Stress Reduction A High Efficient DC-DC Converter with Soft Switching for Stress Reduction S.K.Anuja, R.Satheesh Kumar M.E. Student, M.E. Lecturer Sona College of Technology Salem, TamilNadu, India ABSTRACT Soft switching

More information

Full Bridge LLC ZVS Resonant Converter Based on Gen2 SiC Power MOSFET

Full Bridge LLC ZVS Resonant Converter Based on Gen2 SiC Power MOSFET Full Bridge LLC ZVS Resonant Converter Based on Gen2 SiC Power MOSFET Cree Power Application Engineering Rev. 2 1 Overview ZVS converters are typically used in the following applications: Industrial power

More information

Design of a Dual Active Bridge DC-DC Converter for Photovoltaic System Application. M.T. Tsai, C.L. Chu, Y.Z. Yang and D. R Wu

Design of a Dual Active Bridge DC-DC Converter for Photovoltaic System Application. M.T. Tsai, C.L. Chu, Y.Z. Yang and D. R Wu ICIC Express etters ICIC International c16 ISSN 185-766 Volume 7, Number 8, August 16 pp. 185-181 Design of a Dual Active Bridge DC-DC Converter for Photovoltaic System Application M.T. Tsai, C.. Chu,

More information

GaN in Practical Applications

GaN in Practical Applications in Practical Applications 1 CCM Totem Pole PFC 2 PFC: applications and topology Typical AC/DC PSU 85-265 V AC 400V DC for industrial, medical, PFC LLC 12, 24, 48V DC telecomm and server applications. PFC

More information

Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design procedure and concern

Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design procedure and concern Active Clamp Forward Converters Design Using UCC2897 Hong Huang August 2007 1 Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design

More information

IN recent years, the development of high power isolated bidirectional

IN recent years, the development of high power isolated bidirectional IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 2, MARCH 2008 813 A ZVS Bidirectional DC DC Converter With Phase-Shift Plus PWM Control Scheme Huafeng Xiao and Shaojun Xie, Member, IEEE Abstract The

More information

Design of step-up converter for a constant output in a high power design

Design of step-up converter for a constant output in a high power design 2015; 1(6): 125-129 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 3.4 IJAR 2015; 1(6): 125-129 www.allresearchjournal.com Received: 25-03-2015 Accepted: 27-04-2015 M. Tech, (VLSI Design and

More information

Design of a High Efficiency 30 kw Boost Composite Converter

Design of a High Efficiency 30 kw Boost Composite Converter Design of a High Efficiency 30 kw Boost Composite Converter Hyeokjin Kim, Hua Chen, Dragan Maksimović and Robert Erickson Department of Electrical, Computer and Energy Engineering University of Colorado

More information

DC-DC Resonant converters with APWM control

DC-DC Resonant converters with APWM control IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) ISSN: 2278-1676 Volume 2, Issue 5 (Sep-Oct. 2012), PP 43-49 DC-DC Resonant converters with APWM control Preeta John 1 Electronics Department,

More information

1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside

1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside Highlights of the Chapter 4 1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside voltage. Some industry-generated papers recommend

More information

Lecture 19 - Single-phase square-wave inverter

Lecture 19 - Single-phase square-wave inverter Lecture 19 - Single-phase square-wave inverter 1. Introduction Inverter circuits supply AC voltage or current to a load from a DC supply. A DC source, often obtained from an AC-DC rectifier, is converted

More information

A New ZVS Bidirectional DC-DC Converter With Phase-Shift Plus PWM Control Scheme

A New ZVS Bidirectional DC-DC Converter With Phase-Shift Plus PWM Control Scheme A New ZVS Bidirectional DC-DC Converter With Phase-Shift Plus PWM Control Scheme Huafeng Xiao, Liang Guo, Shaojun Xie College of Automation Engineering,Nanjing University of Aeronautics and Astronautics

More information

Code: 9A Answer any FIVE questions All questions carry equal marks *****

Code: 9A Answer any FIVE questions All questions carry equal marks ***** II B. Tech II Semester (R09) Regular & Supplementary Examinations, April/May 2012 ELECTRONIC CIRCUIT ANALYSIS (Common to EIE, E. Con. E & ECE) Time: 3 hours Max Marks: 70 Answer any FIVE questions All

More information

Operation, design and control of dual H-bridge-based isolated bidirectional DC DC converter C. Mi 1 H. Bai 1 C. Wang 2 S.

Operation, design and control of dual H-bridge-based isolated bidirectional DC DC converter C. Mi 1 H. Bai 1 C. Wang 2 S. Published in IET Power Electronics Received on 5th January 2008 Revised on 1st March 2008 ISSN 1755-4535 Operation, design and control of dual H-bridge-based isolated bidirectional DC DC converter C. Mi

More information

Constant-Frequency Soft-Switching Converters. Soft-switching converters with constant switching frequency

Constant-Frequency Soft-Switching Converters. Soft-switching converters with constant switching frequency Constant-Frequency Soft-Switching Converters Introduction and a brief survey Active-clamp (auxiliary-switch) soft-switching converters, Active-clamp forward converter Textbook 20.4.2 and on-line notes

More information

A New 98% Soft-Switching Full-Bridge DC-DC Converter based on Secondary-Side LC Resonant Principle for PV Generation Systems

A New 98% Soft-Switching Full-Bridge DC-DC Converter based on Secondary-Side LC Resonant Principle for PV Generation Systems IEEE PEDS 211, Singapore, 5-8 December 211 A New 98% Soft-Switching Full-Bridge DC-DC Converter based on Secondary-Side LC Resonant Principle for PV Generation Systems Daisuke Tsukiyama*, Yasuhiko Fukuda*,

More information

A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion

A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion Mrs.Nagajothi Jothinaga74@gmail.com Assistant Professor Electrical & Electronics Engineering Sri Vidya College of Engineering

More information

High Frequency Isolated Series Parallel Resonant Converter

High Frequency Isolated Series Parallel Resonant Converter Indian Journal of Science and Technology, Vol 8(15), DOI: 10.17485/ijst/2015/v8i15/52311, July 2015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 High Frequency Isolated Series Parallel Resonant Converter

More information

IN THE high power isolated dc/dc applications, full bridge

IN THE high power isolated dc/dc applications, full bridge 354 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 21, NO. 2, MARCH 2006 A Novel Zero-Current-Transition Full Bridge DC/DC Converter Junming Zhang, Xiaogao Xie, Xinke Wu, Guoliang Wu, and Zhaoming Qian,

More information

Michael de Rooij Efficient Power Conversion Corporation

Michael de Rooij Efficient Power Conversion Corporation The egan FET Journey Continues Performance comparison using egan FETs in 6.78 MHz class E and ZVS class D Wireless Power Transfer Michael de Rooij Efficient Power Conversion Corporation EPC - The Leader

More information

LeMeniz Infotech. 36, 100 Feet Road, Natesan Nagar, Near Indira Gandhi Statue, Pondicherry Call: , ,

LeMeniz Infotech. 36, 100 Feet Road, Natesan Nagar, Near Indira Gandhi Statue, Pondicherry Call: , , Analysis of the Interleaved Isolated Boost Converter with Coupled Inductors Abstract Introduction: A configuration with many parallel-connected boostflyback converters sharing a single active clamp has

More information

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER 1 Aravind Murali, 2 Mr.Benny.K.K, 3 Mrs.Priya.S.P 1 PG Scholar, 2 Associate Professor, 3 Assistant Professor Abstract - This paper proposes a highly efficient

More information

Course Number Section. Electronics I ELEC 311 BB Examination Date Time # of pages. Final August 12, 2005 Three hours 3 Instructor

Course Number Section. Electronics I ELEC 311 BB Examination Date Time # of pages. Final August 12, 2005 Three hours 3 Instructor Course Number Section Electronics ELEC 311 BB Examination Date Time # of pages Final August 12, 2005 Three hours 3 nstructor Dr. R. Raut M aterials allowed: No Yes X (Please specify) Calculators allowed:

More information

Performance Comparison for A4WP Class-3 Wireless Power Compliance between egan FET and MOSFET in a ZVS Class D Amplifier

Performance Comparison for A4WP Class-3 Wireless Power Compliance between egan FET and MOSFET in a ZVS Class D Amplifier The egan FET Journey Continues Performance Comparison for A4WP Class-3 Wireless Power Compliance between egan FET and MOSFET in a ZVS Class D Amplifier EPC - The leader in GaN Technology www.epc-co.com

More information

POWER ISIPO 29 ISIPO 27

POWER ISIPO 29 ISIPO 27 SI NO. TOPICS FIELD ISIPO 01 A Low-Cost Digital Control Scheme for Brushless DC Motor Drives in Domestic Applications ISIPO 02 A Three-Level Full-Bridge Zero-Voltage Zero-Current Switching With a Simplified

More information

Lecture 7: MOSFET, IGBT, and Switching Loss

Lecture 7: MOSFET, IGBT, and Switching Loss Lecture 7: MOSFET, IGBT, and Switching Loss ECE 481: Power Electronics Prof. Daniel Costinett Department of Electrical Engineering and Computer Science University of Tennessee Knoxville Fall 2013 Announcements

More information

A Bidirectional Resonant DC-DC Converter for Electrical Vehicle Charging/Discharging Systems

A Bidirectional Resonant DC-DC Converter for Electrical Vehicle Charging/Discharging Systems A Bidirectional Resonant DC-DC Converter for Electrical Vehicle Charging/Discharging Systems Fahad Khan College of Automation Engineering Nanjing University of Aeronautics and Astronautics, Nanjing 10016,

More information

GaN: Applications: Optoelectronics

GaN: Applications: Optoelectronics GaN: Applications: Optoelectronics GaN: Applications: Optoelectronics - The GaN LED industry is >10 billion $ today. - Other optoelectronic applications of GaN include blue lasers and UV emitters and detectors.

More information

Analysis and Design of a 500 W DC Transformer

Analysis and Design of a 500 W DC Transformer University of Colorado, Boulder CU Scholar Electrical, Computer & Energy Engineering Graduate Theses & Dissertations Electrical, Computer & Energy Engineering Spring 1-1-2014 Analysis and Design of a 500

More information

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor 770 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 48, NO. 4, AUGUST 2001 A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor Chang-Shiarn Lin, Member, IEEE, and Chern-Lin

More information

EE152 Green Electronics

EE152 Green Electronics EE152 Green Electronics Power Factor and Inverters 10/28/14 Prof. William Dally Computer Systems Laboratory Stanford University Lab 5 PV lab this week Course Logistics Solar day is on Thursday 10/30/14

More information

In Search of Powerful Circuits: Developments in Very High Frequency Power Conversion

In Search of Powerful Circuits: Developments in Very High Frequency Power Conversion Massachusetts Institute of Technology Laboratory for Electromagnetic and Electronic Systems In Search of Powerful Circuits: Developments in Very High Frequency Power Conversion David J. Perreault Princeton

More information

Importance of High Power/ High Frequency CS-devices on Wireless Power Supply Using Direct Current Resonance System

Importance of High Power/ High Frequency CS-devices on Wireless Power Supply Using Direct Current Resonance System Importance of High Power/ High Frequency CSdevices on Wireless Power Supply Using Direct Current Resonance System Tatsuya Hosotani Company: Murata Manufacturing Co., Ltd. Email: hosotani@murata.com Keywords:

More information

Sample Exam Solution

Sample Exam Solution Session 44; 1/6 Sample Exam Solution Problem 1: You are given a single phase diode rectifier, as shown below. Do the following: L d I s v (t) s L s C d V d Load : 310V Xs : 0.4ohm at 400 Hz Vspk : 360V

More information

A New Active Soft Switching Technique for Pulse Width Modulated Full Bridge DC-DC Converters

A New Active Soft Switching Technique for Pulse Width Modulated Full Bridge DC-DC Converters A New Active Soft Switching Technique for Pulse Width Modulated Full Bridge DC-DC Converters Naga Brahmendra Yadav Gorla and N. Lakshmi Narasamma auxiliary switches are not soft switched. A new active

More information

Lecture 4 ECEN 4517/5517

Lecture 4 ECEN 4517/5517 Lecture 4 ECEN 4517/5517 Experiment 3 weeks 2 and 3: interleaved flyback and feedback loop Battery 12 VDC HVDC: 120-200 VDC DC-DC converter Isolated flyback DC-AC inverter H-bridge v ac AC load 120 Vrms

More information

EE155/255 Green Electronics

EE155/255 Green Electronics EE155/255 Green Electronics Quiz Review 11/14/16 Prof. William Dally Computer Systems Laboratory Stanford University Quiz is next Wednesday 11/16 7:00PM to 9:00PM Room 200-203 Covers all material to date

More information

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications International OPEN ACCESS Journal Of Modern Engineering Research (IJMER A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications Aswathi M. Nair 1, K. Keerthana 2 1, 2 (P.G

More information

Improved Battery Charger Circuit Utilizing Reduced DC-link Capacitors

Improved Battery Charger Circuit Utilizing Reduced DC-link Capacitors Improved Battery Charger Circuit Utilizing Reduced DC-link Capacitors Vencislav Valchev 1, Plamen Yankov 1, Orlin Stanchev 1 1 Department of Electronics and Microelectronics, Technical University of Varna,

More information

Simulation of Dual Active Bridge Converter for Energy Storage System Vuppalapati Dinesh 1, E.Shiva Prasad 2

Simulation of Dual Active Bridge Converter for Energy Storage System Vuppalapati Dinesh 1, E.Shiva Prasad 2 International Journal of Engineering Trends and Technology (IJETT) Volume 27 Number 2- September 215 Simulation of Dual Active Bridge Converter for Energy Storage System Vuppalapati Dinesh 1, E.Shiva Prasad

More information

A Novel Control Method Focusing on Reactive Power for A Dual Active Bridge Converter

A Novel Control Method Focusing on Reactive Power for A Dual Active Bridge Converter A Novel Control Method Focusing on Reactive Power for A Dual Active Bridge Converter Jun-ichi Itoh, Hayato Higa, Tsuyoshi Nagano Department of Electronics and Information Engineering Nagaoka University

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 6.3.5. Boost-derived isolated converters A wide variety of boost-derived isolated dc-dc converters

More information

Lecture 7 ECEN 4517/5517

Lecture 7 ECEN 4517/5517 Lecture 7 ECEN 4517/5517 Experiments 4-5: inverter system Exp. 4: Step-up dc-dc converter (cascaded boost converters) Analog PWM and feedback controller to regulate HVDC Exp. 5: DC-AC inverter (H-bridge)

More information

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES 47 CHAPTER 3 DC-DC CONVERTER TOPOLOGIES 3.1 INTRODUCTION In recent decades, much research efforts are directed towards finding an isolated DC-DC converter with high volumetric power density, low electro

More information

Power of GaN. Enabling designers to create smaller, more efficient and higher-performing AC/DC power supplies

Power of GaN. Enabling designers to create smaller, more efficient and higher-performing AC/DC power supplies Power of GaN Enabling designers to create smaller, more efficient and higher-performing AC/DC power supplies Steve Tom Product Line Manager, GaN Products stom@ti.com Solving power and energy-management

More information

Michael de Rooij & Yuanzhe Zhang Comparison of 6.78 MHz Amplifier Topologies for 33W, Highly Resonant Wireless Power Transfer Efficient Power

Michael de Rooij & Yuanzhe Zhang Comparison of 6.78 MHz Amplifier Topologies for 33W, Highly Resonant Wireless Power Transfer Efficient Power Michael de Rooij & Yuanzhe Zhang Comparison of 6.78 MHz Amplifier Topologies for 33W, Highly Resonant Wireless Power Transfer Efficient Power Conversion Corporation Agenda Wireless power trends AirFuel

More information

Designing Of Bidirectional Dc-Dc Converter For High Power Application With Current Ripple Reduction Technique

Designing Of Bidirectional Dc-Dc Converter For High Power Application With Current Ripple Reduction Technique Designing Of Bidirectional Dc-Dc Converter For High Power Application With Current Ripple Reduction Technique Vemu.Gandhi, Sadik Ahamad Khan PG Scholar, Assitent Professor NCET,Vijayawada, Abstract-----

More information

The First Step to Success Selecting the Optimal Topology Brian King

The First Step to Success Selecting the Optimal Topology Brian King The First Step to Success Selecting the Optimal Topology Brian King 1 What will I get out of this session? Purpose: Inside the Box: General Characteristics of Common Topologies Outside the Box: Unique

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK IMPLEMENTATION OF VOLTAGE DOUBLERS RECTIFIED BOOST- INTEGRATED HALF BRIDGE (VDRBHB)

More information

Double Boost SEPIC AC-DC Converter

Double Boost SEPIC AC-DC Converter Double Boost SEPIC AC-DC Converter Sona P 1, Kavitha Issac 2, Beena M Varghese 3 1 Student, Electrical and Electronics Engineering, Mar Athanasius College of Engineering, Kerala, India 2 Asst. Professor,

More information

GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance

GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance PSMA Industry Session, Semiconductors Dan Kinzer, CTO/COO dan.kinzer@navitassemi.com March 2017 Power Electronics: Speed & Efficiency are

More information

Chapter 6 Soft-Switching dc-dc Converters Outlines

Chapter 6 Soft-Switching dc-dc Converters Outlines Chapter 6 Soft-Switching dc-dc Converters Outlines Classification of soft-switching resonant converters Advantages and disadvantages of ZCS and ZVS Zero-current switching topologies The resonant switch

More information

FSFR-XS Series Fairchild Power Switch (FPS ) for Half-Bridge Resonant Converters

FSFR-XS Series Fairchild Power Switch (FPS ) for Half-Bridge Resonant Converters February 203 FSFR-XS Series Fairchild Power Switch (FPS ) for Half-Bridge Resonant Converters Features Variable Frequency Control with 50% Duty Cycle for Half-Bridge Resonant Converter Topology High Efficiency

More information

K.Vijaya Bhaskar. Dept of EEE, SVPCET. AP , India. S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP , India.

K.Vijaya Bhaskar. Dept of EEE, SVPCET. AP , India. S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP , India. A Closed Loop for Soft Switched PWM ZVS Full Bridge DC - DC Converter S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP-517583, India. Abstract: - This paper propose soft switched PWM ZVS full bridge DC to

More information

Chapter 6: Converter circuits

Chapter 6: Converter circuits Chapter 6. Converter Circuits 6.1. Circuit manipulations 6.2. A short list of converters 6.3. Transformer isolation 6.4. Converter evaluation and design 6.5. Summary of key points Where do the boost, buck-boost,

More information

235 W Maximum Power Dissipation (whole module) 470 T J Junction Operating Temperature -40 to 150. Torque strength

235 W Maximum Power Dissipation (whole module) 470 T J Junction Operating Temperature -40 to 150. Torque strength Discontinued PRODUCT SUMMARY (TYPICAL) V DS (V) 600 R DS(on) (m ) 30 GaN Power Hybrid HEMT Half-Bridge Module Features High frequency operation Free-wheeling diode not required Applications Compact DC-DC

More information

GaAs PowerStages for Very High Frequency Power Supplies. Greg Miller Sr. VP - Engineering Sarda Technologies

GaAs PowerStages for Very High Frequency Power Supplies. Greg Miller Sr. VP - Engineering Sarda Technologies GaAs PowerStages for Very High Frequency Power Supplies Greg Miller Sr. VP - Engineering Sarda Technologies gmiller@sardatech.com Agenda Case for Higher Power Density Voltage Regulators Limitations of

More information

SIMULATION OF A BI-DIRECTIONAL DC-DC CONVERTER FOR PV APPLICATIONS

SIMULATION OF A BI-DIRECTIONAL DC-DC CONVERTER FOR PV APPLICATIONS SIMULATION OF A BI-DIRECTIONAL DC-DC CONVERTER FOR PV APPLICATIONS Dr.R.Seyezhai and M.UmaMaheswari Associate Professor, Department of EEE, SSN College of Engineering, Chennai. ABSTRACT Bi-directional

More information

Generating Isolated Outputs in a Multilevel Modular Capacitor Clamped DC-DC Converter (MMCCC) for Hybrid Electric and Fuel Cell Vehicles

Generating Isolated Outputs in a Multilevel Modular Capacitor Clamped DC-DC Converter (MMCCC) for Hybrid Electric and Fuel Cell Vehicles Generating Isolated Outputs in a Multilevel Modular Capacitor Clamped DC-DC Converter (MMCCC) for Hybrid Electric and Fuel Cell Vehicles Faisal H. Khan 1, Leon M. Tolbert 2 1 Electric Power Research Institute

More information

MegaCube. G. Ortiz, J. Biela, J.W. Kolar. Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory

MegaCube. G. Ortiz, J. Biela, J.W. Kolar. Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory MegaCube G. Ortiz, J. Biela, J.W. Kolar Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch Offshore Wind Power Generation: DC v/s AC Transmission

More information

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application Thomas Mathew.T PG Student, St. Joseph s College of Engineering, C.Naresh, M.E.(P.hd) Associate Professor, St.

More information

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams.

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams. POWER ELECTRONICS QUESTION BANK Unit 1: Introduction 1. Explain the control characteristics of SCR and GTO with circuit diagrams, and waveforms of control signal and output voltage. 2. Explain the different

More information

IT is well known that the boost converter topology is highly

IT is well known that the boost converter topology is highly 320 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 21, NO. 2, MARCH 2006 Analysis and Design of a Low-Stress Buck-Boost Converter in Universal-Input PFC Applications Jingquan Chen, Member, IEEE, Dragan Maksimović,

More information

Frequency, where we are today, and where we need to go

Frequency, where we are today, and where we need to go Frequency, where we are today, and where we need to go Ionel Dan Jitaru Rompower Energy Systems Inc. 6262 N. Swan Rd., Suite 200 Tucson, Arizona 85718 OUTLINE Directions in topologies and operation frequency

More information

Power Electronics for Inductive Power Transfer Systems. George Kkelis, PhD Student (Yr2) 02 Sept 2015

Power Electronics for Inductive Power Transfer Systems. George Kkelis, PhD Student (Yr2) 02 Sept 2015 Power Electronics for Inductive Power Transfer Systems George Kkelis, PhD Student (Yr) g.kkelis13@imperial.ac.uk Sept 15 Introduction IPT System Set-Up: TX DC Load Inverter Power Meter ectifier Wireless

More information