Section 2.7 Proving Trigonometric Identities

Size: px
Start display at page:

Download "Section 2.7 Proving Trigonometric Identities"

Transcription

1 Sec. 2.7 Proving Trigonometric Identities 87 Section 2.7 Proving Trigonometric Identities In this section, we use the identities presented in Section 2.6 to do two different tasks: ) to simplify a trigonometric expression, and 2) prove that a supposed identity really is an identity. SIMPLIFYING A TRIGONOMETRIC EXPRESSION Example : Write each expression in terms of and/or, and simplify. a) secθ cotθ b) tanθ + secθ Use the reciprocal and ratio identities to first write the expression in terms of only and, and then simplify, if possible. Answer: a) secθ cotθ Write each in terms of sine and cosine. Divide out. This is the same as cscθ. cscθ This expression cannot be simplified further. b) tanθ + secθ Write each in terms of sine and cosine. + + Multiply to the second fraction. These fractions have the same denominator; we can add them directly. 2 can simplify to tanθ. 2tanθ This expression cannot be simplified further. Sec. 2.7 Proving Trigonometric Identities 87 Robert H. Prior, 206

2 88 Sec. 2.7 Proving Trigonometric Identities You Try It Write each expression in terms of and/or, and simplify. a) secθ tanθ b) cscθ cotθ In Example b) we added two fractions with the same denominator. If the fractions have different denominators, then we must first identify the least common denominator (LCD) and build up each fraction appropriately. Example 2: Build up each fraction to have common denominators and simplify. Identify the LCD and multiply by a form of to create the LCD in each fraction. Answer:. The LCD is. Multiply each by a form of to build up each fraction. Simplify the respective fractions. Combine the fractions into one fraction. This expression cannot be simplified further. Sec. 2.7 Proving Trigonometric Identities 88 Robert H. Prior, 206

3 Sec. 2.7 Proving Trigonometric Identities 89 Example 3: In each expression build up the fractions to have a common denominator. Simplify. a) b) sin 2 θ + cos 2 θ. Identify the LCD and build up each fraction to have that denominator. Answer: a) The LCD is. Write a in the denominator of the second fraction and multiply by a form of to build it up. cos2 θ Multiply. Combine the fractions into one. cos 2 θ The numerator is sin2 θ. sin 2 θ This expression is one simplified form. Other simplified forms are possible. b) sin 2 θ + cos 2 θ. The LCD is sin 2 θ cos 2 θ. Multiply each by a form of to build up the fractions. sin 2 θ cos2 θ cos 2 θ + cos 2 θ. sin2 θ sin 2 θ cos 2 θ sin 2 θ cos 2 θ + cos 2 θ + sin 2 θ sin 2 θ cos 2 θ sin 2 θ cos 2 θ sin 2 θ sin 2 θ cos 2 θ Simplify the respective fractions. Combine the fractions into one fraction. The numerator is a Pythagorean identity; replace the numerator with. Sec. 2.7 Proving Trigonometric Identities 89 Robert H. Prior, 206

4 90 Sec. 2.7 Proving Trigonometric Identities You Try It 2 In each expression build up the fractions to have a common denominator. Simplify. Hint: In expression b), the second fraction has a denominator of. a) + b) cos 2 θ Example 4: Multiply and simplify. a) ( 2) b) (2 3)( + 4) For each, distribute. You may use FOIL for b). Answer: a) ( 2) b) (2 3)( + 4) 2 2cos 2 θ cos 2 θ You Try It 3 Multiply and simplify. a) (cscθ ) b) ( + ) 2 Sec. 2.7 Proving Trigonometric Identities 90 Robert H. Prior, 206

5 Sec. 2.7 Proving Trigonometric Identities 9 PROVING IDENTITIES An identity is set up to look like an equation. However, when we are attempting to prove an identity (a supposed identity) is true, then we cannot assume that the left and right sides are equivalent, so we are not allowed to treat them like equations. In other words, we cannot use rules that apply to equations, such as adding the same term to both sides of the equal sign. Instead, we must manipulate only one side of the supposed identity to make it identical to the other side. Once that task is complete, the identity has been proven. Note: Once an identity is proven, then we can write alternative identities using the rules of equations. For example, because we know that cos 2 θ + sin 2 θ... we can solve for sin 2 θ: sin 2 θ cos 2 θ Example 5: For each, demonstrate that the equation is an identity by transforming the left side (only) to be equivalent to the right side. a) cscθ tanθ secθ b) tanθ secθ Start by writing the left side in terms of sine and cosine only. Answer: a) cscθ tanθ secθ Write the left side in terms of sine and cosine. Divide out. This is secθ. Finish the proof. secθ secθ QED* b) tanθ secθ Write the left side in terms of sine and cosine. Change division to multiplying by the reciprocal. Divide out, and finish the proof. QED* *Note: It is common though not required to write QED at the end of a proof. It stands for the Latin phrase Quod Erat Demonstrandum; loosely translated, it says, that which was to be demonstrated. Sec. 2.7 Proving Trigonometric Identities 9 Robert H. Prior, 206

6 92 Sec. 2.7 Proving Trigonometric Identities Some proofs are more involved and require using a variety of identities, including various forms of the Pythagorean identity. Example 6: Demonstrate that the equation is an identity by transforming the left side (only) to be equivalent to the right side. cscθ tanθ sin2 θ Start by writing the left side in terms of sine and cosine only. Answer: a) cscθ tanθ sin2 θ Write the left side in terms of sine and cosine. Simplify the first fractions and write the second term as a fraction with in the denominator. Get the common denominator: LCD. cos2 θ Simplify the second fraction. We must combine the fractions before we can use any other identities. cos 2 θ We can now use a Pythagorean identity in the numerator and finish the proof. sin 2 θ sin2 θ QED You Try It Answers YTI : a) tan 2 θ b) YTI 2: a) b) cos 2 θ sin 2 θ (This cannot simplify further at this time.) YTI 3: a) cos 2 θ b) cos 2 θ Sec. 2.7 Proving Trigonometric Identities 92 Robert H. Prior, 206

7 Sec. 2.7 Proving Trigonometric Identities 93 Section 2.7 Focus Exercises First write each expression in terms of only and/or. Then simplify.. tanθ 2. tanθ 3. cscθ 4. cscθ tanθ 5. cotθ secθ 6. tanθ 7. tanθ + secθ 8. cotθ + cscθ 9. secθ tanθ 0. secθ tanθ Sec. 2.7 Proving Trigonometric Identities 93 Robert H. Prior, 206

8 94 Sec. 2.7 Proving Trigonometric Identities For each, identify the least common denominator (LCD) and use it to build up each fraction and combine the fractions. Write all answers in terms of and. Simplify.. + cos 2 θ Multiply and simplify 5. (tanθ ) 6. cscθ (tanθ + ) Sec. 2.7 Proving Trigonometric Identities 94 Robert H. Prior, 206

9 Sec. 2.7 Proving Trigonometric Identities ( + 2)( + ) 8. ( + ) 2 For each, demonstrate that the equation is an identity by transforming the left side (only) to be equivalent to the right side. 9. secθ 20. secθ cotθ cscθ 2. cotθ 22. secθ cscθ tanθ Sec. 2.7 Proving Trigonometric Identities 95 Robert H. Prior, 206

10 96 Sec. 2.7 Proving Trigonometric Identities 23. sin 2 θ tanθ 24. cscθ cotθ 25. cscθ + secθ 26. tanθ secθ Sec. 2.7 Proving Trigonometric Identities 96 Robert H. Prior, 206

You found trigonometric values using the unit circle. (Lesson 4-3)

You found trigonometric values using the unit circle. (Lesson 4-3) You found trigonometric values using the unit circle. (Lesson 4-3) LEQ: How do we identify and use basic trigonometric identities to find trigonometric values & use basic trigonometric identities to simplify

More information

= tanθ 3) cos2 θ. = tan θ. = 3cosθ 6) sinθ + cosθcotθ = cscθ. = 3cosθ. = 3cosθ sinθ

= tanθ 3) cos2 θ. = tan θ. = 3cosθ 6) sinθ + cosθcotθ = cscθ. = 3cosθ. = 3cosθ sinθ PRE-CALCULUS/TRIGONOMETRY 3 Name 5.-5.5 REVIEW Date: Block Verify. ) cscθ secθ = cotθ 2) sec2 θ tanθ = tanθ 3) cos2 θ +sin θ = Use RIs sin θ = cotθ tan 2 θ tanθ = tan θ sin 2 θ +sin θ = Multiply by reciprocal

More information

While you wait: For a-d: use a calculator to evaluate: Fill in the blank.

While you wait: For a-d: use a calculator to evaluate: Fill in the blank. While you wait: For a-d: use a calculator to evaluate: a) sin 50 o, cos 40 o b) sin 25 o, cos65 o c) cos o, sin 79 o d) sin 83 o, cos 7 o Fill in the blank. a) sin30 = cos b) cos57 = sin Trigonometric

More information

3.2 Proving Identities

3.2 Proving Identities 3.. Proving Identities www.ck.org 3. Proving Identities Learning Objectives Prove identities using several techniques. Working with Trigonometric Identities During the course, you will see complex trigonometric

More information

Solutions to Exercises, Section 5.6

Solutions to Exercises, Section 5.6 Instructor s Solutions Manual, Section 5.6 Exercise 1 Solutions to Exercises, Section 5.6 1. For θ = 7, evaluate each of the following: (a) cos 2 θ (b) cos(θ 2 ) [Exercises 1 and 2 emphasize that cos 2

More information

Module 5 Trigonometric Identities I

Module 5 Trigonometric Identities I MAC 1114 Module 5 Trigonometric Identities I Learning Objectives Upon completing this module, you should be able to: 1. Recognize the fundamental identities: reciprocal identities, quotient identities,

More information

HONORS PRECALCULUS Prove the following identities- ( ) x x x x x x. cos x cos x cos x cos x 1 sin x cos x 1 sin x

HONORS PRECALCULUS Prove the following identities- ( ) x x x x x x. cos x cos x cos x cos x 1 sin x cos x 1 sin x HONORS PRECALCULUS Prove the following identities-.) ( ) cos sin cos cos sin + sin sin + cos sin cos sin cos.).) ( ) ( sin) ( ) ( ) sin sin + + sin sin tan + sec + cos cos cos cos sin cos sin cos cos cos

More information

MATH Week 10. Ferenc Balogh Winter. Concordia University

MATH Week 10. Ferenc Balogh Winter. Concordia University MATH 20 - Week 0 Ferenc Balogh Concordia University 2008 Winter Based on the textbook J. Stuart, L. Redlin, S. Watson, Precalculus - Mathematics for Calculus, 5th Edition, Thomson All figures and videos

More information

Trigonometric Functions. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Trigonometric Functions. Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 Trigonometric Functions Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 1.4 Using the Definitions of the Trigonometric Functions Reciprocal Identities Signs and Ranges of Function Values Pythagorean

More information

Double-Angle, Half-Angle, and Reduction Formulas

Double-Angle, Half-Angle, and Reduction Formulas Double-Angle, Half-Angle, and Reduction Formulas By: OpenStaxCollege Bicycle ramps for advanced riders have a steeper incline than those designed for novices. Bicycle ramps made for competition (see [link])

More information

6.4 & 6.5 Graphing Trigonometric Functions. The smallest number p with the above property is called the period of the function.

6.4 & 6.5 Graphing Trigonometric Functions. The smallest number p with the above property is called the period of the function. Math 160 www.timetodare.com Periods of trigonometric functions Definition A function y f ( t) f ( t p) f ( t) 6.4 & 6.5 Graphing Trigonometric Functions = is periodic if there is a positive number p such

More information

Exercise 1. Consider the following figure. The shaded portion of the circle is called the sector of the circle corresponding to the angle θ.

Exercise 1. Consider the following figure. The shaded portion of the circle is called the sector of the circle corresponding to the angle θ. 1 Radian Measures Exercise 1 Consider the following figure. The shaded portion of the circle is called the sector of the circle corresponding to the angle θ. 1. Suppose I know the radian measure of the

More information

Unit 5. Algebra 2. Name:

Unit 5. Algebra 2. Name: Unit 5 Algebra 2 Name: 12.1 Day 1: Trigonometric Functions in Right Triangles Vocabulary, Main Topics, and Questions Definitions, Diagrams and Examples Theta Opposite Side of an Angle Adjacent Side of

More information

PROVING IDENTITIES TRIGONOMETRY 4. Dr Adrian Jannetta MIMA CMath FRAS INU0115/515 (MATHS 2) Proving identities 1/ 7 Adrian Jannetta

PROVING IDENTITIES TRIGONOMETRY 4. Dr Adrian Jannetta MIMA CMath FRAS INU0115/515 (MATHS 2) Proving identities 1/ 7 Adrian Jannetta PROVING IDENTITIES TRIGONOMETRY 4 INU05/55 (MATHS 2) Dr Adrian Jannetta MIMA CMath FRAS Proving identities / 7 Adrian Jannetta Proving an identity Proving an identity is a process which starts with the

More information

θ = = 45 What is the measure of this reference angle?

θ = = 45 What is the measure of this reference angle? OF GENERAL ANGLES Our method of using right triangles only works for acute angles. Now we will see how we can find the trig function values of any angle. To do this we'll place angles on a rectangular

More information

Mathematics UNIT FIVE Trigonometry II. Unit. Student Workbook. Lesson 1: Trigonometric Equations Approximate Completion Time: 4 Days

Mathematics UNIT FIVE Trigonometry II. Unit. Student Workbook. Lesson 1: Trigonometric Equations Approximate Completion Time: 4 Days Mathematics 0- Student Workbook Unit 5 Lesson : Trigonometric Equations Approximate Completion Time: 4 Days Lesson : Trigonometric Identities I Approximate Completion Time: 4 Days Lesson : Trigonometric

More information

The reciprocal identities are obvious from the definitions of the six trigonometric functions.

The reciprocal identities are obvious from the definitions of the six trigonometric functions. The Fundamental Identities: (1) The reciprocal identities: csc = 1 sec = 1 (2) The tangent and cotangent identities: tan = cot = cot = 1 tan (3) The Pythagorean identities: sin 2 + cos 2 =1 1+ tan 2 =

More information

In this section, you will learn the basic trigonometric identities and how to use them to prove other identities.

In this section, you will learn the basic trigonometric identities and how to use them to prove other identities. 4.6 Trigonometric Identities Solutions to equations that arise from real-world problems sometimes include trigonometric terms. One example is a trajectory problem. If a volleyball player serves a ball

More information

MATH STUDENT BOOK. 12th Grade Unit 5

MATH STUDENT BOOK. 12th Grade Unit 5 MATH STUDENT BOOK 12th Grade Unit 5 Unit 5 ANALYTIC TRIGONOMETRY MATH 1205 ANALYTIC TRIGONOMETRY INTRODUCTION 3 1. IDENTITIES AND ADDITION FORMULAS 5 FUNDAMENTAL TRIGONOMETRIC IDENTITIES 5 PROVING IDENTITIES

More information

Pythagorean Theorem: Trigonometry Packet #1 S O H C A H T O A. Examples Evaluate the six trig functions of the angle θ. 1.) 2.)

Pythagorean Theorem: Trigonometry Packet #1 S O H C A H T O A. Examples Evaluate the six trig functions of the angle θ. 1.) 2.) Trigonometry Packet #1 opposite side hypotenuse Name: Objectives: Students will be able to solve triangles using trig ratios and find trig ratios of a given angle. S O H C A H T O A adjacent side θ Right

More information

Trig/AP Calc A. Created by James Feng. Semester 1 Version fengerprints.weebly.com

Trig/AP Calc A. Created by James Feng. Semester 1 Version fengerprints.weebly.com Trig/AP Calc A Semester Version 0.. Created by James Feng fengerprints.weebly.com Trig/AP Calc A - Semester Handy-dandy Identities Know these like the back of your hand. "But I don't know the back of my

More information

Name Date Class. Identify whether each function is periodic. If the function is periodic, give the period

Name Date Class. Identify whether each function is periodic. If the function is periodic, give the period Name Date Class 14-1 Practice A Graphs of Sine and Cosine Identify whether each function is periodic. If the function is periodic, give the period. 1.. Use f(x) = sinx or g(x) = cosx as a guide. Identify

More information

Section 8.1 Radians and Arc Length

Section 8.1 Radians and Arc Length Section 8. Radians and Arc Length Definition. An angle of radian is defined to be the angle, in the counterclockwise direction, at the center of a unit circle which spans an arc of length. Conversion Factors:

More information

Trigonometric Identities. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Trigonometric Identities. Copyright 2017, 2013, 2009 Pearson Education, Inc. 5 Trigonometric Identities Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 5.5 Double-Angle Double-Angle Identities An Application Product-to-Sum and Sum-to-Product Identities Copyright 2017, 2013,

More information

13.4 Chapter 13: Trigonometric Ratios and Functions. Section 13.4

13.4 Chapter 13: Trigonometric Ratios and Functions. Section 13.4 13.4 Chapter 13: Trigonometric Ratios and Functions Section 13.4 1 13.4 Chapter 13: Trigonometric Ratios and Functions Section 13.4 2 Key Concept Section 13.4 3 Key Concept Section 13.4 4 Key Concept Section

More information

Principles of Mathematics 12: Explained!

Principles of Mathematics 12: Explained! Principles of Mathematics : Eplained! www.math.com PART I MULTIPLICATION & DIVISION IDENTITLES Algebraic proofs of trigonometric identities In this lesson, we will look at various strategies for proving

More information

Math 104 Final Exam Review

Math 104 Final Exam Review Math 04 Final Exam Review. Find all six trigonometric functions of θ if (, 7) is on the terminal side of θ.. Find cosθ and sinθ if the terminal side of θ lies along the line y = x in quadrant IV.. Find

More information

PREREQUISITE/PRE-CALCULUS REVIEW

PREREQUISITE/PRE-CALCULUS REVIEW PREREQUISITE/PRE-CALCULUS REVIEW Introduction This review sheet is a summary of most of the main topics that you should already be familiar with from your pre-calculus and trigonometry course(s), and which

More information

MATH 1112 FINAL EXAM REVIEW e. None of these. d. 1 e. None of these. d. 1 e. None of these. e. None of these. e. None of these.

MATH 1112 FINAL EXAM REVIEW e. None of these. d. 1 e. None of these. d. 1 e. None of these. e. None of these. e. None of these. I. State the equation of the unit circle. MATH 111 FINAL EXAM REVIEW x y y = 1 x+ y = 1 x = 1 x + y = 1 II. III. If 1 tan x =, find sin x for x in Quadrant IV. 1 1 1 Give the exact value of each expression.

More information

Geometry Problem Solving Drill 11: Right Triangle

Geometry Problem Solving Drill 11: Right Triangle Geometry Problem Solving Drill 11: Right Triangle Question No. 1 of 10 Which of the following points lies on the unit circle? Question #01 A. (1/2, 1/2) B. (1/2, 2/2) C. ( 2/2, 2/2) D. ( 2/2, 3/2) The

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math 1316 Ch.1-2 Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 1) Find the supplement of an angle whose

More information

Trig Identities Packet

Trig Identities Packet Advanced Math Name Trig Identities Packet = = = = = = = = cos 2 θ + sin 2 θ = sin 2 θ = cos 2 θ cos 2 θ = sin 2 θ + tan 2 θ = sec 2 θ tan 2 θ = sec 2 θ tan 2 θ = sec 2 θ + cot 2 θ = csc 2 θ cot 2 θ = csc

More information

Honors Algebra 2 w/ Trigonometry Chapter 14: Trigonometric Identities & Equations Target Goals

Honors Algebra 2 w/ Trigonometry Chapter 14: Trigonometric Identities & Equations Target Goals Honors Algebra w/ Trigonometry Chapter 14: Trigonometric Identities & Equations Target Goals By the end of this chapter, you should be able to Identify trigonometric identities. (14.1) Factor trigonometric

More information

Ferris Wheel Activity. Student Instructions:

Ferris Wheel Activity. Student Instructions: Ferris Wheel Activity Student Instructions: Today we are going to start our unit on trigonometry with a Ferris wheel activity. This Ferris wheel will be used throughout the unit. Be sure to hold on to

More information

Chapter 4/5 Part 2- Trig Identities and Equations

Chapter 4/5 Part 2- Trig Identities and Equations Chapter 4/5 Part 2- Trig Identities and Equations Lesson Package MHF4U Chapter 4/5 Part 2 Outline Unit Goal: By the end of this unit, you will be able to solve trig equations and prove trig identities.

More information

MHF4U. Advanced Functions Grade 12 University Mitchell District High School. Unit 4 Radian Measure 5 Video Lessons

MHF4U. Advanced Functions Grade 12 University Mitchell District High School. Unit 4 Radian Measure 5 Video Lessons MHF4U Advanced Functions Grade 12 University Mitchell District High School Unit 4 Radian Measure 5 Video Lessons Allow no more than 1 class days for this unit! This includes time for review and to write

More information

Grade 10 Trigonometry

Grade 10 Trigonometry ID : pk-0-trigonometry [] Grade 0 Trigonometry For more such worksheets visit www.edugain.com Answer t he quest ions () Simplif y - 2 sin 3 θ - 2 cos 3 θ (2) If secθ tan θ y, simplif y in terms of θ. (3)

More information

Prerequisite Knowledge: Definitions of the trigonometric ratios for acute angles

Prerequisite Knowledge: Definitions of the trigonometric ratios for acute angles easures, hape & pace EXEMPLAR 28 Trigonometric Identities Objective: To explore some relations of trigonometric ratios Key Stage: 3 Learning Unit: Trigonometric Ratios and Using Trigonometry Materials

More information

cos sin sin 2 60 = 1.

cos sin sin 2 60 = 1. Name: Class: Date: Use the definitions to evaluate the six trigonometric functions of. In cases in which a radical occurs in a denominator, rationalize the denominator. Suppose that ABC is a right triangle

More information

Chapter 1 and Section 2.1

Chapter 1 and Section 2.1 Chapter 1 and Section 2.1 Diana Pell Section 1.1: Angles, Degrees, and Special Triangles Angles Degree Measure Angles that measure 90 are called right angles. Angles that measure between 0 and 90 are called

More information

Math 10/11 Honors Section 3.6 Basic Trigonometric Identities

Math 10/11 Honors Section 3.6 Basic Trigonometric Identities Math 0/ Honors Section 3.6 Basic Trigonometric Identities 0-0 - SECTION 3.6 BASIC TRIGONOMETRIC IDENTITIES Copright all rights reserved to Homework Depot: www.bcmath.ca I) WHAT IS A TRIGONOMETRIC IDENTITY?

More information

Year 10 Term 1 Homework

Year 10 Term 1 Homework Yimin Math Centre Year 10 Term 1 Homework Student Name: Grade: Date: Score: Table of contents 6 Year 10 Term 1 Week 6 Homework 1 6.1 Triangle trigonometry................................... 1 6.1.1 The

More information

Trigonometric Functions of any Angle

Trigonometric Functions of any Angle Trigonometric Functions of an Angle Wen evaluating an angle θ, in standard position, wose terminal side is given b te coordinates (,), a reference angle is alwas used. Notice ow a rigt triangle as been

More information

Trigonometric identities

Trigonometric identities Trigonometric identities An identity is an equation that is satisfied by all the values of the variable(s) in the equation. For example, the equation (1 + x) = 1 + x + x is an identity. If you replace

More information

One of the classes that I have taught over the past few years is a technology course for

One of the classes that I have taught over the past few years is a technology course for Trigonometric Functions through Right Triangle Similarities Todd O. Moyer, Towson University Abstract: This article presents an introduction to the trigonometric functions tangent, cosecant, secant, and

More information

JUST THE MATHS SLIDES NUMBER 3.5. TRIGONOMETRY 5 (Trigonometric identities & wave-forms) A.J.Hobson

JUST THE MATHS SLIDES NUMBER 3.5. TRIGONOMETRY 5 (Trigonometric identities & wave-forms) A.J.Hobson JUST THE MATHS SLIDES NUMBER 3.5 TRIGONOMETRY 5 (Trigonometric identities & wave-forms by A.J.Hobson 3.5.1 Trigonometric identities 3.5. Amplitude, wave-length, frequency and phase-angle UNIT 3.5 - TRIGONOMETRY

More information

MATH 1040 CP 15 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MATH 1040 CP 15 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 1040 CP 15 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) (sin x + cos x) 1 + sin x cos x =? 1) ) sec 4 x + sec x tan x - tan 4 x =? ) ) cos

More information

Math 3 Trigonometry Part 2 Waves & Laws

Math 3 Trigonometry Part 2 Waves & Laws Math 3 Trigonometry Part 2 Waves & Laws GRAPHING SINE AND COSINE Graph of sine function: Plotting every angle and its corresponding sine value, which is the y-coordinate, for different angles on the unit

More information

Mod E - Trigonometry. Wednesday, July 27, M132-Blank NotesMOM Page 1

Mod E - Trigonometry. Wednesday, July 27, M132-Blank NotesMOM Page 1 M132-Blank NotesMOM Page 1 Mod E - Trigonometry Wednesday, July 27, 2016 12:13 PM E.0. Circles E.1. Angles E.2. Right Triangle Trigonometry E.3. Points on Circles Using Sine and Cosine E.4. The Other Trigonometric

More information

Chapter 6.2: Trig Proofs

Chapter 6.2: Trig Proofs Chapter 6.2: Trig Proofs Proofs are fun, simply because they can be so challenging. No two are alike. While there are several common strategies for analytically proofing non-fundamental trig identities,

More information

Section 5.1 Angles and Radian Measure. Ever Feel Like You re Just Going in Circles?

Section 5.1 Angles and Radian Measure. Ever Feel Like You re Just Going in Circles? Section 5.1 Angles and Radian Measure Ever Feel Like You re Just Going in Circles? You re riding on a Ferris wheel and wonder how fast you are traveling. Before you got on the ride, the operator told you

More information

( x "1) 2 = 25, x 3 " 2x 2 + 5x "12 " 0, 2sin" =1.

( x 1) 2 = 25, x 3  2x 2 + 5x 12  0, 2sin =1. Unit Analytical Trigonometry Classwork A) Verifying Trig Identities: Definitions to know: Equality: a statement that is always true. example:, + 7, 6 6, ( + ) 6 +0. Equation: a statement that is conditionally

More information

Math 123 Discussion Session Week 4 Notes April 25, 2017

Math 123 Discussion Session Week 4 Notes April 25, 2017 Math 23 Discussion Session Week 4 Notes April 25, 207 Some trigonometry Today we want to approach trigonometry in the same way we ve approached geometry so far this quarter: we re relatively familiar with

More information

4-3 Trigonometric Functions on the Unit Circle

4-3 Trigonometric Functions on the Unit Circle Find the exact values of the five remaining trigonometric functions of θ. 33. tan θ = 2, where sin θ > 0 and cos θ > 0 To find the other function values, you must find the coordinates of a point on the

More information

Class 10 Trigonometry

Class 10 Trigonometry ID : in-10-trigonometry [1] Class 10 Trigonometry For more such worksheets visit www.edugain.com Answer t he quest ions (1) An equilateral triangle width side of length 18 3 cm is inscribed in a circle.

More information

cos 2 x + sin 2 x = 1 cos(u v) = cos u cos v + sin u sin v sin(u + v) = sin u cos v + cos u sin v

cos 2 x + sin 2 x = 1 cos(u v) = cos u cos v + sin u sin v sin(u + v) = sin u cos v + cos u sin v Concepts: Double Angle Identities, Power Reducing Identities, Half Angle Identities. Memorized: cos x + sin x 1 cos(u v) cos u cos v + sin v sin(u + v) cos v + cos u sin v Derive other identities you need

More information

1 Trigonometric Identities

1 Trigonometric Identities MTH 120 Spring 2008 Essex County College Division of Mathematics Handout Version 6 1 January 29, 2008 1 Trigonometric Identities 1.1 Review of The Circular Functions At this point in your mathematical

More information

Grade 10 Trigonometry

Grade 10 Trigonometry ID : ww-10-trigonometry [1] Grade 10 Trigonometry For more such worksheets visit www.edugain.com Answer t he quest ions (1) If - 0, f ind value of sin 4 θ - cos 4 θ. (2) Simplif y 3(sin 4 θ cos 4 θ) -

More information

Section 6-3 Double-Angle and Half-Angle Identities

Section 6-3 Double-Angle and Half-Angle Identities 6-3 Double-Angle and Half-Angle Identities 47 Section 6-3 Double-Angle and Half-Angle Identities Double-Angle Identities Half-Angle Identities This section develops another important set of identities

More information

Mathematics Lecture. 3 Chapter. 1 Trigonometric Functions. By Dr. Mohammed Ramidh

Mathematics Lecture. 3 Chapter. 1 Trigonometric Functions. By Dr. Mohammed Ramidh Mathematics Lecture. 3 Chapter. 1 Trigonometric Functions By Dr. Mohammed Ramidh Trigonometric Functions This section reviews the basic trigonometric functions. Trigonometric functions are important because

More information

Pre-Calculus Unit 3 Standards-Based Worksheet

Pre-Calculus Unit 3 Standards-Based Worksheet Pre-Calculus Unit 3 Standards-Based Worksheet District of Columbia Public Schools Mathematics STANDARD PCT.P.9. Derive and apply basic trigonometric identities (e.g., sin 2 θ+cos 2 θ= 1,tan 2 θ + 1 = sec

More information

4.3. Trigonometric Identities. Introduction. Prerequisites. Learning Outcomes

4.3. Trigonometric Identities. Introduction. Prerequisites. Learning Outcomes Trigonometric Identities 4.3 Introduction trigonometric identity is a relation between trigonometric expressions which is true for all values of the variables (usually angles. There are a very large number

More information

Precalculus ~ Review Sheet

Precalculus ~ Review Sheet Period: Date: Precalculus ~ Review Sheet 4.4-4.5 Multiple Choice 1. The screen below shows the graph of a sound recorded on an oscilloscope. What is the period and the amplitude? (Each unit on the t-axis

More information

Figure 5.1. sin θ = AB. cos θ = OB. tan θ = AB OB = sin θ. sec θ = 1. cotan θ = 1

Figure 5.1. sin θ = AB. cos θ = OB. tan θ = AB OB = sin θ. sec θ = 1. cotan θ = 1 5 Trigonometric functions Trigonometry is the mathematics of triangles. A right-angle triangle is one in which one angle is 90, as shown in Figure 5.1. The thir angle in the triangle is φ = (90 θ). Figure

More information

May 03, AdvAlg10 3PropertiesOfTrigonometricRatios.notebook. a. sin17 o b. cos 73 o c. sin 65 o d. cos 25 o. sin(a) = cos (90 A) Mar 9 10:08 PM

May 03, AdvAlg10 3PropertiesOfTrigonometricRatios.notebook. a. sin17 o b. cos 73 o c. sin 65 o d. cos 25 o. sin(a) = cos (90 A) Mar 9 10:08 PM a. sin17 o b. cos 73 o c. sin 65 o d. cos 25 o sin(a) = cos (90 A) Mar 9 10:08 PM 1 Find another pair of angle measures x and y that illustrates the pattern cos x = sin y. Mar 9 10:11 PM 2 If two angles

More information

March 29, AdvAlg10 3PropertiesOfTrigonometricRatios.notebook. a. sin17 o b. cos 73 o c. sin 65 o d. cos 25 o. sin(a) = cos (90 A) Mar 9 10:08 PM

March 29, AdvAlg10 3PropertiesOfTrigonometricRatios.notebook. a. sin17 o b. cos 73 o c. sin 65 o d. cos 25 o. sin(a) = cos (90 A) Mar 9 10:08 PM a. sin17 o b. cos 73 o c. sin 65 o d. cos 25 o sin(a) = cos (90 A) Mar 9 10:08 PM 1 Find another pair of angle measures x and y that illustrates the pattern cos x = sin y. Mar 9 10:11 PM 2 If two angles

More information

Trigonometric Integrals Section 5.7

Trigonometric Integrals Section 5.7 A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Trigonometric Integrals Section 5.7 Dr. John Ehrke Department of Mathematics Spring 2013 Eliminating Powers From Trig Functions

More information

WARM UP. 1. Expand the expression (x 2 + 3) Factor the expression x 2 2x Find the roots of 4x 2 x + 1 by graphing.

WARM UP. 1. Expand the expression (x 2 + 3) Factor the expression x 2 2x Find the roots of 4x 2 x + 1 by graphing. WARM UP Monday, December 8, 2014 1. Expand the expression (x 2 + 3) 2 2. Factor the expression x 2 2x 8 3. Find the roots of 4x 2 x + 1 by graphing. 1 2 3 4 5 6 7 8 9 10 Objectives Distinguish between

More information

Name: A Trigonometric Review June 2012

Name: A Trigonometric Review June 2012 Name: A Trigonometric Review June 202 This homework will prepare you for in-class work tomorrow on describing oscillations. If you need help, there are several resources: tutoring on the third floor of

More information

Name: Period: Date: Math Lab: Explore Transformations of Trig Functions

Name: Period: Date: Math Lab: Explore Transformations of Trig Functions Name: Period: Date: Math Lab: Explore Transformations of Trig Functions EXPLORE VERTICAL DISPLACEMENT 1] Graph 2] Explain what happens to the parent graph when a constant is added to the sine function.

More information

Trigonometric Equations

Trigonometric Equations Chapter Three Trigonometric Equations Solving Simple Trigonometric Equations Algebraically Solving Complicated Trigonometric Equations Algebraically Graphs of Sine and Cosine Functions Solving Trigonometric

More information

Pre-Calc Chapter 4 Sample Test. 1. Determine the quadrant in which the angle lies. (The angle measure is given in radians.) π

Pre-Calc Chapter 4 Sample Test. 1. Determine the quadrant in which the angle lies. (The angle measure is given in radians.) π Pre-Calc Chapter Sample Test 1. Determine the quadrant in which the angle lies. (The angle measure is given in radians.) π 8 I B) II C) III D) IV E) The angle lies on a coordinate axis.. Sketch the angle

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Trigonometry Final Exam Study Guide Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. The graph of a polar equation is given. Select the polar

More information

Math 1205 Trigonometry Review

Math 1205 Trigonometry Review Math 105 Trigonometry Review We begin with the unit circle. The definition of a unit circle is: x + y =1 where the center is (0, 0) and the radius is 1. An angle of 1 radian is an angle at the center of

More information

Find the exact values of the indicated trigonometric functions. Write fractions in lowest terms. 1)

Find the exact values of the indicated trigonometric functions. Write fractions in lowest terms. 1) MAC 1114 Review for Exam 1 Name Find the exact values of the indicated trigonometric functions. Write fractions in lowest terms. 1) 1) 12 20 16 Find sin A and cos A. 2) 2) 9 15 6 Find tan A and cot A.

More information

13-1 Trigonometric Identities. Find the exact value of each expression if 0 < θ < If cot θ = 2, find tan θ. SOLUTION: 2. If, find cos θ.

13-1 Trigonometric Identities. Find the exact value of each expression if 0 < θ < If cot θ = 2, find tan θ. SOLUTION: 2. If, find cos θ. Find the exact value of each expression if 0 < θ < 90 1. If cot θ = 2, find tan θ. 2. If, find cos θ. Since is in the first quadrant, is positive. Thus,. 3. If, find sin θ. Since is in the first quadrant,

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 0 - Section 4. Unit Circle Trigonometr An angle is in standard position if its verte is at the origin and its initial side is along the positive ais. Positive angles are measured counterclockwise

More information

Copyright 2009 Pearson Education, Inc. Slide Section 8.2 and 8.3-1

Copyright 2009 Pearson Education, Inc. Slide Section 8.2 and 8.3-1 8.3-1 Transformation of sine and cosine functions Sections 8.2 and 8.3 Revisit: Page 142; chapter 4 Section 8.2 and 8.3 Graphs of Transformed Sine and Cosine Functions Graph transformations of y = sin

More information

Trigonometry. An Overview of Important Topics

Trigonometry. An Overview of Important Topics Trigonometry An Overview of Important Topics 1 Contents Trigonometry An Overview of Important Topics... 4 UNDERSTAND HOW ANGLES ARE MEASURED... 6 Degrees... 7 Radians... 7 Unit Circle... 9 Practice Problems...

More information

Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan. Review Problems for Test #3

Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan. Review Problems for Test #3 Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan Review Problems for Test #3 Exercise 1 The following is one cycle of a trigonometric function. Find an equation of this graph. Exercise

More information

13-1 Trigonometric Identities. Find the exact value of each expression if 0 < θ < If cot θ = 2, find tan θ. ANSWER: 2. If, find cos θ.

13-1 Trigonometric Identities. Find the exact value of each expression if 0 < θ < If cot θ = 2, find tan θ. ANSWER: 2. If, find cos θ. Find the exact value of each expression if 0 < θ < 90 1. If cot θ = 2, find tan θ. 8. CCSS PERSEVERANCE When unpolarized light passes through polarized sunglass lenses, the intensity of the light is cut

More information

F.TF.A.2: Reciprocal Trigonometric Relationships

F.TF.A.2: Reciprocal Trigonometric Relationships Regents Exam Questions www.jmap.org Name: If sin x =, a 0, which statement must be true? a ) csc x = a csc x = a ) sec x = a sec x = a 5 The expression sec 2 x + csc 2 x is equivalent to ) sin x ) cos

More information

5-5 Multiple-Angle and Product-to-Sum Identities

5-5 Multiple-Angle and Product-to-Sum Identities Find the values of sin 2, cos 2, tan 2 1 cos for the given value interval, (270, 360 ) Since on the interval (270, 360 ), one point on the terminal side of θ has x-coordinate 3 a distance of 5 units from

More information

The Basics of Trigonometry

The Basics of Trigonometry Trig Level One The Basics of Trigonometry 2 Trig or Treat 90 90 60 45 30 0 Acute Angles 90 120 150 135 180 180 Obtuse Angles The Basics of Trigonometry 3 Measuring Angles The sun rises in the east, and

More information

1 Graphs of Sine and Cosine

1 Graphs of Sine and Cosine 1 Graphs of Sine and Cosine Exercise 1 Sketch a graph of y = cos(t). Label the multiples of π 2 and π 4 on your plot, as well as the amplitude and the period of the function. (Feel free to sketch the unit

More information

P1 Chapter 10 :: Trigonometric Identities & Equations

P1 Chapter 10 :: Trigonometric Identities & Equations P1 Chapter 10 :: Trigonometric Identities & Equations jfrost@tiffin.kingston.sch.uk www.drfrostmaths.com @DrFrostMaths Last modified: 20 th August 2017 Use of DrFrostMaths for practice Register for free

More information

13-3The The Unit Unit Circle

13-3The The Unit Unit Circle 13-3The The Unit Unit Circle Warm Up Lesson Presentation Lesson Quiz 2 Warm Up Find the measure of the reference angle for each given angle. 1. 120 60 2. 225 45 3. 150 30 4. 315 45 Find the exact value

More information

INTRODUCTION TO TRIGONOMETRY

INTRODUCTION TO TRIGONOMETRY INTRODUCTION TO TRIGONOMETRY 7 INTRODUCTION TO TRIGONOMETRY 8 8. Introduction There is perhaps nothing which so occupies the middle position of mathematics as trigonometry. J.F. Herbart (890) You have

More information

7.1 INTRODUCTION TO PERIODIC FUNCTIONS

7.1 INTRODUCTION TO PERIODIC FUNCTIONS 7.1 INTRODUCTION TO PERIODIC FUNCTIONS *SECTION: 6.1 DCP List: periodic functions period midline amplitude Pg 247- LECTURE EXAMPLES: Ferris wheel, 14,16,20, eplain 23, 28, 32 *SECTION: 6.2 DCP List: unit

More information

Graphs of other Trigonometric Functions

Graphs of other Trigonometric Functions Graphs of other Trigonometric Functions Now we will look at other types of graphs: secant. tan x, cot x, csc x, sec x. We will start with the cosecant and y csc x In order to draw this graph we will first

More information

Algebra and Trig. I. In the last section we looked at trigonometric functions of acute angles. Note the angles below are in standard position.

Algebra and Trig. I. In the last section we looked at trigonometric functions of acute angles. Note the angles below are in standard position. Algebra and Trig. I 4.4 Trigonometric Functions of Any Angle In the last section we looked at trigonometric functions of acute angles. Note the angles below are in standard position. IN this section we

More information

Chapter 2: Pythagoras Theorem and Trigonometry (Revision)

Chapter 2: Pythagoras Theorem and Trigonometry (Revision) Chapter 2: Pythagoras Theorem and Trigonometry (Revision) Paper 1 & 2B 2A 3.1.3 Triangles Understand a proof of Pythagoras Theorem. Understand the converse of Pythagoras Theorem. Use Pythagoras 3.1.3 Triangles

More information

How to Graph Trigonometric Functions

How to Graph Trigonometric Functions How to Graph Trigonometric Functions This handout includes instructions for graphing processes of basic, amplitude shifts, horizontal shifts, and vertical shifts of trigonometric functions. The Unit Circle

More information

Algebra 2/Trigonometry Review Sessions 1 & 2: Trigonometry Mega-Session. The Unit Circle

Algebra 2/Trigonometry Review Sessions 1 & 2: Trigonometry Mega-Session. The Unit Circle Algebra /Trigonometry Review Sessions 1 & : Trigonometry Mega-Session Trigonometry (Definition) - The branch of mathematics that deals with the relationships between the sides and the angles of triangles

More information

of the whole circumference.

of the whole circumference. TRIGONOMETRY WEEK 13 ARC LENGTH AND AREAS OF SECTORS If the complete circumference of a circle can be calculated using C = 2πr then the length of an arc, (a portion of the circumference) can be found by

More information

Chapter 8. Analytic Trigonometry. 8.1 Trigonometric Identities

Chapter 8. Analytic Trigonometry. 8.1 Trigonometric Identities Chapter 8. Analytic Trigonometry 8.1 Trigonometric Identities Fundamental Identities Reciprocal Identities: 1 csc = sin sec = 1 cos cot = 1 tan tan = 1 cot tan = sin cos cot = cos sin Pythagorean Identities:

More information

Trigonometry LESSON ONE - Degrees and Radians Lesson Notes

Trigonometry LESSON ONE - Degrees and Radians Lesson Notes 8 = 6 Trigonometry LESSON ONE - Degrees and Radians Example : Define each term or phrase and draw a sample angle. Angle in standard position. b) Positive and negative angles. Draw. c) Reference angle.

More information

Concept: Solving Multi-Step Equations

Concept: Solving Multi-Step Equations Concept: Solving Multi-Step Equations Warm Up Name: Recall: A two-step equation requires 2 operations in order to isolate and solve for the variable. Solve each two-step equation below. Show all your steps.

More information

Trigonometric Identities. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Trigonometric Identities. Copyright 2017, 2013, 2009 Pearson Education, Inc. 5 Trigonometric Identities Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 5.3 Sum and Difference Identities Difference Identity for Cosine Sum Identity for Cosine Cofunction Identities Applications

More information

Basic Trigonometry You Should Know (Not only for this class but also for calculus)

Basic Trigonometry You Should Know (Not only for this class but also for calculus) Angle measurement: degrees and radians. Basic Trigonometry You Should Know (Not only for this class but also for calculus) There are 360 degrees in a full circle. If the circle has radius 1, then the circumference

More information