Power. GaN. Rdyn in hard and soft-switching applications. P. Gassot, P. Moens, M. Tack, Corporate R&D Bodo Power Conference Munich, Dec.

Size: px
Start display at page:

Download "Power. GaN. Rdyn in hard and soft-switching applications. P. Gassot, P. Moens, M. Tack, Corporate R&D Bodo Power Conference Munich, Dec."

Transcription

1 Power GaN Rdyn in hard and soft-switching applications P. Gassot, P. Moens, M. Tack, Corporate R&D Bodo Power Conference Munich, Dec. 2017

2 Acknowledgements The authors wish to acknowledge and thank the University of Padova (Italy) and the University of Bristol (UK) for their significant contribution to this reliability investigation as well as our colleagues from ON Semiconductor who have effectively collaborated to this work. References: Impact of buffer leakage on intrinsic reliability of 650V AlGaN/GaN HEMTs, P. Moens, A. Banerjee, M. J. Uren, M. Meneghini, S.Karboyan, I. Chatterjee, P. Vanmeerbeek, M. Cäsar, C. Liu, A. Salih, E. Zanoni, G. Meneghesso, M. Kuball, M. Tack, 2015 IEEE International Electron Devices Meeting (IEDM), Pages Evidence of Hot-Electron Effects During Hard Switching of AlGaN/GaN HEMTs, I. Rossetto; M. Meneghini; A. Tajalli; S. Dalcanale; C. De Santi; P. Moens; A. Banerjee; E. Zanoni; G. Meneghesso, IEEE Transactions on Electron Devices, 2017, Volume: 64, Issue: 9, Pages: /6/2017

3 GaN High Electron Mobility Transistor GaN Material Binary Crystal Spontaneous Polarization due to electro-negativity difference between N- atoms and Ga-atoms N=3.4, Ga=1.8 AlGaN layer Higher Spontaneous Polarization N=3.4, Ga=1.8, Al=1.6 Piezoelectric polarization due to strained layer 2DEG: Ns HEMT ns~ cm -2 (Typical MOSFET ns ~10 12 cm-2) Low Ron high 2DEG n s ~1x10 13 cm -2 high 2DEG mobility ~2000cm2/Vs High Breakdown wide bandgap (3.4 ev) Low Capacitance no junctions (undoped) No Qrr 3 12/6/2017

4 How to release GaN Power Devices to the market JEDEC Standard for Power Discrete Qualification: Semiconductor Power discretes are currently qualified based on the JEDEC Standard (JESD47/JEP122) developed for Silicon (Different activation energies for GaN so different testing conditions/models needed) The Statistical methods used to calculate failure rates are based on field returns and well identified failure modes (Limited knowledge built on GaN) The JEDEC standard does NOT provide any dynamic testing conditions, (The stability of dynamic electrical performance are crucial for GaN) 10 Yrs Ea=2.1 ev [Whitman 2014] 1000h 4 12/6/2017

5 New JEDEC Standard required for GaN JC-70.1: GaN Power Electronic Conversion Semiconductor Standards: Accelerate the Maturity of the Industry by Creating Credible Standards for GaN learning from the Past, Ramp Faster and Lower Risk to Customer Focus on Application & Usage in End Equipment and NOT on Harmonizing Devices, Process Equipment (Source: S.W. Butler, Standardization for Wide Band Gap Devices: GaNSpec DWG, APEC 2017) 5 12/6/2017

6 GaN Quality Assurance vision Structured Progressive Quality Assurance QUALITY ASSURANCE QUALIFICATION Failure Modes Field Returns (FIT) Test-to-Failure (FIT) INITRNSIC GaN specific Si (JESD47/AEC-Q101) Design SOA Application Mission Profile Electrical Temperature Ruggedness EXTRINSIC GaN specific Si (JESD47/AEC-Q101) Screening Reliability Physics Characterization & Modeling Traps Acceleration Failure Modes 6 12/6/2017

7 GaN HEMT Safe Operating Area Limitations of the Time Dependent Safe Operating Area: Gate Reliability Vgs max. I DS Short-circuit capability Max. Pulsed Drain Current Vgs min. Electromigration (Jmax) at Tambient/Tjunction Dynamic Ron ON-state Soft Switching Hot Carrier Injection Hard Switching 2 Impact of the switching modes Max. Allowed Voltage I L Load Profile Cumulated time V OFF-state 1 DS Reliability of the GaN Epi HT Reverse Bias UIS Capability 7 12/6/2017

8 1 Reliability of the GaN Epi Corporate R&D Bodo Power Conference Munich, Dec /6/2017

9 Reliability of the GaN Epi Buffer GaN Buffer behaves as a leaky dielectric One V TLF : one dominant trap [Lampert, PhysRev1956]. In our case C N Above V TLF : steep voltage acceleration (V n ) due to Poole Frenkel Stressed at T=200 C Acceleration Model built & verified 9 12/6/2017

10 2 Impact of the Switching Modes Corporate R&D Bodo Power Conference Munich, Dec /6/2017

11 What are typical Applications for GaN? Qualifying a product requires understanding its applications. Typical application of GaN includes the following: Boost/Buck converter Inverter Bridgeless PFC etc Most of the time GaN is hard-switched Standard test vehicle requiring hard-switching testing is required. Targeted GaN Applications 11 12/6/2017

12 Hard-Switching Test Vehicle DGD/Drain-Gate-Delay is referred to the overlap of the drain and gate voltage during OFF to ON switching cycle. DGD is calculated as the time required from 50% variation of VD to VG = Vth. Positive DGD Towards Soft switching condition Example Negative DGD Towards Hard switching condition Higher the absolute magnitude, harsher is the condition. DGD V DSQ = 600V t off 2ms Soft 7.4 µs 3.3 µs Soft Drain fall time = 1µs Drain rise time = 1µs 2.4 µs V DS from 0V to 4V (a) 1.4 µs t on_drain V D = V DSQ /2 V G = V th t on_gate 0.4 µs V GSQ = -20V t off 2ms D G D V GS = 0V t on = 20µs Gate rise time = 1µs Gate fall time = 1µs Hard µs µs µs µs Hard 12 12/6/2017 (b)

13 Measurement Conditions R LOAD = 1kΩ V G DUT V DD V S Pulsed IV (Double pulse setup): V G = -20V V DD/DS = from 0V to 600V, 100V/step V S = V chuck = 0V Hard Switching stress: V G = 0V; V DD = As per the stress condition V DS measured by the custom probe I DS = I RLOAD = V RLOAD /R LOAD V S = V chuck = 0V Temperature: Room and High temperature Pulsed I D V D Hard Switching Stress (DGD varying) Pulsed I D V D 13 12/6/2017

14 Study of Possible Degradation Hard switching condition leads to a dynamic variation of the on-resistance. The analysis of the on-resistance variation demonstrates that: Increase of the on-resistance is directly linked to decrease of DGD. No degradation observed for Soft switching condition (comparable to fresh device). Is the degradation off-state voltage acceralated? On resistance (ohm*mm) DGD (us) 3.2us -0.2us -1us -1.06us -1.11us -1.17us -1.22us -1.27us Soft to Hard Sw VD,off=600V VGSQ = -20V, VGS = 0V VDSQ (V) VDSQ (V) On resistance variation (a.u.) 1.5 DGD (us) 3.2us -0.2us -1us -1.06us -1.11us -1.17us -1.22us -1.27us Soft to Hard Sw R onvariation = R on(-20,vdsq) /R on(0,0) 14 12/6/2017

15 Is the Degradation Voltage Accelerated? The degradation is Voltage accelerated. Off-state voltage 300V + decreased DGD significant increase of the on-resistance. On resistance variaiton (a.u.) Towards hard switching VGSQ = -20V, VDSQ = 100V 200V 300V 400V 500V 600V Towards soft switching DGD value (us) zoom On resistance variaiton (a.u.) VGSQ = -20V, VDSQ = 100V 200V 300V 400V 500V 600V DGD value (us) 15 12/6/2017 R onvariation = R on(-20,vdsq) /R on(0,0)

16 Is the Degradation Temperature Accelerated? The dynamic variation of the on resistance changes with the ambient temperature. The change of the dynamic RON for VDSQ = 200V increases with temperature, with the «Bump: shifting towards lower VDSQ. At VDSQ = 600V the variation of the on-resistance slightly decreases with temperature, presumably influenced by: Increase of the detrapping process with temperature, detectable at both DGD = 3.3 µs and DGD = µs. Decrease of the influence of the hot electrons, detectable mainly at DGD = µs. (a) (b) 16 12/6/2017 R onvariation = R on(-20,vdsq) /R on(0,0)

17 Understanding of the Degradation Mechanism? Device degradation under hard switching condition is caused by Hot Electrons in the channel. Higher the power dissipation Higher is the degradation. Recent TCAD [1] studies reported in literature points to similar facts. Gate/Field plate edges (edge effect) suffer from high E-field in off-state, leading to higher degradation in those localized areas. Hot carrier related degradation during hardswitching turn-on 17 12/6/2017 [1]: S. Bahl, et al, Product level Reliability of GaN Devices, IRPS 2016

18 Emission Microscopy Results [1] Spatially resolved EL spectra confirms the hot electron related degradation during hard switching. Decreasing DGD Higher EL signal Higher degradation. No emission observed for soft switching condition. EL/Degradation signal is observed at the gate edge of the drain side. Results in line with TCAD understanding. DGD = 0.4 µs DGD = -0.4 µs DGD = µs DGD = µs DGD = -0.9 µs Decreasing DGD Drain Gate Drain Gate Drain Gate Drain Gate Drain Gate Hard Switching Gate Drain Soft Switching (DGD=3.3 us) DGD = µs DGD = -1 µs Drain Gate Drain Gate 18 12/6/2017

19 Emission Microscopy Results [2] Good correlation is noticed between the increase of the EL signal and of the dynamic on resistance. Dynamic RDS,on increase can be attributed to hot carrier type of degradation occurring in the access region (gate-drain). EL signal (a.u.) 1.2M 1.1M 1.0M 900.0k 800.0k 700.0k acquisition time: 60s EM gain: 200 Trapping: (VGSQ,VDSQ) = (-20V,600V) ZOOM 600.0k -1.0µ µ 2.0µ 3.0µ DGD (s) EL signal (a.u.) 1.2M 1.1M 1.0M 900.0k 800.0k 700.0k acquisition time: 60s EM gain: 200 Trapping: (VGSQ,VDSQ) = (-20V,600V) 600.0k -1.0µ n n DGD (s) Dynamic On resistance (ohm*mm) CCD camera noise level DGD decrease (V GSQ, V DSQ ) = (-20V, 600V) 600.0k 800.0k 1.0M 1.2M EL signal (a.u.) 19 12/6/2017

20 Is the Degradation Recoverable? Comparison of EL spectra before and after hard switching stress measurement demonstrates no permanent degradation. EL signal under hard switching stress 20 12/6/2017

21 Electro-luminescence as a means to define SOA Two identical device layouts, different buffers (optimization for dyn Ron, lateral leakage current etc ) I DS (ma) W level 2 1 EL (a.u.) I DS (ma) W level 2 1 EL (a.u.) V DS (V) V DS (V) 21 12/6/2017

22 Impact of the Switching Modes - Summary A successful methodology is established for reliability assessment of GaN. Initial demonstration on single finger devices shows good correlation with understanding (& TCAD). Measurement setup can be easily adapted (high flexibility) for powerbar measurements. Tests are done at wafer level Fast feedback High power dissipation during a hard-switching event is one of the major degrading factors for GaN power devices. Hot electrons accelerated under high off-state bias leads to trapping in access regions Dynamic RDS on increase. Higher the power dissipation during hard-switching event = Higher is the RDS on increase. This degradation is NOT permanent Degradation can be reduced by proper device architecture (such as Field Plate design, etc) 22 12/6/2017

23 Conclusions ON Semiconductors vision on Quality Assurance for GaN based power systems is presented: Si JEDEC qualification to be extended with GaN specific tests, e.g. on Rdyn Design SOAs are developed, supporting application mission profiles Extensive screening tests are mandatory in the early years As an example, Rdson dispersion (Rdyn) is studied: Impact demonstrated of hard switching vs soft switching applications. SOA Design rules, enabling product design for high reliability applications Collective learning to result in a new Jedec standard specifically for GaN (JC-70) /6/2017

Customized probe card for on-wafer testing of AlGaN/GaN power transistors

Customized probe card for on-wafer testing of AlGaN/GaN power transistors Customized probe card for on-wafer testing of AlGaN/GaN power transistors R. Venegas 1, K. Armendariz 2, N. Ronchi 1 1 imec, 2 Celadon Systems Inc. Outline Introduction GaN for power switching applications

More information

Customized probe card for on wafer testing of AlGaN/GaN power transistors

Customized probe card for on wafer testing of AlGaN/GaN power transistors Customized probe card for on wafer testing of AlGaN/GaN power transistors R. Venegas 1, K. Armendariz 2, N. Ronchi 1 1 imec, 2 Celadon Systems Inc. Presented by Bryan Root 2 Outline Introduction GaN for

More information

State of Demonstrated HV GaN Reliability and Further Requirements

State of Demonstrated HV GaN Reliability and Further Requirements State of Demonstrated HV GaN Reliability and Further Requirements APEC 2015 Charlotte, NC Tim McDonald Steffen Sack, Deepak Veereddy, Yang Pan, Hyeongnam Kim, Hari Kannan, Mohamed Imam Agenda What Composes

More information

Fundamental Failure Mechanisms Limiting Maximum Voltage Operation in AlGaN/GaN HEMTs. Michael D. Hodge, Ramakrishna Vetury, and Jeffrey B.

Fundamental Failure Mechanisms Limiting Maximum Voltage Operation in AlGaN/GaN HEMTs. Michael D. Hodge, Ramakrishna Vetury, and Jeffrey B. Fundamental Failure Mechanisms Limiting Maximum Voltage Operation in AlGaN/GaN HEMTs Michael D. Hodge, Ramakrishna Vetury, and Jeffrey B. Shealy Purpose Propose a method of determining Safe Operating Area

More information

On-wafer GaN Power Semiconductor Characterization. Marc Schulze Tenberge Manager, Applications Engineering Maury Microwave

On-wafer GaN Power Semiconductor Characterization. Marc Schulze Tenberge Manager, Applications Engineering Maury Microwave On-wafer GaN Power Semiconductor Characterization Marc Schulze Tenberge Manager, Applications Engineering Maury Microwave Agenda 1. Introduction 2. Setup 3. Measurements for System Evaluation 4. Measurements

More information

GaN Reliability Through Integration and Application Relevant Stress Testing

GaN Reliability Through Integration and Application Relevant Stress Testing GaN Reliability Through Integration and Application Relevant Stress Testing APEC 2018 PSMA Sponsored Industry Session: Reliability and Ruggedness How to Address these Challenges in Wide Bandgap Semiconductor

More information

RF Power Degradation of GaN High Electron Mobility Transistors

RF Power Degradation of GaN High Electron Mobility Transistors RF Power Degradation of GaN High Electron Mobility Transistors The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Wide Band-Gap Power Device

Wide Band-Gap Power Device Wide Band-Gap Power Device 1 Contents Revisit silicon power MOSFETs Silicon limitation Silicon solution Wide Band-Gap material Characteristic of SiC Power Device Characteristic of GaN Power Device 2 1

More information

PERSPECTIVES FOR DISRUPTIVE 200MM/8-INCH GAN POWER DEVICE AND GAN-IC TECHNOLOGY DR. DENIS MARCON SR. BUSINESS DEVELOPMENT MANAGER

PERSPECTIVES FOR DISRUPTIVE 200MM/8-INCH GAN POWER DEVICE AND GAN-IC TECHNOLOGY DR. DENIS MARCON SR. BUSINESS DEVELOPMENT MANAGER PERSPECTIVES FOR DISRUPTIVE 200MM/8-INCH GAN POWER DEVICE AND GAN-IC TECHNOLOGY DR. DENIS MARCON SR. BUSINESS DEVELOPMENT MANAGER What I will show you today 200mm/8-inch GaN-on-Si e-mode/normally-off technology

More information

Electrical Characteristics (T A =25 unless otherwise noted) Off Characteristics Parameter Symbol Condition Min Typ Max Unit Drain-Source Breakdown Vol

Electrical Characteristics (T A =25 unless otherwise noted) Off Characteristics Parameter Symbol Condition Min Typ Max Unit Drain-Source Breakdown Vol N-Channel Enhancement Mode Power MOSFET Description The HM uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide variety of applications.

More information

235 W Maximum Power Dissipation (whole module) 470 T J Junction Operating Temperature -40 to 150. Torque strength

235 W Maximum Power Dissipation (whole module) 470 T J Junction Operating Temperature -40 to 150. Torque strength Discontinued PRODUCT SUMMARY (TYPICAL) V DS (V) 600 R DS(on) (m ) 30 GaN Power Hybrid HEMT Half-Bridge Module Features High frequency operation Free-wheeling diode not required Applications Compact DC-DC

More information

Taiwan Goodark Technology Co.,Ltd

Taiwan Goodark Technology Co.,Ltd TGD N-Channel Enhancement Mode Power MOSFET Description The uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. This device is suitable for use in PWM, load switching

More information

GaN is Crushing Silicon. EPC - The Leader in GaN Technology IEEE PELS

GaN is Crushing Silicon. EPC - The Leader in GaN Technology IEEE PELS GaN is Crushing Silicon EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 1 Agenda How egan FETs work Hard Switched DC-DC converters High Efficiency point-of-load converter Envelope Tracking

More information

GaNSPEC DWG. Standardization for Wide Bandgap Devices:

GaNSPEC DWG. Standardization for Wide Bandgap Devices: Standardization for Wide Bandgap Devices: GaNSPEC DWG Stephanie Watts Butler, PhD, PE Technology Innovation Architect, Texas Instruments GaN Standards for Power Electronic Conversion (GaNSPEC) Devices

More information

Features. Symbol JEDEC TO-204AA GATE (PIN 1)

Features. Symbol JEDEC TO-204AA GATE (PIN 1) Semiconductor BUZB Data Sheet October 998 File Number 9. [ /Title (BUZ B) /Subject A, V,. hm, N- hannel ower OS- ET) /Author ) /Keyords Harris emionducor, N- hannel ower OS- ET, O- AA) /Creator ) /DOCIN

More information

Taiwan Goodark Technology Co.,Ltd

Taiwan Goodark Technology Co.,Ltd TGD N-Channel Enhancement Mode Power MOSFET Description The uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide variety of applications.

More information

Characterizing Fabrication Process Induced Effects in Deep Submicron PHEMT's Using Spectrally Resolved Light Emission Imaging

Characterizing Fabrication Process Induced Effects in Deep Submicron PHEMT's Using Spectrally Resolved Light Emission Imaging Characterizing Fabrication Process Induced Effects in Deep Submicron PHEMT's Using Spectrally Resolved Light Emission Imaging Zhuyi Wang, Weidong Cai, Mengwei Zhang and G.P. Li Department of Electrical

More information

VDSS (V) 650 V(TR)DSS (V) 800. RDS(on)eff (mω) max* 85. QRR (nc) typ 90. QG (nc) typ 10

VDSS (V) 650 V(TR)DSS (V) 800. RDS(on)eff (mω) max* 85. QRR (nc) typ 90. QG (nc) typ 10 TP65H070L Series 650V GaN FET PQFN Series Preliminary Description The TP65H070L 650V, 72mΩ Gallium Nitride (GaN) FET are normally-off devices. It combines state-of-the-art high voltage GaN HEMT and low

More information

Schematic diagram R DS(ON) < V GS =10V. Marking and pin assignment Uninterruptible power supply

Schematic diagram R DS(ON) < V GS =10V. Marking and pin assignment Uninterruptible power supply FNK N-Channel Enhancement Mode Power MOSFET Description The FNK 85H21 uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in automotive applications

More information

IRHNJ63C krads(si) A SMD-0.5

IRHNJ63C krads(si) A SMD-0.5 PD-9798D 2N7598U3 IRHNJ67C3 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-.5) 6V, N-CHANNEL TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) I D IRHNJ67C3 krads(si) 3. 3.4A IRHNJ63C3

More information

HCD80R1K4E 800V N-Channel Super Junction MOSFET

HCD80R1K4E 800V N-Channel Super Junction MOSFET HCD80R1K4E 800V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 100% Avalanche Tested Application Switch Mode Power

More information

TPH3205WSB. 650V Cascode GaN FET in TO-247 (source tab)

TPH3205WSB. 650V Cascode GaN FET in TO-247 (source tab) 650V Cascode GaN FET in TO-247 (source tab) Description The TPH3205WSB 650V, 52mΩ gallium nitride (GaN) FET is a normally-off device. Transphorm GaN FETs offer better efficiency through lower gate charge,

More information

FNK N-Channel Enhancement Mode Power MOSFET

FNK N-Channel Enhancement Mode Power MOSFET FNK N-Channel Enhancement Mode Power MOSFET Description The FNK 80H11 uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide variety of

More information

Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials

Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials Kjeld Pedersen Department of Physics and Nanotechnology, AAU SEMPEL Semiconductor Materials for Power Electronics

More information

1KV PIV. High Voltage Pulsed IV measurements. Inovative Test System AMCAD ENGINEERING. June 2013

1KV PIV. High Voltage Pulsed IV measurements. Inovative Test System AMCAD ENGINEERING. June 2013 1KV PIV Inovative Test System High Voltage Pulsed IV measurements AMCAD ENGINEERING June 2013 1 Agenda 1KV PIV Overview Pulsed IV measurement concept Main Specifications Integration with instruments Measurement

More information

V DS =60V,I D =20A R DS(ON) V GS =10V Schematic diagram

V DS =60V,I D =20A R DS(ON) V GS =10V Schematic diagram http://www.ncepower.com NCE N-Channel Enhancement Mode Power MOSFET Description The uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide

More information

HCS80R1K4E 800V N-Channel Super Junction MOSFET

HCS80R1K4E 800V N-Channel Super Junction MOSFET HCS80R1K4E 800V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 100% Avalanche Tested Application Switch Mode Power

More information

Device Marking Device Device Package Reel Size Tape width Quantity HM60N08 HM60N08 TO-220-3L - - Parameter Symbol Limit Unit

Device Marking Device Device Package Reel Size Tape width Quantity HM60N08 HM60N08 TO-220-3L - - Parameter Symbol Limit Unit N-Channel Enhancement Mode Power MOSFET Description The uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide variety of applications.

More information

Device Marking Device Device Package Reel Size Tape width Quantity NCE3080K NCE3080K TO-252-2L Parameter Symbol Limit Unit

Device Marking Device Device Package Reel Size Tape width Quantity NCE3080K NCE3080K TO-252-2L Parameter Symbol Limit Unit http://www.ncepower.com NCE N-Channel Enhancement Mode Power MOSFET Description The uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ARFTG.2016.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ARFTG.2016. Casbon, M. A., Brazzini, T., Tasker, P. J., Uren, M. J., & Kuball, M. H. H. (2016). Simultaneous measurement of optical and RF behavior under CW and pulsed Fully Active Harmonic Load-Pull. In 2016 87th

More information

IRHF57234SE 100 krads(si) A TO-39

IRHF57234SE 100 krads(si) A TO-39 PD-9383C IRHF57234SE RADIATION HARDENED POWER MOSFET THRU-HOLE TO-25AF (TO-39) 25V, N-CHANNEL R 5 TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) I D IRHF57234SE krads(si).42 5.2A TO-39

More information

N-CHANNEL POWER MOSFET TRANSISTOR APPLICATION. Auotmobile Convert System Networking DC-DC Power System Power Supply etc..

N-CHANNEL POWER MOSFET TRANSISTOR APPLICATION. Auotmobile Convert System Networking DC-DC Power System Power Supply etc.. Pb Free Plating Product 55NF06 N-CHANNEL POWER MOSFET TRANSISTOR Pb 50 AMPERE 60 VOLT N-CHANNEL POWER MOSFET DESCRIPTION 12 3 TO-251/IPAK Thinkisemi 50N06 is three-terminal silicon device with current

More information

V DSS R DS(on) max Qg 30V GS = 10V 5.4nC

V DSS R DS(on) max Qg 30V GS = 10V 5.4nC PD - 96227B Applications l Synchronous Buck Converter for Computer Processor Power l Isolated DC to DC Converters for Network and Telecom l Buck Converters for Set-Top Boxes l System/load switch Benefits

More information

PE6018. N-Channel Enhancement Mode Power MOSFET. Description. General Features. Application. Absolute Maximum Ratings (T C =25 unless otherwise noted)

PE6018. N-Channel Enhancement Mode Power MOSFET. Description. General Features. Application. Absolute Maximum Ratings (T C =25 unless otherwise noted) N-Channel Enhancement Mode Power MOSFET Description The PE6018 uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It D can be used in a wide variety of applications.

More information

Parameter Symbol Limit Unit

Parameter Symbol Limit Unit N-Channel Enhancement Mode Power MOSFET Description The PE3050K uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide variety of applications.

More information

VDS (V) min 600 VTDS (V) max 750 RDS(on) (mω) max* 63. Qrr (nc) typ 136. * Dynamic R(on)

VDS (V) min 600 VTDS (V) max 750 RDS(on) (mω) max* 63. Qrr (nc) typ 136. * Dynamic R(on) 600V Cascode GaN FET in TO-247 (source tab) Not recommended for new designs see TP65H050WS Description The TPH3205WS 600V, 52mΩ gallium nitride (GaN) FET is a normally-off device. Transphorm GaN FETs offer

More information

Device Marking Device Device Package Reel Size Tape width Quantity 6075K FNK6075K TO-252-2L Parameter Symbol Limit Unit

Device Marking Device Device Package Reel Size Tape width Quantity 6075K FNK6075K TO-252-2L Parameter Symbol Limit Unit FNK N-Channel Enhancement Mode Power MOSFET Description The FNK6075K uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide variety of applications.

More information

IRHY63C30CM 300k Rads(Si) A TO-257AA

IRHY63C30CM 300k Rads(Si) A TO-257AA PD-95837D 2N7599T3 IRHY67C3CM RADIATION HARDENED POWER MOSFET THRU-HOLE (TO-257AA) 6V, N-CHANNEL TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) I D IRHY67C3CM k Rads(Si) 3. 3.4A IRHY63C3CM

More information

HCS80R380R 800V N-Channel Super Junction MOSFET

HCS80R380R 800V N-Channel Super Junction MOSFET HCS8R38R 8V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity % Avalanche Tested Application Switch Mode Power Supply

More information

IRHNS57160 R 5 100V, N-CHANNEL. RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SupIR-SMD) PD-97879A TECHNOLOGY. Product Summary

IRHNS57160 R 5 100V, N-CHANNEL. RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SupIR-SMD) PD-97879A TECHNOLOGY. Product Summary PD-97879A IRHNS576 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SupIR-SMD) V, N-CHANNEL R 5 TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) I D IRHNS576 krads(si).2 75A* IRHNS536 3 krads(si).2

More information

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 60. Qrr (nc) typ 136. Qg (nc) typ 28. * Dynamic RDS(on)

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 60. Qrr (nc) typ 136. Qg (nc) typ 28. * Dynamic RDS(on) 650V Cascode GaN FET in TO-247 (source tab) Description The TPH3205WSB 650V, 49mΩ gallium nitride (GaN) FET is a normally-off device. Transphorm GaN FETs offer better efficiency through lower gate charge,

More information

Taiwan Goodark Technology Co.,Ltd TGD01P30

Taiwan Goodark Technology Co.,Ltd TGD01P30 TGD P-Channel Enhancement Mode Power MOSFET Description The uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide variety of applications.

More information

VDS (V) min 600 VTDS (V) max 750 RDS(on) (mω) max* 180. Qrr (nc) typ 54. * Dynamic R(on)

VDS (V) min 600 VTDS (V) max 750 RDS(on) (mω) max* 180. Qrr (nc) typ 54. * Dynamic R(on) 600V Cascode GaN FET in TO-220 (drain tab) Description The 600V, 150mΩ gallium nitride (GaN) FET is a normally-off device. Transphorm GaN FETs offer better efficiency through lower gate charge, faster

More information

Device Marking Device Device Package Reel Size Tape width Quantity NCE85H21T NCE85H21T TO Parameter Symbol Limit Unit

Device Marking Device Device Package Reel Size Tape width Quantity NCE85H21T NCE85H21T TO Parameter Symbol Limit Unit NCE N-Channel Enhancement Mode Power MOSFET DESCRIPTION The uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in Automotive applications and

More information

NCE0250D. NCE N-Channel Enhancement Mode Power MOSFET. Description. General Features. Application

NCE0250D. NCE N-Channel Enhancement Mode Power MOSFET.  Description. General Features. Application http://www.ncepower.com NCE N-Channel Enhancement Mode Power MOSFET Description The uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide

More information

High-Efficiency L-Band 200-W GaN HEMT for Space Applications

High-Efficiency L-Band 200-W GaN HEMT for Space Applications INFOCOMMUNICATIONS High-Efficiency L-Band 200-W GaN HEMT for Space Applications Ken OSAWA*, Hiroyuki YOSHIKOSHI, Atsushi NITTA, Tsuneyuki TANAKA, Eizo MITANI, and Tomio SATOH ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

More information

GaN Based Power Conversion: Moving On! Tim McDonald APEC Key Component Technologies for Power Electronics in Electric Drive Vehicles

GaN Based Power Conversion: Moving On! Tim McDonald APEC Key Component Technologies for Power Electronics in Electric Drive Vehicles 1 GaN Based Power Conversion: Moving On! Key Component Technologies for Power Electronics in Electric Drive Vehicles Tim McDonald APEC 2013 2 Acknowledgements Collaborators: Tim McDonald (1), Han S. Lee

More information

Device Marking Device Device Package Reel Size Tape width Quantity NCE8580 NCE8580 TO-220-3L Parameter Symbol Limit Unit

Device Marking Device Device Package Reel Size Tape width Quantity NCE8580 NCE8580 TO-220-3L Parameter Symbol Limit Unit http://www.ncepower.com NCE N-Channel Enhancement Mode Power MOSFET Description The uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. This device is suitable

More information

IRHNJ597Z30 JANSR2N7519U3 R 5 30V, P-CHANNEL REF: MIL-PRF-19500/732 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-0.5) PD-94661C TECHNOLOGY

IRHNJ597Z30 JANSR2N7519U3 R 5 30V, P-CHANNEL REF: MIL-PRF-19500/732 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-0.5) PD-94661C TECHNOLOGY PD-9466C IRHNJ597Z3 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-.5) 3V, P-CHANNEL REF: MIL-PRF-95/732 R 5 TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) I D QPL Part Number IRHNJ597Z3

More information

Device Marking Device Device Package Reel Size Tape width Quantity NCE1520K NCE1520K TO-252-2L - - -

Device Marking Device Device Package Reel Size Tape width Quantity NCE1520K NCE1520K TO-252-2L - - - http://www.ncepower.com NCE N-Channel Enhancement Mode Power MOSFET Description The uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide

More information

IRHI7360SE. 400V, N-CHANNEL RAD-Hard HEXFET TECHNOLOGY RADIATION HARDENED POWER MOSFET THRU-HOLE (TO-259AA) PD-91446B

IRHI7360SE. 400V, N-CHANNEL RAD-Hard HEXFET TECHNOLOGY RADIATION HARDENED POWER MOSFET THRU-HOLE (TO-259AA) PD-91446B PD-91446B IRHI7360SE RADIATION HARDENED POWER MOSFET THRU-HOLE (TO-259AA) 400V, N-CHANNEL RAD-Hard HEXFET TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) I D IRHI7360SE 100 krads(si) 0.20

More information

HCS65R110FE (Fast Recovery Diode Type) 650V N-Channel Super Junction MOSFET

HCS65R110FE (Fast Recovery Diode Type) 650V N-Channel Super Junction MOSFET HCS65R110FE (Fast Recovery Diode Type) 650V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 100% Avalanche Tested

More information

Device Marking Device Device Package Reel Size Tape width Quantity NCE30P50G NCE30P50G DFN 5x6 EP - - -

Device Marking Device Device Package Reel Size Tape width Quantity NCE30P50G NCE30P50G DFN 5x6 EP - - - http://www.ncepower.com NCE P-Channel Enhancement Mode Power MOSFET Description The uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide

More information

V DS =30V,I D =35A R DS(ON) < V GS =10V R DS(ON) < V GS =4.5V Schematic diagram

V DS =30V,I D =35A R DS(ON) < V GS =10V R DS(ON) < V GS =4.5V Schematic diagram http://www.ncepower.com NCE N-Channel Enhancement Mode Power MOSFET Description The uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide

More information

IRHYS9A7130CM JANSR2N7648T3

IRHYS9A7130CM JANSR2N7648T3 PD-97844A RADIATION HARDENED POWER MOSFET THRU-HOLE (Low-Ohmic TO-257AA) V, N-CHANNEL REF: MIL-PRF-95/775 R 9 TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) I D krads (Si) 35m 3A* IRHYS9A33CM

More information

Device Marking Device Device Package Reel Size Tape width Quantity TO-252-2L. Parameter Symbol Limit Unit

Device Marking Device Device Package Reel Size Tape width Quantity TO-252-2L. Parameter Symbol Limit Unit HM80N05K N-Channel Enhancement Mode Power MOSFET Description The uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide variety of applications.

More information

HCA80R250T 800V N-Channel Super Junction MOSFET

HCA80R250T 800V N-Channel Super Junction MOSFET HCA80R250T 800V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 100% Avalanche Tested Application Switch Mode Power

More information

IRHY57234CMSE JANSR2N7556T3 R 5 250V, N-CHANNEL REF: MIL-PRF-19500/705 TECHNOLOGY RADIATION HARDENED POWER MOSFET THRU-HOLE(TO-257AA) PD-93823D

IRHY57234CMSE JANSR2N7556T3 R 5 250V, N-CHANNEL REF: MIL-PRF-19500/705 TECHNOLOGY RADIATION HARDENED POWER MOSFET THRU-HOLE(TO-257AA) PD-93823D PD-93823D RADIATION HARDENED POWER MOSFET THRU-HOLE(TO-257AA) 250V, N-CHANNEL REF: MIL-PRF-19500/705 TECHNOLOGY R 5 Product Summary Part Number Radiation Level RDS(on) I D QPL Part Number 100 krads(si)

More information

Reliability and qualification of CoolGaN

Reliability and qualification of CoolGaN White Paper Reliability and qualification of CoolGaN Abstract Infineon s CoolGaN TM gallium nitride on silicon (GaN-on-Si) HEMTs (high electron mobility transistors) represent a dramatic improvement in

More information

Device Marking Device Device Package Reel Size Tape width Quantity NCE3090 NCE3090 TO-220-3L Parameter Symbol Limit Unit

Device Marking Device Device Package Reel Size Tape width Quantity NCE3090 NCE3090 TO-220-3L Parameter Symbol Limit Unit http://www.ncepower.com NCE N-Channel Enhancement Mode Power MOSFET Description The uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide

More information

SYNCHRONOUS RECTIFIER SURFACE MOUNT (SMD-2) 60V, N-CHANNEL. Absolute Maximum Ratings PD-94401B

SYNCHRONOUS RECTIFIER SURFACE MOUNT (SMD-2) 60V, N-CHANNEL. Absolute Maximum Ratings PD-94401B PD-9440B RAD-HARD SYNCHRONOUS RECTIFIER SURFACE MOUNT (SMD-2) 60V, N-CHANNEL Product Summary Part Number Radiation Level RDS(on) QG 00K Rads (Si) 6.mΩ 60nC IRHSLNA53064 300K Rads (Si) 6.mΩ 60nC IRHSLNA54064

More information

2N65 650V N-Channel Power MOSFET

2N65 650V N-Channel Power MOSFET R S E M I C O N D U C T O R FEATURES RDS(ON)< 4. 4Ω @VGS=1V, ID= 1A Fast switching capability Lead free in compliance with EU RoHS directive. Improved dv/ dt capability, high ruggedness MECHANICAL DATA

More information

IRHNA57264SE JANSR2N7474U2 R 5 250V, N-CHANNEL REF: MIL-PRF-19500/684 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-2) PD-93816G TECHNOLOGY

IRHNA57264SE JANSR2N7474U2 R 5 250V, N-CHANNEL REF: MIL-PRF-19500/684 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-2) PD-93816G TECHNOLOGY PD-9386G IRHNA57264SE RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-2) 25V, N-CHANNEL REF: MIL-PRF-95/684 R 5 TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) I D QPL Part Number IRHNA57264SE

More information

I D. Operating Junction and -55 to T STG. C Lead Temperature 300 (0.063 in. /1.6 mm from case for 10s) Weight 0.98 (Typical) g

I D. Operating Junction and -55 to T STG. C Lead Temperature 300 (0.063 in. /1.6 mm from case for 10s) Weight 0.98 (Typical) g RADIATION HARDENED POWER MOSFET THRU-HOLE TO-25AF (TO-39) PD-93789G IRHF573 V, N-CHANNEL REF: MIL-PRF-95/7 TECHNOLOGY R 5 Product Summary Part Number Radiation Level RDS(on) QPL Part Number IRHF573 krads(si).8.7a

More information

IRHNJ57230SE JANSR2N7486U3 R 5 200V, N-CHANNEL REF: MIL-PRF-19500/704 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-0.5) PD-93836C TECHNOLOGY

IRHNJ57230SE JANSR2N7486U3 R 5 200V, N-CHANNEL REF: MIL-PRF-19500/704 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-0.5) PD-93836C TECHNOLOGY PD-93836C IRHNJ5723SE RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-.5) 2V, N-CHANNEL REF: MIL-PRF-95/74 R 5 TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) I D QPL Part Number IRHNJ5723SE

More information

HCD80R600R 800V N-Channel Super Junction MOSFET

HCD80R600R 800V N-Channel Super Junction MOSFET HCD80R600R 800V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 00% Avalanche Tested Application Switch Mode Power

More information

IRF7700GPbF. HEXFET Power MOSFET V DSS R DS(on) max I D

IRF7700GPbF. HEXFET Power MOSFET V DSS R DS(on) max I D l Ultra Low On-Resistance l P-Channel MOSFET l Very Small SOIC Package l Low Profile (

More information

Product Summary. BV DSS typ. 80 V R DS(ON) max. 4 mω I D 200 A

Product Summary. BV DSS typ. 80 V R DS(ON) max. 4 mω I D 200 A N-Channel Enhancement Mode Power MOSFET General Description The YMP200N08 uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. This device is suitable for use

More information

Achieving 3000 V test at the wafer level

Achieving 3000 V test at the wafer level Achieving 3000 V test at the wafer level Bryan Root 1, Alex Pronin 2, Seng Yang 1,Bill Funk 1, K. Armendariz 1 1 Celadon Systems Inc., 2 Keithley September 2016 Outline Introduction Si, SiC and GaN Power

More information

NCE6005AS. NCE N-Channel Enhancement Mode Power MOSFET. Description. General Features. Application

NCE6005AS. NCE N-Channel Enhancement Mode Power MOSFET.   Description. General Features. Application http://www.ncepower.com NCE N-Channel Enhancement Mode Power MOSFET Description The uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide

More information

NCE7190. NCE N-Channel Enhancement Mode Power MOSFET. Description. General Features. Application

NCE7190. NCE N-Channel Enhancement Mode Power MOSFET.  Description. General Features. Application http://www.ncepower.com NCE N-Channel Enhancement Mode Power MOSFET Description The uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide

More information

Device Marking Device Device Package Reel Size Tape width Quantity NCEP4085EG NCEP4085EG DFN5X6-8L - - -

Device Marking Device Device Package Reel Size Tape width Quantity NCEP4085EG NCEP4085EG DFN5X6-8L - - - http://www.ncepower.com NCE N-Channel Super Trench Power MOSFET Description The uses Super Trench technology that is uniquely optimized to provide the most efficient high frequency switching performance.

More information

IRHN7150 JANSR2N7268U

IRHN7150 JANSR2N7268U PD-90720F IRHN7150 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-1) 100V, N-CHANNEL REF: MIL-PRF-19500/603 RAD-Hard HEXFET TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) I D IRHN7150

More information

Approved (Not Released) V DSS R DS(on) max Qg. 30V 3.5mΩ 36nC

Approved (Not Released) V DSS R DS(on) max Qg. 30V 3.5mΩ 36nC Approved (Not Released) PD - TBD Applications l Optimized for UPS/Inverter Applications l Low Voltage Power Tools Benefits l Best in Class Performance for UPS/Inverter Applications l Very Low RDS(on) at

More information

Device Marking Device Device Package Reel Size Tape width Quantity SIP3210 SIP3210 SOP-8 330mm

Device Marking Device Device Package Reel Size Tape width Quantity SIP3210 SIP3210 SOP-8 330mm SIAI N-Channel Enhancement Mode Power MOSFET DESCRIPTION The SIP3210 uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide variety of applications.

More information

PRELIMINARY. VDSS (V) 600 V(TR)DSS (V) 750 RDS(on)eff (mω) max* 60. QRR (nc) typ 120. QG (nc) typ 22 PRELIMINARY

PRELIMINARY. VDSS (V) 600 V(TR)DSS (V) 750 RDS(on)eff (mω) max* 60. QRR (nc) typ 120. QG (nc) typ 22 PRELIMINARY PRELIMINARY TPH3205ESBET 600V GaN FET in TO-268 (source tab) Description The TPH3205ESBET 600V, 49mΩ Gallium Nitride (GaN) FET is a normally-off device. It combines state-of-the-art high voltage GaN HEMT

More information

Device Marking Device Device Package Reel Size Tape width Quantity NCE30H21 NCE30H21 TO Parameter Symbol Limit Unit

Device Marking Device Device Package Reel Size Tape width Quantity NCE30H21 NCE30H21 TO Parameter Symbol Limit Unit NCE N-Channel Enhancement Mode Power MOSFET DESCRIPTION The uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide variety of applications.

More information

Base part number Package Type Standard Pack Orderable Part Number. IRFP7530PbF TO-247 Tube 25 IRFP7530PbF I D, T J = 25 C 50

Base part number Package Type Standard Pack Orderable Part Number. IRFP7530PbF TO-247 Tube 25 IRFP7530PbF I D, T J = 25 C 50 I D, Drain Current (A) StrongIRFET Application Brushed Motor drive applications BLDC Motor drive applications Battery powered circuits Half-bridge and full-bridge topologies Synchronous rectifier applications

More information

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 47. QG (nc) typ 10

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 47. QG (nc) typ 10 TP65H150LSG 650V GaN FET PQFN Series Preliminary Datasheet Description The TP65H150LSG 650V, 150mΩ Gallium Nitride (GaN) FET are normally-off devices. They combine state-of-the-art high voltage GaN HEMT

More information

HCD80R650E 800V N-Channel Super Junction MOSFET

HCD80R650E 800V N-Channel Super Junction MOSFET HCD80R650E 800V N-Channel Super Junction MOSFET Features Very Low FOM (R DS(on) X Q g ) Extremely low switching loss Excellent stability and uniformity 100% Avalanche Tested Application Switch Mode Power

More information

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 130. Qrr (nc) typ 54. * Dynamic R(on)

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 130. Qrr (nc) typ 54. * Dynamic R(on) 650V Cascode GaN FET in TO-220 (source tab) Description The TPH3208PS 650V, 110mΩ gallium nitride (GaN) FET is a normally-off device. Transphorm GaN FETs offer better efficiency through lower gate charge,

More information

IRHLNM7S7110 2N7609U8

IRHLNM7S7110 2N7609U8 PD-97888 IRHLNM7S7 RADIATION HARDENED LOGIC LEVEL POWER MOSFET SURFACE MOUNT (SMD-.2) V, N-CHANNEL TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) I D IRHLMN7S7 krads(si).29 6.5A IRHLMN7S3

More information

Device Marking Device Device Package Reel Size Tape width Quantity NCE60P12K NCE60P12K TO-252-2L - - -

Device Marking Device Device Package Reel Size Tape width Quantity NCE60P12K NCE60P12K TO-252-2L - - - http://www.ncepower.com NCE P-Channel Enhancement Mode Power MOSFET Description The uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge.this device is well suited

More information

III-Nitride microwave switches Grigory Simin

III-Nitride microwave switches Grigory Simin Microwave Microelectronics Laboratory Department of Electrical Engineering, USC Research Focus: - Wide Bandgap Microwave Power Devices and Integrated Circuits - Physics, Simulation, Design and Characterization

More information

Gallium nitride (GaN)

Gallium nitride (GaN) 80 Technology focus: GaN power electronics Vertical, CMOS and dual-gate approaches to gallium nitride power electronics US research company HRL Laboratories has published a number of papers concerning

More information

IRHNA JANSR2N7524U2 R 5 60V, P-CHANNEL REF: MIL-PRF-19500/733 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-2) PD-94604D TECHNOLOGY

IRHNA JANSR2N7524U2 R 5 60V, P-CHANNEL REF: MIL-PRF-19500/733 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-2) PD-94604D TECHNOLOGY PD-9464D IRHNA59764 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-2) 6V, P-CHANNEL REF: MIL-PRF-195/733 R 5 TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) I D QPL Part Number IRHNA59764

More information

Reliability Investigation of GaN HEMTs for MMICs Applications

Reliability Investigation of GaN HEMTs for MMICs Applications Micromachines 2014, 5, 570-582; doi:10.3390/mi5030570 Article OPEN ACCESS micromachines ISSN 2072-666X www.mdpi.com/journal/micromachines Reliability Investigation of GaN HEMTs for MMICs Applications Alessandro

More information

AUTOMOTIVE GRADE. Thermal Resistance Symbol Parameter Typ. Max. Units R JC Junction-to-Case 2.2 R JA Junction-to-Ambient ( PCB Mount) 50 C/W

AUTOMOTIVE GRADE. Thermal Resistance Symbol Parameter Typ. Max. Units R JC Junction-to-Case 2.2 R JA Junction-to-Ambient ( PCB Mount) 50 C/W Features dvanced Planar Technology Low On-Resistance Dynamic dv/dt Rating 75 C Operating Temperature Fast Switching Fully valanche Rated Repetitive valanche llowed up to Tjmax Lead-Free, RoHS Compliant

More information

Device Marking Device Device Package Reel Size Tape width Quantity NCE82H110D NCE82H110D TO-263-2L - - -

Device Marking Device Device Package Reel Size Tape width Quantity NCE82H110D NCE82H110D TO-263-2L - - - http://www.ncepower.com NCE N-Channel Enhancement Mode Power MOSFET Description The uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide

More information

TPH3212PS. 650V Cascode GaN FET in TO-220 (source tab)

TPH3212PS. 650V Cascode GaN FET in TO-220 (source tab) 650V Cascode GaN FET in TO-220 (source tab) Description The TPH3212PS 650V, 72mΩ gallium nitride (GaN) FET is a normally-off device. Transphorm GaN FETs offer better efficiency through lower gate charge,

More information

Taiwan Goodark Technology Co.,Ltd

Taiwan Goodark Technology Co.,Ltd TGD N-Channel Enhancement Mode Power MOSFET Description The uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide variety of applications.

More information

Device Marking Device Device Package Reel Size Tape width Quantity HM4884A HM4884A SOP Parameter Symbol Limit Unit

Device Marking Device Device Package Reel Size Tape width Quantity HM4884A HM4884A SOP Parameter Symbol Limit Unit Dual N-Channel Enhancement Mode Power MOSFET Description The HM4884A uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. It can be used in a wide variety of applications.

More information

Power MOSFET FEATURES. Note * Pb containing terminations are not RoHS compliant, exemptions may apply DESCRIPTION. IRFD113PbF SiHFD113-E3

Power MOSFET FEATURES. Note * Pb containing terminations are not RoHS compliant, exemptions may apply DESCRIPTION. IRFD113PbF SiHFD113-E3 Power MOSFET PRODUCT SUMMARY V DS (V) 60 R DS(on) (Ω) V GS = 10 V 0.8 Q g (Max.) (nc) 7 Q gs (nc) 2 Q gd (nc) 7 Configuration Single D HVMDIP FEATURES For Automatic Insertion Compact Plastic Package End

More information

QPL Part Number JANSR2N7270 IRHM krads(si) A JANSF2N7270 IRHM krads(si) A JANSG2N7270 JANSH2N7270 TO-254

QPL Part Number JANSR2N7270 IRHM krads(si) A JANSF2N7270 IRHM krads(si) A JANSG2N7270 JANSH2N7270 TO-254 PD-90673C IRHM7450 RADIATION HARDENED POWER MOSFET THRU-HOLE (TO-254AA) 500V, N-CHANNEL REF: MIL-PRF-19500/603 RAD-Hard HEXFET TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) I D IRHM7450

More information

Defect-Oriented Degradations in Recent VLSIs: Random Telegraph Noise, Bias Temperature Instability and Total Ionizing Dose

Defect-Oriented Degradations in Recent VLSIs: Random Telegraph Noise, Bias Temperature Instability and Total Ionizing Dose Defect-Oriented Degradations in Recent VLSIs: Random Telegraph Noise, Bias Temperature Instability and Total Ionizing Dose Kazutoshi Kobayashi Kyoto Institute of Technology Kyoto, Japan kazutoshi.kobayashi@kit.ac.jp

More information

T C =25 unless otherwise specified

T C =25 unless otherwise specified 800V N-Channel MOSFET FEATURES Originative New Design Superior Avalanche Rugged Technology Robust Gate Oxide Technology Very Low Intrinsic Capacitances Excellent Switching Characteristics Unrivalled Gate

More information

MMQ60R190P 600V 0.19Ω N-channel MOSFET

MMQ60R190P 600V 0.19Ω N-channel MOSFET MMQ60R190P 600V 0.19Ω N-channel MOSFET Description MMQ60R190P is power MOSFET using magnachip s advanced super junction technology that can realize very low on-resistance and gate charge. It will provide

More information

Absolute Maximum Ratings (Per Die)

Absolute Maximum Ratings (Per Die) PD-97887 IRHLG7S7 RADIATION HARDENED LOGIC LEVEL POWER MOSFET THRU-HOLE (MO-36AB) V, QUAD N-CHANNEL TECHNOLOGY Product Summary Part Number Radiation Level RDS(on) I D IRHLG7S7 krads(si).33.8a IRHLG7S3

More information

Package Code. Handling Code. Assembly Material

Package Code. Handling Code. Assembly Material P-Channel Enhancement Mode MOSFET Features Pin Description -2V/-4.9A, R DS(ON) =43mΩ (Max.) @ V GS =-4.5V R DS(ON) =58mΩ (Max.) @ V GS =-2.5V R DS(ON) =88mΩ (Max.) @ V GS =-1.8V 1% UIS + R g Tested Reliable

More information

IRHNA57Z60 JANSR2N7467U2 R 5 30V, N-CHANNEL REF: MIL-PRF-19500/683 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-2) PD-91787J TECHNOLOGY

IRHNA57Z60 JANSR2N7467U2 R 5 30V, N-CHANNEL REF: MIL-PRF-19500/683 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-2) PD-91787J TECHNOLOGY PD-91787J IRHNA57Z6 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-2) Product Summary Part Number Radiation Level RDS(on) I D QPL Part Number IRHNA57Z6 1 krads(si) 3.5m 75A* IRHNA53Z6 3 krads(si) 3.5m

More information