S Radio Network planning. Tentative schedule & contents

Size: px
Start display at page:

Download "S Radio Network planning. Tentative schedule & contents"

Transcription

1 S-7.70 Radio Network planning Lecturer: Prof. Riku Jäntti Assistant: M.Sc. Mika Husso Tentative schedule & contents Week Lecture Exercise. Introduction: Radio network planning process No exercise 4. Capacity planning: Traffic modeling, blocking and dropping No exercise 5. Coverage planning: Link budget, coverage probability No exercise 6 4. Frequency planning: Frequency resuse, reuse partitioning Capacity planning 7 5. Frequency planning: Channel allocation methods Coverage planning 8 6. Network planning and optimization tools Frequency planning 9 No lecture Introduction to the assignment

2 Lecture. Cellular radio systems Objectives of radio network planning Radio network planning process Cellular radio system Bandwidth is a scarce resource which needs to be divide among the users In practice all multiple access schemes introduce co-channel interference which limits the spatial reuse of the resources. Cellular radio concept (Bell Labs, 94) Service area of single base station is denoted as a cell Same frequency can be reused in spatially separates cells FDMA/TDMA NMT, GSM, TETRA, 4

3 CDMA Revolution (Qualcomm, 979) In CDMA, all cells use the same frequency. (Universal reuse) Andrew J. Viterbi, Spread Spectrum Communications: Myths and Realities, IEEE Communications Magazine May 979, Volume 7, Number IS-95, IMT000, WCDMA, 5 OFDM Systems OFDM allows flexible utilization of recourses: partial reuse, reuse partitioning, dynamic channel assignment FlashOFDM, WiMAX, LTE, 6

4 Objectives of radio network planning )To obtain sufficient coverage over the entire service area to ensure that high quality voice services and data services with low error rates can be offered to the subscribers. )To offer the subscriber traffic network capacity with sufficiently low blocking and call dropping rate. )To enable an economical network implementation when the service is established and a controlled network expansion during the life cycle of the network 7 Impact of user environment (mobility) Vehicular Efficient antennas and larger transmitter powers available in car mounted mobile stations Frequent handovers due to fast mobility Fast fading cannot be tracked by radio resource control (RRC) schemes Pedestrian Antenna shadowed by the head Battery life imposes power constraints Fast handovers in e.g. indoor outdoor movements Fast fading can be tracked by RRC 8 4

5 Impact of user environment (traffic) Low to moderate traffic Large cells Stretched cells along roads Coverage planning based on subscribers Build coverage only to dense populated areas Sparse networks: Build coverage incrementally based on Cell size subscribers Heavy traffic Small cells Multilayer networks Traffic 9 Impact of user environment (traffic) Traffic class Conversational class Streaming class Interactive class Background class Timing Real-time Non-real-time, Best effort Fundament al characterist ics - Preserve time relation (variation) between information entities of the stream - Conversational pattern (stringent and low delay ) - Preserve time relation (variation) between information entities of the stream - Request response pattern -Preserve payload content -Destination is not expecting the data within a certain time -Preserve payload content Example of the application Voice Streaming video web browsing Download, s 0 5

6 Impact of user environment (traffic) Traditionally cell planning has only been done for voice traffic Traffic classes have different requirements for grade of service (GoS) and thus need to be considered separately in the planning. Voice traffic typically requires high coverage probability and low call dropping probability while background data traffic could be designed to have smaller coverage and higher drop rates. Impact of user environment Remote areas such as wilderness and sea areas Low carrier frequency => large coverage area High base station masts Efficient antennas in the mobiles Satellite systems* *) Out of the scope of this course 6

7 Planning approaches Planning according to final network capacity all base stations are immediately built transceivers (channels) are added when traffic increases Investment cost of the network is high Unless the expected traffic is very high, the time to break even is going to be long Planning approaches Gradual improvement: In the staring phase of a network traffic is small and cell size is mainly determined by the propagation conditions, available power and receiver sensitivity (link budget). coverage is often build first on densely populated areas and along the highways. In the latter case highly directional antennas can be utilized. When the traffic increases more capacity can be obtained by using cell splitting, cell sectorization (directive antennas) and by decreasing cell size Investment costs increase gradually as the traffic increases 4 7

8 Increasing the capacity Sectored cells: Use directed instead of isotropic antennas (Requires three antennas per cell site) Sector Sector Ideally, there is no interference between the sectors. Sector Node B Radiation pattern of the antenna 5 Isotropic antennas Interference sources I ext 6 8

9 Sectored cells I ext Interference sources affecting sector 7 Sectored cells 80 deg. sectors 0 deg. sectors 90 deg. sectors 60 deg. sectors 8 9

10 Sectored cells Capacity per sector (0 degree sectors) Theoretical capacity is three times larger compared to the isotropic antenna case In practice, the antennas leak power to neighbouring sectors as well, which decreases the capacity gain. All sectors require their own pilot signals => Signalling takes more power If all the sectors have a common power amplifier, only / of the maximum power is available per cell => Capacity increase is small If all the sectors have their own power amplifier, the capacity increase is notable 9 Cell splitting ORIGINAL CELL LAYOUT SPLITTING : CELL SPLITTING :4 FINAL CELL LAYOUT 0 0

11 Hierarchical design Macrocell: Large coverage area Low bit rates (44 kbit/s) High transmit power Cell radius up to several kilometers Rural areas, suburban, city-wide coverage Microcell: Moderate coverage area Moderate bit rates (84 kb/s) Moderate transmit power Cell radius up to a few kilometers Urban area Picocells: Small coverage area High bit rates (up to Mbit/s) Small transmit power Cell radius hundreds of meters Hot spots / indoor Macrocell Picocell Microcell Hierarchical design In metropolitan areas microcells and picocells may be employed leaving the macrocells as umbrella cells. A geographical area may be covered simultaneously by all these cell types creating a multilayer network. Micro, macro, and picocells use different frequency bands even in CDMA systems to avoid frequent handovers, pilot pollution and near-far problems.

12 Novel network planning approaches New high data rate services impose new network planning challenges. High data rate services require small cells Providing any-time-anywhere broadband services (i.e. almost full coverage) would require lots of base stations and thus be very expensive 6QAM, /4 6QAM, / QPSK, /4 QPSK, / Anders Furuskär, Radio Resource Sharing and Bearer Service Allocation for Multi-Bearer Service, Multi-Access Wireless Networks, PhD Thesis, TRITA-S-RST-00, Radio Communication Systems, Dept of S, KTH, April 00. Hotspots Coverage limited, hot spot services High capacity is provided only in areas where the traffic intensity is high. Outside the hotspots, only low data rates are supported ABC: Always best connected paradigm: Service is provided using multiple radio interfaces. E.g. by using wireless local area networks (WLANs) in the hotspots and traditional cellular neteworks to support mobility and wide area coverage. 4

13 Wireless relays Range extension using wireless relays and mesh networking Wireless relay or router forwards information between user equipment and base station. There is no direct connection from the relay to the core network. Same high data rate coverage relay relay BS/AP relay R relay BS/AP relay relay 5 Wireless relays (Non-cooperative) Relaying operation consumes radio resources so the relay network has significantly less capacity than the same amount of base stations would have. Wireless relays do not require connectivity to the core network which saves in cabling costs. The complexity of the relay can vary from simple amplify and forward repeater to wireless router implementing most (if not all) the base station functionalities. Cell sites for wireless relays could be e.g. lamp posts, rooftops etc. (where ever power supply can be easily arranged). 6

14 Wireless relays Usefulness of the relaying concept depends on the cost ratio between base station and relay. H. Yanikomeroglu Network planning approaches Gradual capacity improvement using mesh networks To save in wiring cost, the initial deployment in low traffic network could be based on a mesh network where only a subset of the nodes are connected to the core network. To provide more capacity, the wireless routers can be turned to base stations by providing them access to the core network (e.g. by using high capacity optical network or high capacity microwave link) 8 4

15 Network planning Starting points for the planning procedure Desired grade (quality) of service Capacity, coverage, call dropping rate, call blocking rate, System specification Utilized bandwidth, carrier spacing, modulation and coding schemes, multiple access method, signaling methods, Equipment specification Radiation patterns of the antennas, number of supported channels, available power Available frequency band Depends on licenses provided by the regulatory authority 9 Network planning Topography and morphography of the service area Terrain height varations, nature of the ground cover (woods, open area, built-up area) building heights and density, [anything that affects radio propagation] Traffic distribution and forecast Geographic distribution of traffic and its expected growth. Some areas such as shopping malls, airports etc. are natural hotspots with high traffic intensity while some areas like woods have very little traffic. Existing infrastructure Existing antenna masts, equipment shelters, electric lines, and roads should be utilizes as efficiently as possibly 0 5

16 System specifications frequency bands carrier spacing duplex spacing access method service types and rates modulation and coding sensitivity levels for given transmission performance in different environments protection ratios for given transmission performance in different environments network tuning parameters for radio resource control (e.g. power control and handover) System specifications CDMA capacity and coverage interrelated soft capacity soft handover TDMA FDMA hard capacity hard handover capacity and coverage rather independent single rate circuit switched symmetric links RNMP_intro.dsf multi-rate packet switched asymmetric links 6

17 Grade of Service (GoS) parameters Coverage efficiency: Average base station coverage km /number of base stations Area location probability/coverage probability Probability that a randomly positioned UE can be served with certain QoS level (usually stated in term of Signal-tointerferece+noise ratio SINR) Received power (noise rise, load factor) [important in CDMA systems] Capacity kbs/hz/cell Throughput kbs Outage probability Probability that a user can not achieve its QoS target (usually stated in terms of SINR) Blocking probability Probability that a new user is denied access to the network Dropping probability Probability that a on-going call is terminated due to overloading. Phases of the planning procedure. Capacity planning based on the actual network specification, traffic information, available bandwidth, and GoS (blocking and dropping). The output of this phase is the preliminary capacity plan giving cell sizes and number of channels in each cell.. Coverage planning based on the results of the preliminary capacity plan, equipment specifications, system specification, especially the required receiver sensitivity. The output of the coverage plan are e.g. equipment parameters needed to obtain a specified coverage percentage or the coverage prediction with given equipment parameters. 4 7

18 Phases of the planning procedure Frequency planning based on the results from the capacity and coverage planning. In addition, protection ratios for co-channel and adjacent channel interference, usually given in the system specification, are needed. With same methods as in the coverage planning the frequency reuse distance is determined. This information, together with rules for the use of adjacent carriers, is used to make channel allocation to the base stations. In CDMA-networks very little frequency planning is needed (only for hierarchical cell layouts). Instead a code reuse planning is neded. 5 Network planning process Operators GoS requirements Area type Propagation conditions Dimensioning Coverage plan (Link budget) Capacity plan (Erlang capacity) Frequency plan Network planning Simulation Visulisation Optimisation Tuning of RRM parameters Network optimization Rough number of base stations Rough estimate of Base station sites and their configuration Site selection Base station configurations Parameters for RRM algorithms Capacity and coverage estimate QoS Measurements of network performance 6 8

19 7 8 9

SEN366 (SEN374) (Introduction to) Computer Networks

SEN366 (SEN374) (Introduction to) Computer Networks SEN366 (SEN374) (Introduction to) Computer Networks Prof. Dr. Hasan Hüseyin BALIK (8 th Week) Cellular Wireless Network 8.Outline Principles of Cellular Networks Cellular Network Generations LTE-Advanced

More information

Data and Computer Communications. Tenth Edition by William Stallings

Data and Computer Communications. Tenth Edition by William Stallings Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education - 2013 CHAPTER 10 Cellular Wireless Network

More information

The Cellular Concept. History of Communication. Frequency Planning. Coverage & Capacity

The Cellular Concept. History of Communication. Frequency Planning. Coverage & Capacity The Cellular Concept History of Communication Frequency Planning Coverage & Capacity Engr. Mian Shahzad Iqbal Lecturer Department of Telecommunication Engineering Before GSM: Mobile Telephony Mile stones

More information

UNIT- 3. Introduction. The cellular advantage. Cellular hierarchy

UNIT- 3. Introduction. The cellular advantage. Cellular hierarchy UNIT- 3 Introduction Capacity expansion techniques include the splitting or sectoring of cells and the overlay of smaller cell clusters over larger clusters as demand and technology increases. The cellular

More information

Data and Computer Communications

Data and Computer Communications Data and Computer Communications Chapter 14 Cellular Wireless Networks Eighth Edition by William Stallings Cellular Wireless Networks key technology for mobiles, wireless nets etc developed to increase

More information

Chapter 14. Cellular Wireless Networks

Chapter 14. Cellular Wireless Networks Chapter 14 Cellular Wireless Networks Evolu&on of Wireless Communica&ons 1901 Marconi: Trans-Atlantic wireless transmission 1906 Fessenden: first radio broadcast (AM) 1921 Detroit Police Dept wireless

More information

Modelling Small Cell Deployments within a Macrocell

Modelling Small Cell Deployments within a Macrocell Modelling Small Cell Deployments within a Macrocell Professor William Webb MBA, PhD, DSc, DTech, FREng, FIET, FIEEE 1 Abstract Small cells, or microcells, are often seen as a way to substantially enhance

More information

Mobile Radio Systems (Wireless Communications)

Mobile Radio Systems (Wireless Communications) Mobile Radio Systems (Wireless Communications) Klaus Witrisal witrisal@tugraz.at Signal Processing and Speech Communication Lab, TU Graz Lecture 1 WS2015/16 (6 October 2016) Key Topics of this Lecture

More information

A Glimps at Cellular Mobile Radio Communications. Dr. Erhan A. İnce

A Glimps at Cellular Mobile Radio Communications. Dr. Erhan A. İnce A Glimps at Cellular Mobile Radio Communications Dr. Erhan A. İnce 28.03.2012 CELLULAR Cellular refers to communications systems that divide a geographic region into sections, called cells. The purpose

More information

Unit-1 The Cellular Concept

Unit-1 The Cellular Concept Unit-1 The Cellular Concept 1.1 Introduction to Cellular Systems Solves the problem of spectral congestion and user capacity. Offer very high capacity in a limited spectrum without major technological

More information

Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow.

Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow. Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow WiMAX Whitepaper Author: Frank Rayal, Redline Communications Inc. Redline

More information

Code Planning of 3G UMTS Mobile Networks Using ATOLL Planning Tool

Code Planning of 3G UMTS Mobile Networks Using ATOLL Planning Tool Code Planning of 3G UMTS Mobile Networks Using ATOLL Planning Tool A. Benjamin Paul, Sk.M.Subani, M.Tech in Bapatla Engg. College, Assistant Professor in Bapatla Engg. College, Abstract This paper involves

More information

Mobile Communication Systems. Part 7- Multiplexing

Mobile Communication Systems. Part 7- Multiplexing Mobile Communication Systems Part 7- Multiplexing Professor Z Ghassemlooy Faculty of Engineering and Environment University of Northumbria U.K. http://soe.ac.uk/ocr Contents Multiple Access Multiplexing

More information

MULTI-HOP RADIO ACCESS CELLULAR CONCEPT FOR FOURTH-GENERATION MOBILE COMMUNICATION SYSTEMS

MULTI-HOP RADIO ACCESS CELLULAR CONCEPT FOR FOURTH-GENERATION MOBILE COMMUNICATION SYSTEMS MULTI-HOP RADIO ACCESS CELLULAR CONCEPT FOR FOURTH-GENERATION MOBILE COMMUNICATION SYSTEMS MR. AADITYA KHARE TIT BHOPAL (M.P.) PHONE 09993716594, 09827060004 E-MAIL aadkhare@rediffmail.com aadkhare@gmail.com

More information

Background: Cellular network technology

Background: Cellular network technology Background: Cellular network technology Overview 1G: Analog voice (no global standard ) 2G: Digital voice (again GSM vs. CDMA) 3G: Digital voice and data Again... UMTS (WCDMA) vs. CDMA2000 (both CDMA-based)

More information

CELLULAR COMMUNICATION AND ANTENNAS. Doç. Dr. Mehmet ÇİYDEM

CELLULAR COMMUNICATION AND ANTENNAS. Doç. Dr. Mehmet ÇİYDEM CELLULAR COMMUNICATION AND ANTENNAS Doç. Dr. Mehmet ÇİYDEM mehmet.ciydem@engitek.com.tr, 533 5160580 1 CONTENT 1 ABOUT ENGİTEK 2 CELLULAR COMMUNICATION 3 BASE STATION ANTENNAS 4 5G CELLULAR COMMUNICATION

More information

Wireless WANS and MANS. Chapter 3

Wireless WANS and MANS. Chapter 3 Wireless WANS and MANS Chapter 3 Cellular Network Concept Use multiple low-power transmitters (100 W or less) Areas divided into cells Each served by its own antenna Served by base station consisting of

More information

A 5G Paradigm Based on Two-Tier Physical Network Architecture

A 5G Paradigm Based on Two-Tier Physical Network Architecture A 5G Paradigm Based on Two-Tier Physical Network Architecture Elvino S. Sousa Jeffrey Skoll Professor in Computer Networks and Innovation University of Toronto Wireless Lab IEEE Toronto 5G Summit 2015

More information

Solutions. Remotek's Advantages

Solutions. Remotek's Advantages About Remotek Remotek Corporation specialized in Research, Design and Production of radio coverage solutions for all types of mobile radio network, RF components and the provision of relevant services.

More information

03_57_104_final.fm Page 97 Tuesday, December 4, :17 PM. Problems Problems

03_57_104_final.fm Page 97 Tuesday, December 4, :17 PM. Problems Problems 03_57_104_final.fm Page 97 Tuesday, December 4, 2001 2:17 PM Problems 97 3.9 Problems 3.1 Prove that for a hexagonal geometry, the co-channel reuse ratio is given by Q = 3N, where N = i 2 + ij + j 2. Hint:

More information

GTBIT ECE Department Wireless Communication

GTBIT ECE Department Wireless Communication Q-1 What is Simulcast Paging system? Ans-1 A Simulcast Paging system refers to a system where coverage is continuous over a geographic area serviced by more than one paging transmitter. In this type of

More information

Direct Link Communication II: Wireless Media. Motivation

Direct Link Communication II: Wireless Media. Motivation Direct Link Communication II: Wireless Media Motivation WLAN explosion cellular telephony: 3G/4G cellular providers/telcos in the mix self-organization by citizens for local access large-scale hot spots:

More information

Affordable Backhaul for Rural Broadband: Opportunities in TV White Space in India

Affordable Backhaul for Rural Broadband: Opportunities in TV White Space in India Affordable Backhaul for Rural Broadband: Opportunities in TV White Space in India Abhay Karandikar Professor and Head Department of Electrical Engineering Indian Institute of Technology Bombay, Mumbai

More information

Cellular Radio Systems Department of Electronics and IT Media Engineering

Cellular Radio Systems Department of Electronics and IT Media Engineering Mobile 미디어 IT 기술 Cellular Radio Systems Department of Electronics and IT Media Engineering 1 Contents 1. Cellular Network Systems Overview of cellular network system Pros and Cons Terminologies: Handover,

More information

Data and Computer Communications. Chapter 10 Cellular Wireless Networks

Data and Computer Communications. Chapter 10 Cellular Wireless Networks Data and Computer Communications Chapter 10 Cellular Wireless Networks Cellular Wireless Networks 5 PSTN Switch Mobile Telecomm Switching Office (MTSO) 3 4 2 1 Base Station 0 2016-08-30 2 Cellular Wireless

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Chapter 1 INTRODUCTION 1 The History of Mobile Radio Communication (1/3) 1880: Hertz Initial demonstration of practical radio communication 1897: Marconi Radio transmission to a tugboat over an 18 mi path

More information

Lecture 2: The Concept of Cellular Systems

Lecture 2: The Concept of Cellular Systems Radiation Patterns of Simple Antennas Isotropic Antenna: the isotropic antenna is the simplest antenna possible. It is only a theoretical antenna and cannot be realized in reality because it is a sphere

More information

Mobile and Broadband Access Networks Lab session OPNET: UMTS - Part 2 Background information

Mobile and Broadband Access Networks Lab session OPNET: UMTS - Part 2 Background information Mobile and Broadband Access Networks Lab session OPNET: UMTS - Part 2 Background information Abram Schoutteet, Bart Slock 1 UMTS Practicum CASE 2: Soft Handover Gain 1.1 Background The macro diversity

More information

Wireless Network Pricing Chapter 2: Wireless Communications Basics

Wireless Network Pricing Chapter 2: Wireless Communications Basics Wireless Network Pricing Chapter 2: Wireless Communications Basics Jianwei Huang & Lin Gao Network Communications and Economics Lab (NCEL) Information Engineering Department The Chinese University of Hong

More information

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

Wireless Broadband Networks

Wireless Broadband Networks Wireless Broadband Networks WLAN: Support of mobile devices, but low data rate for higher number of users What to do for a high number of users or even needed QoS support? Problem of the last mile Provide

More information

Cellular Wireless Networks and GSM Architecture. S.M. Riazul Islam, PhD

Cellular Wireless Networks and GSM Architecture. S.M. Riazul Islam, PhD Cellular Wireless Networks and GSM Architecture S.M. Riazul Islam, PhD Desirable Features More Capacity Less Power Larger Coverage Cellular Network Organization Multiple low power transmitters 100w or

More information

Figure 1.1:- Representation of a transmitter s Cell

Figure 1.1:- Representation of a transmitter s Cell Volume 4, Issue 2, February 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Study on Improving

More information

SNS COLLEGE OF ENGINEERING COIMBATORE DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK

SNS COLLEGE OF ENGINEERING COIMBATORE DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK SNS COLLEGE OF ENGINEERING COIMBATORE 641107 DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK EC6801 WIRELESS COMMUNICATION UNIT-I WIRELESS CHANNELS PART-A 1. What is propagation model? 2. What are the

More information

Mobile Communication and Mobile Computing

Mobile Communication and Mobile Computing Department of Computer Science Institute for System Architecture, Chair for Computer Networks Mobile Communication and Mobile Computing Prof. Dr. Alexander Schill http://www.rn.inf.tu-dresden.de Structure

More information

EE 577: Wireless and Personal Communications

EE 577: Wireless and Personal Communications EE 577: Wireless and Personal Communications Dr. Salam A. Zummo Lecture 1: Introduction 1 Common Applications of Wireless Systems AM/FM Radio Broadcast VHF and UHF TV Broadcast Cordless Phones (e.g., DECT)

More information

Chapter 1 Introduction to Mobile Computing (16 M)

Chapter 1 Introduction to Mobile Computing (16 M) Chapter 1 Introduction to Mobile Computing (16 M) 1.1 Introduction to Mobile Computing- Mobile Computing Functions, Mobile Computing Devices, Mobile Computing Architecture, Evolution of Wireless Technology.

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 3: Cellular Fundamentals

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 3: Cellular Fundamentals ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2004 Lecture 3: Cellular Fundamentals Chapter 3 - The Cellular Concept - System Design Fundamentals I. Introduction Goals of a Cellular System

More information

Performance Evaluation of Uplink Closed Loop Power Control for LTE System

Performance Evaluation of Uplink Closed Loop Power Control for LTE System Performance Evaluation of Uplink Closed Loop Power Control for LTE System Bilal Muhammad and Abbas Mohammed Department of Signal Processing, School of Engineering Blekinge Institute of Technology, Ronneby,

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction 1.1 Definition of mobile radio communications and examples Definition: Mobile communication means that the sender and/or receiver are not at a fixed location. The obvious means to

More information

Dynamic Frequency Hopping in Cellular Fixed Relay Networks

Dynamic Frequency Hopping in Cellular Fixed Relay Networks Dynamic Frequency Hopping in Cellular Fixed Relay Networks Omer Mubarek, Halim Yanikomeroglu Broadband Communications & Wireless Systems Centre Carleton University, Ottawa, Canada {mubarek, halim}@sce.carleton.ca

More information

Difference Between. 1. Old connection is broken before a new connection is activated.

Difference Between. 1. Old connection is broken before a new connection is activated. Difference Between Hard handoff Soft handoff 1. Old connection is broken before a new connection is activated. 1. New connection is activated before the old is broken. 2. "break before make" connection

More information

Use of TV white space for mobile broadband access - Analysis of business opportunities of secondary use of spectrum

Use of TV white space for mobile broadband access - Analysis of business opportunities of secondary use of spectrum Use of TV white space for mobile broadband access - Analysis of business opportunities of secondary use of spectrum Östen Mäkitalo and Jan Markendahl Wireless@KTH, Royal Institute of Technology (KTH) Bengt

More information

BASIC CONCEPTS OF HSPA

BASIC CONCEPTS OF HSPA 284 23-3087 Uen Rev A BASIC CONCEPTS OF HSPA February 2007 White Paper HSPA is a vital part of WCDMA evolution and provides improved end-user experience as well as cost-efficient mobile/wireless broadband.

More information

REPORT ITU-R M

REPORT ITU-R M Rep. ITU-R M.2113-1 1 REPORT ITU-R M.2113-1 Sharing studies in the 2 500-2 690 band between IMT-2000 and fixed broadband wireless access systems including nomadic applications in the same geographical

More information

EENG473 Mobile Communications Module 2 : Week # (8) The Cellular Concept System Design Fundamentals

EENG473 Mobile Communications Module 2 : Week # (8) The Cellular Concept System Design Fundamentals EENG473 Mobile Communications Module 2 : Week # (8) The Cellular Concept System Design Fundamentals Improving Capacity in Cellular Systems Cellular design techniques are needed to provide more channels

More information

Submission on Proposed Methodology for Engineering Licenses in Managed Spectrum Parks

Submission on Proposed Methodology for Engineering Licenses in Managed Spectrum Parks Submission on Proposed Methodology and Rules for Engineering Licenses in Managed Spectrum Parks Introduction General This is a submission on the discussion paper entitled proposed methodology and rules

More information

Cellular Expert Professional module features

Cellular Expert Professional module features Cellular Expert Professional module features Tasks Network data management Features Site, sector, construction, customer, repeater management: Add Edit Move Copy Delete Site re-use patterns for nominal

More information

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 10 - LTE (4G) -Technologies used in 4G and 5G The Need for LTE Long Term Evolution (LTE) With the growth of mobile data and mobile users, it becomes essential

More information

Wireless & Cellular Communications

Wireless & Cellular Communications Wireless & Cellular Communications Slides are adopted from Lecture notes by Professor A. Goldsmith, Stanford University. Instructor presentation materials for the book: Wireless Communications, 2nd Edition,

More information

Further Vision on TD-SCDMA Evolution

Further Vision on TD-SCDMA Evolution Further Vision on TD-SCDMA Evolution LIU Guangyi, ZHANG Jianhua, ZHANG Ping WTI Institute, Beijing University of Posts&Telecommunications, P.O. Box 92, No. 10, XiTuCheng Road, HaiDian District, Beijing,

More information

Reti di Telecomunicazione. Channels and Multiplexing

Reti di Telecomunicazione. Channels and Multiplexing Reti di Telecomunicazione Channels and Multiplexing Point-to-point Channels They are permanent connections between a sender and a receiver The receiver can be designed and optimized based on the (only)

More information

Ammar Abu-Hudrouss Islamic University Gaza

Ammar Abu-Hudrouss Islamic University Gaza Wireless Communications n Ammar Abu-Hudrouss Islamic University Gaza ١ Course Syllabus References 1. A. Molisch,, Wiely IEEE, 2nd Edition, 2011. 2. Rappaport, p : Principles and Practice, Prentice Hall

More information

Chapter 3: Cellular concept

Chapter 3: Cellular concept Chapter 3: Cellular concept Introduction to cellular concept: The cellular concept was a major breakthrough in solving the problem of spectral congestion and user capacity. It offered very high capacity

More information

UMTS Forum. IMT-2000 spectrum activities

UMTS Forum. IMT-2000 spectrum activities UMTS Forum IMT-2000 spectrum activities Christoph Legutko Siemens AG Director Frequency Policy 1 Why does the UTMS Forum investigate radio spectrum? Growth of terrestrial mobile services always underestimated

More information

Department of Computer Science Institute for System Architecture, Chair for Computer Networks

Department of Computer Science Institute for System Architecture, Chair for Computer Networks Department of Computer Science Institute for System Architecture, Chair for Computer Networks LTE, WiMAX and 4G Mobile Communication and Mobile Computing Prof. Dr. Alexander Schill http://www.rn.inf.tu-dresden.de

More information

Level 6 Graduate Diploma in Engineering Wireless and mobile communications

Level 6 Graduate Diploma in Engineering Wireless and mobile communications 9210-119 Level 6 Graduate Diploma in Engineering Wireless and mobile communications Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil,

More information

Long Term Evolution (LTE) Radio Network Planning Using Atoll

Long Term Evolution (LTE) Radio Network Planning Using Atoll Long Term Evolution (LTE) Radio Network Planning Using Atoll Gullipalli S.D. Rohit Gagan, Kondamuri N. Nikhitha, Electronics and Communication Department, Baba Institute of Technology and Sciences - Vizag

More information

Unit 2: Mobile Communication Systems Lecture 8, 9: Performance Improvement Techniques in Cellular Systems. Today s Lecture: Outline

Unit 2: Mobile Communication Systems Lecture 8, 9: Performance Improvement Techniques in Cellular Systems. Today s Lecture: Outline Unit 2: Mobile Communication Systems Lecture 8, 9: Performance Improvement Techniques in Cellular Systems Today s Lecture: Outline Handover & Roaming Hard and Soft Handover Power Control Cell Splitting

More information

Multi-antenna Cell Constellations for Interference Management in Dense Urban Areas

Multi-antenna Cell Constellations for Interference Management in Dense Urban Areas Multi-antenna Cell Constellations for Interference Management in Dense Urban Areas Syed Fahad Yunas #, Jussi Turkka #2, Panu Lähdekorpi #3, Tero Isotalo #4, Jukka Lempiäinen #5 Department of Communications

More information

Communication Switching Techniques

Communication Switching Techniques Communication Switching Techniques UNIT 5 P.M.Arun Kumar, Assistant Professor, Department of IT, Sri Krishna College of Engineering and Technology, Coimbatore. PRINCIPLES OF CELLULAR NETWORKS TOPICS TO

More information

Introduction to Wireless and Mobile Networking. Hung-Yu Wei g National Taiwan University

Introduction to Wireless and Mobile Networking. Hung-Yu Wei g National Taiwan University Introduction to Wireless and Mobile Networking Lecture 3: Multiplexing, Multiple Access, and Frequency Reuse Hung-Yu Wei g National Taiwan University Multiplexing/Multiple Access Multiplexing Multiplexing

More information

Hype, Myths, Fundamental Limits and New Directions in Wireless Systems

Hype, Myths, Fundamental Limits and New Directions in Wireless Systems Hype, Myths, Fundamental Limits and New Directions in Wireless Systems Reinaldo A. Valenzuela, Director, Wireless Communications Research Dept., Bell Laboratories Rutgers, December, 2007 Need to greatly

More information

Using the epmp Link Budget Tool

Using the epmp Link Budget Tool Using the epmp Link Budget Tool The epmp Series Link Budget Tool can offer a help to determine the expected performances in terms of distances of a epmp Series system operating in line-of-sight (LOS) propagation

More information

Wireless Physical Layer Concepts: Part III

Wireless Physical Layer Concepts: Part III Wireless Physical Layer Concepts: Part III Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

Module 4: Wireless Metropolitan and Wide Area Networks

Module 4: Wireless Metropolitan and Wide Area Networks Module 4: Wireless Metropolitan and Wide Area Networks SMD161 Wireless Mobile Networks Kaustubh S. Phanse Department of Computer Science and Electrical Engineering Luleå University of Technology Lecture

More information

Cognitive multi-mode and multi-standard base stations: architecture and system analysis

Cognitive multi-mode and multi-standard base stations: architecture and system analysis Cognitive multi-mode and multi-standard base stations: architecture and system analysis C. Armani Selex Elsag, Italy; claudio.armani@selexelsag.com R. Giuliano University of Rome Tor Vergata, Italy; romeo.giuliano@uniroma2.it

More information

Direct Link Communication II: Wireless Media. Current Trend

Direct Link Communication II: Wireless Media. Current Trend Direct Link Communication II: Wireless Media Current Trend WLAN explosion (also called WiFi) took most by surprise cellular telephony: 3G/4G cellular providers/telcos/data in the same mix self-organization

More information

PROFESSIONAL. Functionality chart

PROFESSIONAL. Functionality chart PROFESSIONAL Functionality chart Cellular Expert Professional module features Tasks Network data management Site, sector, construction, customer, repeater management: Add Edit Move Copy Delete Site re-use

More information

Chapter 5 Acknowledgment:

Chapter 5 Acknowledgment: Chapter 5 Acknowledgment: This material is based on the slides formatted by Dr Sunilkumar S. Manvi and Dr Mahabaleshwar S. Kakkasageri, the authors of the textbook: Wireless and Mobile Networks, concepts

More information

Minimum requirements related to technical performance for IMT-2020 radio interface(s)

Minimum requirements related to technical performance for IMT-2020 radio interface(s) Report ITU-R M.2410-0 (11/2017) Minimum requirements related to technical performance for IMT-2020 radio interface(s) M Series Mobile, radiodetermination, amateur and related satellite services ii Rep.

More information

CHAPTER 19 CELLULAR TELEPHONE CONCEPTS # DEFINITION TERMS

CHAPTER 19 CELLULAR TELEPHONE CONCEPTS # DEFINITION TERMS CHAPTER 19 CELLULAR TELEPHONE CONCEPTS # DEFINITION TERMS 1) The term for mobile telephone services which began in 1940s and are sometimes called Manual telephone systems. Mobile Telephone Manual System

More information

ROMANTIK. Transceiver AlgorIthms for Multihop NetworKs. Management and AdvaNced

ROMANTIK. Transceiver AlgorIthms for Multihop NetworKs. Management and AdvaNced ROMANTIK ResOurce Management and AdvaNced Transceiver AlgorIthms for Multihop NetworKs Javier Fonollosa Universitat Politècnica de Catalunya javier.fonollosa fonollosa@upc.es Partners UPC Universitat Politècnica

More information

GSM FREQUENCY PLANNING

GSM FREQUENCY PLANNING GSM FREQUENCY PLANNING PROJECT NUMBER: PRJ070 BY NAME: MUTONGA JACKSON WAMBUA REG NO.: F17/2098/2004 SUPERVISOR: DR. CYRUS WEKESA EXAMINER: DR. MAURICE MANG OLI Introduction GSM is a cellular mobile network

More information

UTRAN Radio Resource Management

UTRAN Radio Resource Management UTRAN Radio Resource Management BTS 3 BTS 1 UE BTS 2 Introduction Handover Control Soft/Softer Handover Inter Frequency Handover Power Control Closed Loop Power Control Open Loop Power Control Interference

More information

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) Long Term Evolution (LTE) What is LTE? LTE is the next generation of Mobile broadband technology Data Rates up to 100Mbps Next level of

More information

Guide to Wireless Communications, Third Edition Cengage Learning Objectives

Guide to Wireless Communications, Third Edition Cengage Learning Objectives Guide to Wireless Communications, Third Edition Chapter 9 Wireless Metropolitan Area Networks Objectives Explain why wireless metropolitan area networks (WMANs) are needed Describe the components and modes

More information

TRAINING OBJECTIVE. RF Planning Training Course will show the attendees how to plan, design and optimize networks efficiently.

TRAINING OBJECTIVE. RF Planning Training Course will show the attendees how to plan, design and optimize networks efficiently. TRAINING PROGRAM Diploma In Radio Network Planning DRNP Advance Diploma In Radio Network Planning - ADRNP Masters Diploma In Radio Network Planning - MDRNP TRAINING OBJECTIVE Our RF Planning Training is

More information

License Exempt Spectrum and Advanced Technologies. Marianna Goldhammer Director Strategic Technologies

License Exempt Spectrum and Advanced Technologies. Marianna Goldhammer Director Strategic Technologies License Exempt Spectrum and Advanced Technologies Marianna Goldhammer Director Strategic Technologies Contents BWA Market trends Power & Spectral Ingredients for Successful BWA Deployments Are regulations

More information

WiMAX/ Wireless WAN Case Study: WiMAX/ W.wan.6. IEEE 802 suite. IEEE802 suite. IEEE 802 suite WiMAX/802.16

WiMAX/ Wireless WAN Case Study: WiMAX/ W.wan.6. IEEE 802 suite. IEEE802 suite. IEEE 802 suite WiMAX/802.16 W.wan.6-2 Wireless WAN Case Study: WiMAX/802.16 W.wan.6 WiMAX/802.16 IEEE 802 suite WiMAX/802.16 PHY Dr.M.Y.Wu@CSE Shanghai Jiaotong University Shanghai, China Dr.W.Shu@ECE University of New Mexico Albuquerque,

More information

3GPP TR V7.0.0 ( )

3GPP TR V7.0.0 ( ) TR 25.816 V7.0.0 (2005-12) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; UMTS 900 MHz Work Item Technical Report (Release 7) The present document

More information

UTRAN Radio Resource Management

UTRAN Radio Resource Management UTRAN Radio Resource Management BTS 3 Introduction Handover Control Soft/Softer Handover Inter Frequency Handover Power Control UE BTS 2 Closed Loop Power Control Open Loop Power Control Interference Management

More information

Future spectrum requirements estimate for terrestrial IMT

Future spectrum requirements estimate for terrestrial IMT Report ITU-R M.2290-0 (12/2013) Future spectrum requirements estimate for terrestrial IMT M Series Mobile, radiodetermination, amateur and related satellite services ii Rep. ITU-R M.2290-0 Foreword The

More information

IS-95 /CdmaOne Standard. By Mrs.M.R.Kuveskar.

IS-95 /CdmaOne Standard. By Mrs.M.R.Kuveskar. IS-95 /CdmaOne Standard By Mrs.M.R.Kuveskar. CDMA Classification of CDMA Systems CDMA SYSTEMS CDMA one CDMA 2000 IS95 IS95B JSTD 008 Narrow Band Wide Band CDMA Multiple Access in CDMA: Each user is assigned

More information

M Y R E V E A L - C E L L U L A R

M Y R E V E A L - C E L L U L A R M Y R E V E A L - C E L L U L A R The hexagon cell shape If we have two BTSs with omniantennas and we require that the border between the coverage area of each BTS is the set of points where the signal

More information

Unit 3 - Wireless Propagation and Cellular Concepts

Unit 3 - Wireless Propagation and Cellular Concepts X Courses» Introduction to Wireless and Cellular Communications Unit 3 - Wireless Propagation and Cellular Concepts Course outline How to access the portal Assignment 2. Overview of Cellular Evolution

More information

RECOMMENDATION ITU-R M.1391 METHODOLOGY FOR THE CALCULATION OF IMT-2000 SATELLITE SPECTRUM REQUIREMENTS

RECOMMENDATION ITU-R M.1391 METHODOLOGY FOR THE CALCULATION OF IMT-2000 SATELLITE SPECTRUM REQUIREMENTS Rec. ITU-R M.1391 1 RECOMMENDATION ITU-R M.1391 METHODOLOGY FOR THE CALCULATION OF IMT-2000 SATELLITE SPECTRUM REQUIREMENTS Rec. ITU-R M.1391 (1999 1 Introduction International Mobile Telecommunications

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /VETEC.1999.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /VETEC.1999. Spilling, A. G., Nix, A. R., Fitton, M. P., & VanEijl, C. (1999). Adaptive networks for UMTS - an investigation of bunched basestations. In Proceedings of the 49th IEEE Vehicular Technology Conference.

More information

Summary of ITU-R WP 8F work towards IMT-Advanced and the vision for the future, including examples of applications

Summary of ITU-R WP 8F work towards IMT-Advanced and the vision for the future, including examples of applications Spectrum for IMT in WRC-07 Summary of ITU-R WP 8F work towards IMT-Advanced and the vision for the future, including examples of applications José M. Costa Senior Manager Wireless Access Standards Nortel

More information

8. MOBILE AND CELLULAR SYSTEMS

8. MOBILE AND CELLULAR SYSTEMS 8. MOBILE AND CELLULAR SYSTEMS 8.1 INTRODUCTION Mobile communication systems are wireless communication systems that allow one or both users to be nomadic. Systems and applications that allow for mobility

More information

5G deployment below 6 GHz

5G deployment below 6 GHz 5G deployment below 6 GHz Ubiquitous coverage for critical communication and massive IoT White Paper There has been much attention on the ability of new 5G radio to make use of high frequency spectrum,

More information

wavecall The Reliable Wireless Connection The impact of radio propagation prediction on urban UMTS planning

wavecall The Reliable Wireless Connection The impact of radio propagation prediction on urban UMTS planning wavecall The Reliable Wireless Connection The impact of radio propagation prediction on urban UMTS planning Mathias Coinchon 27.9.2001 WaveCall SA Executive Summary This case study outlines the importance

More information

Wireless Future. OUTLINE My thought on Wireless Future Before March 11 After March 11

Wireless Future. OUTLINE My thought on Wireless Future Before March 11 After March 11 VTC-Spring Panel:Wireless Future, 8:30~10:00am, 17 May, 2011, Budapest, Hungary Wireless Future Tohoku U. Aobayama-campus Fumiyuki Adachi Wireless Signal Processing & Networking (WSP&N) Lab. Dept. of Electrical

More information

UMTS: Universal Mobile Telecommunications System

UMTS: Universal Mobile Telecommunications System Department of Computer Science Institute for System Architecture, Chair for Computer Networks UMTS: Universal Mobile Telecommunications System Mobile Communication and Mobile Computing Prof. Dr. Alexander

More information

Concept Group Alpha Wideband Direct-Sequence CDMA: Evaluation Summary

Concept Group Alpha Wideband Direct-Sequence CDMA: Evaluation Summary ETSI SMG#24 TDoc SMG2 904 / 97 Madrid, Spain December 15-19, 1997 Agenda item 4.1: UTRA Source: SMG2 Concept Group Alpha Wideband Direct-Sequence CDMA: Evaluation Summary Title: Summary of the Concept

More information

Remote RF is Becoming a Mainstream Solution

Remote RF is Becoming a Mainstream Solution Remote RF is Becoming a Mainstream Solution Cedric Taylor Celerica 55 Madison Avenue Morristown, NJ 07960 www.celerica.com Abstract This paper examines the technologies and applications associated with

More information

4G Technologies Myths and Realities

4G Technologies Myths and Realities 4G Technologies Myths and Realities Leonhard Korowajczuk CEO/CTO CelPlan International, Inc. www.celplan.com leonhard@celplan.com 1-703-259-4022 29 th CANTO - Aruba Caribbean Association of National Telecommunications

More information

Department of Computer Science Institute for System Architecture, Chair for Computer Networks

Department of Computer Science Institute for System Architecture, Chair for Computer Networks Department of Computer Science Institute for System Architecture, Chair for Computer Networks LTE, WiMAX and 4G Mobile Communication and Mobile Computing Prof. Dr. Alexander Schill http://www.rn.inf.tu-dresden.de

More information

Lecture 7: Centralized MAC protocols. Mythili Vutukuru CS 653 Spring 2014 Jan 27, Monday

Lecture 7: Centralized MAC protocols. Mythili Vutukuru CS 653 Spring 2014 Jan 27, Monday Lecture 7: Centralized MAC protocols Mythili Vutukuru CS 653 Spring 2014 Jan 27, Monday Centralized MAC protocols Previous lecture contention based MAC protocols, users decide who transmits when in a decentralized

More information

IMT-2000 members UTRA-TDD and UTRA-FDD

IMT-2000 members UTRA-TDD and UTRA-FDD IMT-2000 members UTRA-TDD and UTRA-FDD Dr. Christian Menzel, SIEMENS AG christian.menzel@icn.siemens.de Author Siemens AG, Munich Siemens AG 2000 IMT-2000_UTRA_TDD_FDD_1 UTRA (FDD + TDD)! IMT-2000 and

More information