Communication Technology DiTEX 256 The wireless access network

Size: px
Start display at page:

Download "Communication Technology DiTEX 256 The wireless access network"

Transcription

1 DiTEX 256 The wireless access network Get people connected via radio: Link up with DiTEX 256!

2 DiTEX 256 The wireless access network The classical telephone is typically associated with a long cable from the last exchange to the subscriber. This so-called last mile is as a rule the most expensive part of the entire telephone network. When just a few people some ten kilometers away are to be linked up, the relation between costs and revenue makes little economic sense as long as we are talking about copper wire. The situation is not improved by the fact that there may be several such locations, where a few people each need a connection urgently. Radio is often suggested as an alternative to cable that can supply widespread customers economically with telephone and internet services. People then think about WiMAX, GSM or UM. We offer the Digital Telephone EXtended line DiTEX 256 with distinctive advantages over both the cable and the much-discussed radio technologies. Instead of laying a cable below or above ground, the telephone customers are connected by wireless transmission. This decouples the costs of a connection from its geographical distance. On several points very important for PSTN access network systems, DiTEX 256 easily surpasses other radio technologies: DiTEX 256 may span distances up to 100 km. Operating at lower frequencies, the antenna installation is more like installing an FM radio receiver system then a microwave station. And DiTEX 256 probably makes the best use of the limited resource radio frequencies it requires just 2x 100 khz RF bandwidth. DiTEX 256 and the internet There is no doubt that whoever invests in telephone technology nowadays wants to be sure that it does not exclude the customer from the internet. As a digital system, DiTEX 256 even gives its customers the choice: access to internet at the telephone connection via modem or directly via. With, the bandwidth available is dynamically allocated the lower the telephone traffic, the higher the internet bandwidth. Best of all: probably no other radio system can provide ADSL light data rates, i.e. up to 300 kbit/s on just 100 khz bandwidth on air!

3 Advantages DiTEX 256 is conceived as a point-tomultipoint access network. It can often be deployed in place of a combination of a microwave link and an additional distribution network at the remote end. Not only in such cases, DiTEX 256 provides decisive advantages for the real application: Low RF bandwidth. 16 voice connections can be accommodated in a spectrum only 2 x 100 khz wide Available also for frequency ranges in the lower UHF band Developed as part of the PSTN access network, i.e. for the connection between exchange and customer. The analog telephone signal ( interface) is available immediately at the customer end without the expense of additional hardware Advanced security against eavesdropping: the signal at the air interface of DiTEX 256 is proprietary modulated and thus can hardly be demodulated using conventional frequency scanners. Furthermore, the associated coding scheme applied can only be decoded by a corresponding receiver. Very low power consumption: if no mains supply is available, alternative power sources such as wind and solar energy can be used as a permanent supply DiTEX 256 replaces the last-mile copper wire by means of wireless technology. In that sense, it is comparable with mobile telephone systems. But even if a mobile telephone network has already been established, DiTEX scores with the following advantages: DiTEX 256 has a much longer range of up to 100 km DiTEX 256 grants the usage of any standard telephone equipment at the customer end. On the operator side, DiTEX 256 fits seamlessly into existing PSTN access networks. When operating in the lower UHF band, DiTEX 256 does not require a line-of-sight connection to give adequate radio signal quality. Extension options DiTEX 256 is part of a radio system family. Its individual members may be combined to provide the best solution for complex scenarios. Also available are: DiTEX a/b for the transfer of up to 4 telephone lines. Here, all 4 channels can simultaneously carry telephone conversations. This point-to-multipoint system provides a bidirectional data rate of 75 kbit/s DiTEX E1 for the transmission of up to 30 PCM channels (corresponds to an E1line). With this system, all channels can simultaneously carry telephone conversations and/or broadband IP data. It provides a bidirectional data rate of up to 2.1 Mbit/s.

4 DiTEX 256 configurations DiTEX 256 for the connection of analog telephones () and computers via RBS E1 DiTEX 256 for the connection of analog telephones () and computers via with DiTEX E1 as feeder and a DiTEX a/b system as repeater E1 DiTEX E1 DiTEX 256 RBS E1 DiTEX a/b DiTEX components DiTEX 256 RBS (radio base station, 19 rack plug-in) DiTEX 256 (terminal station, wall-mounted housing) DiTEX a/b (wall-mounted housing) DiTEX E1 (multiplex variant 19 rack plug-in) DiTEX antenna (Yagi or flat panel type, depending on frequency range) External components Exchange Internet point of presence/router Computer Telephone terminal device (telephone, fax or modem)

5 DiTEX 256 air interface The DiTEX 256 air interface is optimized to a minimum RF bandwidth. DiTEX 256 achieves a transmission performance of up to 16 simultaneous telephone conversations in a signal that is only 2 x 100 khz wide the limited frequency spectrum resource is therefore exploited to the utmost. In addition, DiTEX 256 combines a very long range of up to 100 km with low equipment costs. Application options DiTEX 256 can supply customers at both temporary and permanent locations with a dial tone. With temporary installations, the great advantage is that the entire hardware can be used again at a later date there is hardly any loss of investment. Just move the hardware to the new location and reinstall it there. Scenarios for DiTEX 256 are, for example: Connection of remote locations to an existing telecommunications network structure Connection of remote residence or summer house clusters, huts for ramblers spread over an area, farms, building sites, camping sites etc. to an existing telephone and internet infrastructure Building private networks for voice and/or data communication on extensive estates Temporary connection of remote places (building sites, archaeological excavations, researchbases,sports/recreational events) to the public telephone network and/or internet or temporary networks at such places In all cases the DiTEX network may be supplemented by other systems in the DiTEX family. For example, a DiTEX E1 system may be used as feeder for a DiTEX 256 radio base station, to extend the range from the local exchange. Also, a DiTEX a/b system may be used as a repeater, repeating the signal from a DiTEX 256 to the most remote location. With feeder and repeater, the theoretical maximum distance between the local exchange and the most remote terminal is 250 km (i.e km)! DiTEX and higher capacity requirements DiTEX 256 is designed as a low-cost, medium-capacity, point-to-multipoint communications system. Higher capacity requirements may be satisfied by installing multiple DiTEX 256 systems within one and the same area. However, DiTEX 256 has been intended to meet the requirements below the IAP system, also available from IQ wireless. IAP provides for: Up to 180 parallel telephone conversations Up to 4 Mbit/s internet data rate For applications requiring data transmission only, LiMAX may satisfy your demands with bidirectional data rates of up to 512 kbit/s.

6 Technical data Basic data Allocation System elements Access Network DiTEX 256 RBS (radio base station) DiTEX 256 (terminal station) Air interface Technique Carrier frequency ranges Transmission mode RF bandwidth/bandbreite Coding/compression Transmission output at the antenna port Receiver sensitivity at the antenna port Antennas Range Proprietary point-to-multipoint wireless system Corresponding to the customer s order available at the moment: MHz (downlink) / MHz (uplink) MHz (downlink) / MHz (uplink) Full duplex Duplex mode: FDD, 20 MHz duplex distance 2 x 100 khz Voice: ITU G.729A, 8 kbit/s Modem/fax: ITU G.726, 32 kbit/s DiTEX 256 RBS: up to 32 dbm DiTEX 256 : up to 26 dbm DiTEX 256 RBS: dbm DiTEX 256 : dbm Sensitivity depending on modulation scheme Project-specific, Yagi antenna with typically 8 to 15 dbi Up to 100 km Housing DiTEX 256 RBS 19 -rack module, 2U Power supply: 48 V DC, 30 W Indoor module DiTEX 256 Metal housing, installation to be weather-protected and protected from direct sun light: Approx. 170 x 190 x 35 mm 3 (width x height x depth) Optional standby battery: extra 30 mm in depth Power supply: 12 V DC (e.g. from mains plug-in power supply), 18 W (plus battery charging power) Environmental conditions Operating temperature: 5 C +45 C Storage temperature: 40 C +85 C Humidity: 5% 95%, non condensing

7 Technical data Telecommunications interfaces DiTEX 256 RBS 1 x ITU G703 (E1) with EI V5.2 (PSTN option only; 1 primary link only) 10/100 Mbit/s, transfer rate up to 300 kbit/s DiTEX 256 1x, 2x or 4x interface (analog telephone simulation) with 300 to 3400 khz RJ11 socket 10/100 Mbit/s, transfer rate up to 300 kbit/s downlink, up to 75 kbit/s uplink Services supported ITU G.726 modem/fax with up to 9600 baud Flash relay DTMF relay (dialling tone from local exchange) Supplementary services as supported by the local exchange (e.g. CLIP relay, calling line ID presentation) System configuration 1 DiTEX 256 RBS DiTEX 256 (max. 254 interfaces assigned) Telephony traffic capacity (16 channels at DiTEX 256 RBS, voice only): approx. 11 Erlang (5% blocking rate) approx. 8 Erlang (1% blocking rate) Recommended number of allocated interfaces per system: Typically up to 100 Cellular configurations with a fixed assignment of the terminal stations to a specific radio base station are possible

8 A product of IQ wireless GmbH a company for the development of telecommunication systems and technologies Carl-Scheele Str. 14, Berlin, Germany Tel.: Fax: Internet: info@iq-wireless.com

The Last Mile Problem

The Last Mile Problem The Last Mile Problem LAN, MAN, WAN how to connect private users at home to such networks? Problem of the last mile: somehow connect private homes to the public Internet without laying many new cables

More information

Data Transmission via Modem. The Last Mile Problem. Modulation of Digital Signals. Modem Standards (CCITT)

Data Transmission via Modem. The Last Mile Problem. Modulation of Digital Signals. Modem Standards (CCITT) The Last Mile Problem LN, MN, WN how to connect private users at home to such networks? Problem of the last mile: somehow connect private homes to the public Internet without laying many new cables By

More information

We're on your wavelength. emgw Solutions. Enabling Operators to Provide Cost Effective Voice Services to Sparsely Populated Rural Areas.

We're on your wavelength. emgw Solutions. Enabling Operators to Provide Cost Effective Voice Services to Sparsely Populated Rural Areas. emgw Solutions Enabling Operators to Provide Cost Effective Voice Services to Sparsely Populated Rural Areas White paper Introduction A growing number of operators, mainly those focusing on service provision

More information

Personal Communication System

Personal Communication System Personal Communication System Differences Between Cellular Systems and PCS IS-136 (TDMA) PCS GSM i-mode mobile communication IS-95 CDMA PCS Comparison of Modulation Schemes Data Communication with PCS

More information

Wireless and Mobile Network Architecture. Outline. Introduction. Cont. Chapter 1: Introduction

Wireless and Mobile Network Architecture. Outline. Introduction. Cont. Chapter 1: Introduction Wireless and Mobile Network Architecture Chapter 1: Introduction Prof. Yuh-Shyan Chen Department of Computer Science and Information Engineering National Taipei University Sep. 2006 Outline Introduction

More information

Wireless and Mobile Network Architecture

Wireless and Mobile Network Architecture Wireless and Mobile Network Architecture Chapter 1: Introduction Prof. Yuh-Shyan Chen Department of Computer Science and Information Engineering National Taipei University Sep. 2006 1 Outline Introduction

More information

EE 304 TELECOMMUNICATIONs ESSENTIALS HOMEWORK QUESTIONS AND ANSWERS

EE 304 TELECOMMUNICATIONs ESSENTIALS HOMEWORK QUESTIONS AND ANSWERS Homework Question 1 EE 304 TELECOMMUNICATIONs ESSENTIALS HOMEWORK QUESTIONS AND ANSWERS Allocated channel bandwidth for commercial TV is 6 MHz. a. Find the maximum number of analog voice channels that

More information

3.6. Cell-Site Equipment. Traffic and Cell Splitting Microcells, Picocelles and Repeaters

3.6. Cell-Site Equipment. Traffic and Cell Splitting Microcells, Picocelles and Repeaters 3.6. Cell-Site Equipment Traffic and Cell Splitting Microcells, Picocelles and Repeaters The radio transmitting equipment at the cell site operates at considerably higher power than do the mobile phones,

More information

RECOMMENDATION ITU-R F.756 * TDMA point-to-multipoint systems used as radio concentrators

RECOMMENDATION ITU-R F.756 * TDMA point-to-multipoint systems used as radio concentrators Rec. ITU-R F.756 1 RECOMMENDATION ITU-R F.756 * TDMA point-to-multipoint systems used as radio concentrators (Question ITU-R 125/9) (1992) The ITU Radiocommunication Assembly, considering a) that analogue

More information

SEN366 (SEN374) (Introduction to) Computer Networks

SEN366 (SEN374) (Introduction to) Computer Networks SEN366 (SEN374) (Introduction to) Computer Networks Prof. Dr. Hasan Hüseyin BALIK (8 th Week) Cellular Wireless Network 8.Outline Principles of Cellular Networks Cellular Network Generations LTE-Advanced

More information

Chapter 14. Cellular Wireless Networks

Chapter 14. Cellular Wireless Networks Chapter 14 Cellular Wireless Networks Evolu&on of Wireless Communica&ons 1901 Marconi: Trans-Atlantic wireless transmission 1906 Fessenden: first radio broadcast (AM) 1921 Detroit Police Dept wireless

More information

Wireless Broadband Networks

Wireless Broadband Networks Wireless Broadband Networks WLAN: Support of mobile devices, but low data rate for higher number of users What to do for a high number of users or even needed QoS support? Problem of the last mile Provide

More information

Mobile Communication and Mobile Computing

Mobile Communication and Mobile Computing Department of Computer Science Institute for System Architecture, Chair for Computer Networks Mobile Communication and Mobile Computing Prof. Dr. Alexander Schill http://www.rn.inf.tu-dresden.de Structure

More information

UNIT- 3. Introduction. The cellular advantage. Cellular hierarchy

UNIT- 3. Introduction. The cellular advantage. Cellular hierarchy UNIT- 3 Introduction Capacity expansion techniques include the splitting or sectoring of cells and the overlay of smaller cell clusters over larger clusters as demand and technology increases. The cellular

More information

Data and Computer Communications. Tenth Edition by William Stallings

Data and Computer Communications. Tenth Edition by William Stallings Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education - 2013 CHAPTER 10 Cellular Wireless Network

More information

Advanced Communication Systems -Wireless Communication Technology

Advanced Communication Systems -Wireless Communication Technology Advanced Communication Systems -Wireless Communication Technology Dr. Junwei Lu The School of Microelectronic Engineering Faculty of Engineering and Information Technology Outline Introduction to Wireless

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Chapter 1 INTRODUCTION 1 The History of Mobile Radio Communication (1/3) 1880: Hertz Initial demonstration of practical radio communication 1897: Marconi Radio transmission to a tugboat over an 18 mi path

More information

Guide to Wireless Communications, Third Edition Cengage Learning Objectives

Guide to Wireless Communications, Third Edition Cengage Learning Objectives Guide to Wireless Communications, Third Edition Chapter 9 Wireless Metropolitan Area Networks Objectives Explain why wireless metropolitan area networks (WMANs) are needed Describe the components and modes

More information

A Glimps at Cellular Mobile Radio Communications. Dr. Erhan A. İnce

A Glimps at Cellular Mobile Radio Communications. Dr. Erhan A. İnce A Glimps at Cellular Mobile Radio Communications Dr. Erhan A. İnce 28.03.2012 CELLULAR Cellular refers to communications systems that divide a geographic region into sections, called cells. The purpose

More information

Introduction to Wireless and Mobile Networking. Hung-Yu Wei g National Taiwan University

Introduction to Wireless and Mobile Networking. Hung-Yu Wei g National Taiwan University Introduction to Wireless and Mobile Networking Lecture 3: Multiplexing, Multiple Access, and Frequency Reuse Hung-Yu Wei g National Taiwan University Multiplexing/Multiple Access Multiplexing Multiplexing

More information

Bluetooth BlueTooth - Allows users to make wireless connections between various communication devices such as mobile phones, desktop and notebook comp

Bluetooth BlueTooth - Allows users to make wireless connections between various communication devices such as mobile phones, desktop and notebook comp ECE 271 Week 8 Bluetooth BlueTooth - Allows users to make wireless connections between various communication devices such as mobile phones, desktop and notebook computers - Uses radio transmission - Point-to-multipoint

More information

Wireless Broadband. IST 220, Dr. Abdullah Konak 4/27/ Blake Drive Reading, PA Prepared by: Dennis DeFrancesco

Wireless Broadband. IST 220, Dr. Abdullah Konak 4/27/ Blake Drive Reading, PA Prepared by: Dennis DeFrancesco Wireless Broadband IST 220, Dr. Abdullah Konak 4/27/2005 500 Blake Drive Reading, PA 19601 Prepared by: Dennis DeFrancesco 1 Table Of Contents 1. Wireless Broadband Overview... 3 1.1. Beginnings... 3 1.2.

More information

Digital Communication Systems. Asymmetric Digital Subscriber Line (ADSL) Gavin Cameron

Digital Communication Systems. Asymmetric Digital Subscriber Line (ADSL) Gavin Cameron Digital Communication Systems Asymmetric Digital Subscriber Line (ADSL) Gavin Cameron MSc/PGD Electronics and Communication Engineering May 17, 2000 TABLE OF CONTENTS TABLE OF CONTENTS..........................................................

More information

The Cellular Concept. History of Communication. Frequency Planning. Coverage & Capacity

The Cellular Concept. History of Communication. Frequency Planning. Coverage & Capacity The Cellular Concept History of Communication Frequency Planning Coverage & Capacity Engr. Mian Shahzad Iqbal Lecturer Department of Telecommunication Engineering Before GSM: Mobile Telephony Mile stones

More information

Wireless WANS and MANS. Chapter 3

Wireless WANS and MANS. Chapter 3 Wireless WANS and MANS Chapter 3 Cellular Network Concept Use multiple low-power transmitters (100 W or less) Areas divided into cells Each served by its own antenna Served by base station consisting of

More information

Motorola s Wireless Broadband Point-to-Point Solutions. The PTP 100, 400 & 600 Series Part of Motorola s MOTOwi4 portfolio

Motorola s Wireless Broadband Point-to-Point Solutions. The PTP 100, 400 & 600 Series Part of Motorola s MOTOwi4 portfolio Motorola s Wireless Broadband Point-to-Point Solutions The PTP 100, 400 & 600 Series Part of Motorola s MOTOwi4 portfolio High-Speed Point-to-Point Solutions Engineered for Simple-to-Complex Applications

More information

Multiplexing Module W.tra.2

Multiplexing Module W.tra.2 Multiplexing Module W.tra.2 Dr.M.Y.Wu@CSE Shanghai Jiaotong University Shanghai, China Dr.W.Shu@ECE University of New Mexico Albuquerque, NM, USA 1 Multiplexing W.tra.2-2 Multiplexing shared medium at

More information

EM 6000 EM 6000 DANTE True bit diversity receiver

EM 6000 EM 6000 DANTE True bit diversity receiver 1/6 FEATURES Extremely efficient digital 2-channel receiver with an intuitive, easily configurable user interface and integrated splitter Reliable RF performance with equidistant frequency grid and superior

More information

Dimensioning of mobile data - Non-uniform usage. Dimensioning of voice services (Thanks to Claes Beckman)

Dimensioning of mobile data - Non-uniform usage. Dimensioning of voice services (Thanks to Claes Beckman) Time Dimensioning of mobile data - Non-uniform usage Dimensioning of voice services (Thanks to Claes Beckman) Jan Markendahl December, 06 Time Time 00:00 0:00 0:00 0:00 04:00 05:00 06:00 07:00 08:00 09:00

More information

DXR 200 migration. 4RF White Paper. Contents. July 2012, issue 1.2.0

DXR 200 migration. 4RF White Paper. Contents. July 2012, issue 1.2.0 July 2012, issue 1.2.0 4RF White Paper DXR 200 migration Contents 1. Introduction 2 2. Aprisa XE industries and applications 3 3. Aprisa XE performance enhancements 4 4. Why choose 4RF Communications?

More information

WiMAX-Ready NLOS/OFDM Broadband Solutions

WiMAX-Ready NLOS/OFDM Broadband Solutions WiMAX-Ready NLOS/OFDM Broadband Solutions 2 symmetry Advanced wireless services today and a low-risk migration path to the WiMAX standards of tomorrow. symmetry is the only broadband wireless access (BWA)

More information

ECE 271 INTRODUCTION TO TELECOMMUNICATION NETWORKS HOMEWORK QUESTIONS ECE 271 HOMEWORK-1

ECE 271 INTRODUCTION TO TELECOMMUNICATION NETWORKS HOMEWORK QUESTIONS ECE 271 HOMEWORK-1 ECE 271 INTRODUCTION TO TELECOMMUNICATION NETWORKS HOMEWORK QUESTIONS Homework Question 1 ECE 271 HOMEWORK-1 Allocated channel bandwidth for commercial TV is 6 MHz. a. Find the maximum number of analog

More information

APPLICATION PROGRAMMING: MOBILE COMPUTING [ INEA00112W ] Marek Piasecki PhD Wireless Telecommunication

APPLICATION PROGRAMMING: MOBILE COMPUTING [ INEA00112W ] Marek Piasecki PhD Wireless Telecommunication APPLICATION PROGRAMMING: MOBILE COMPUTING [ INEA00112W ] Marek Piasecki PhD Wireless Telecommunication (W6/2013) What is Wireless Communication? Transmitting/receiving voice and data using electromagnetic

More information

03_57_104_final.fm Page 97 Tuesday, December 4, :17 PM. Problems Problems

03_57_104_final.fm Page 97 Tuesday, December 4, :17 PM. Problems Problems 03_57_104_final.fm Page 97 Tuesday, December 4, 2001 2:17 PM Problems 97 3.9 Problems 3.1 Prove that for a hexagonal geometry, the co-channel reuse ratio is given by Q = 3N, where N = i 2 + ij + j 2. Hint:

More information

MOBILE COMPUTING 4/8/18. Basic Call. Public Switched Telephone Network - PSTN. CSE 40814/60814 Spring Transit. switch. Transit. Transit.

MOBILE COMPUTING 4/8/18. Basic Call. Public Switched Telephone Network - PSTN. CSE 40814/60814 Spring Transit. switch. Transit. Transit. MOBILE COMPUTING CSE 40814/60814 Spring 2018 Public Switched Telephone Network - PSTN Transit switch Transit switch Long distance network Transit switch Local switch Outgoing call Incoming call Local switch

More information

WIMAX TECHNOLOGY APPLICATION RESEARCH IN THE KLAIPEDA REGION

WIMAX TECHNOLOGY APPLICATION RESEARCH IN THE KLAIPEDA REGION WIMAX TECHNOLOGY APPLICATION RESEARCH IN THE KLAIPEDA REGION Arunas Andziulis, Valdemaras Pareigis, Violeta Bulbenkiene, Danielius Adomaitis, Mindaugas Kurmis, Sergej Jakovlev Klaipeda University, Department

More information

High Speed E-Band Backhaul: Applications and Challenges

High Speed E-Band Backhaul: Applications and Challenges High Speed E-Band Backhaul: Applications and Challenges Xiaojing Huang Principal Research Scientist and Communications Team Leader CSIRO, Australia ICC2014 Sydney Australia Page 2 Backhaul Challenge High

More information

Page 1. Problems with 1G Systems. Wireless Wide Area Networks (WWANs) EEC173B/ECS152C, Spring Cellular Wireless Network

Page 1. Problems with 1G Systems. Wireless Wide Area Networks (WWANs) EEC173B/ECS152C, Spring Cellular Wireless Network EEC173B/ECS152C, Spring 2009 Wireless Wide Area Networks (WWANs) Cellular Wireless Network Architecture and Protocols Applying concepts learned in first two weeks: Frequency planning, channel allocation

More information

ECS455: Chapter 4 Multiple Access

ECS455: Chapter 4 Multiple Access ECS455: Chapter 4 Multiple Access Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 1 Office Hours: BKD 3601-7 Tuesday 9:30-10:30 Tuesday 13:30-14:30 Thursday 13:30-14:30 ECS455: Chapter 4 Multiple

More information

CPSC Network Programming. How do computers really communicate?

CPSC Network Programming.   How do computers really communicate? CPSC 360 - Network Programming Data Transmission Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu February 11, 2005 http://www.cs.clemson.edu/~mweigle/courses/cpsc360

More information

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 10 - LTE (4G) -Technologies used in 4G and 5G The Need for LTE Long Term Evolution (LTE) With the growth of mobile data and mobile users, it becomes essential

More information

PRINCIPLES OF COMMUNICATION SYSTEMS. Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum

PRINCIPLES OF COMMUNICATION SYSTEMS. Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum PRINCIPLES OF COMMUNICATION SYSTEMS Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum Topic covered Introduction to subject Elements of Communication system Modulation General

More information

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) Long Term Evolution (LTE) What is LTE? LTE is the next generation of Mobile broadband technology Data Rates up to 100Mbps Next level of

More information

Canopy Backhaul Portfolio. Motorola s flexible MOTOwi4 backhaul solutions

Canopy Backhaul Portfolio. Motorola s flexible MOTOwi4 backhaul solutions Canopy Backhaul Portfolio Motorola s flexible MOTOwi4 backhaul solutions MOTOwi4 Backhaul Solutions Engineered for Simple-to-Complex Applications in Challenging Environments With the introduction of its

More information

3G TECHNOLOGY WHICH CAN PROVIDE AUGMENTED DATA TRANSFER RATES FOR GSM STANDARTS AND THE MODULATION TECHNIQUES

3G TECHNOLOGY WHICH CAN PROVIDE AUGMENTED DATA TRANSFER RATES FOR GSM STANDARTS AND THE MODULATION TECHNIQUES 3G TECHNOLOGY WHICH CAN PROVIDE AUGMENTED DATA TRANSFER RATES FOR GSM STANDARTS AND THE MODULATION TECHNIQUES Mustafa ALKAN Ejder ORUÇ Nur ERZEN Özgür GENÇ malkan@tk.gov.tr eoruc@tk.gov.tr nerzen@tk.gov.tr

More information

GSM. 84 Theoretical and general applications

GSM. 84 Theoretical and general applications GSM GSM, GPRS, UMTS what do all of these expressions mean and what possibilities are there for data communication? Technical descriptions often contain abbreviations and acronyms. We have chosen to use

More information

William Stallings Data and Computer Communications. Bab 4 Media Transmisi

William Stallings Data and Computer Communications. Bab 4 Media Transmisi William Stallings Data and Computer Communications Bab 4 Media Transmisi Overview Guided - wire Unguided - wireless Characteristics and quality determined by medium and signal For guided, the medium is

More information

Optimizing future wireless communication systems

Optimizing future wireless communication systems Optimizing future wireless communication systems "Optimization and Engineering" symposium Louvain-la-Neuve, May 24 th 2006 Jonathan Duplicy (www.tele.ucl.ac.be/digicom/duplicy) 1 Outline History Challenges

More information

RAPTORXR. Broadband TV White Space (TVWS) Backhaul Digital Radio System

RAPTORXR. Broadband TV White Space (TVWS) Backhaul Digital Radio System RAPTORXR Broadband TV White Space (TVWS) Backhaul Digital Radio System TECHNICAL OVERVIEW AND DEPLOYMENT GUIDE CONTACT: BBROWN@METRICSYSTEMS.COM Broadband White Space Mesh Infrastructure LONG REACH - FAST

More information

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE Overview 18-759: Wireless Networks Lecture 9: OFDM, WiMAX, LTE Dina Papagiannaki & Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2009 http://www.cs.cmu.edu/~prs/wireless09/

More information

Channel partitioning protocols

Channel partitioning protocols Wireless Networks a.y. 2010-2011 Channel partitioning protocols Giacinto Gelli DIBET gelli@unina.it 1 Outline Introduction Duplexing techniques FDD TDD Channel partitioning techniques FDMA TDMA CDMA Hybrid

More information

RECOMMENDATION ITU-R BT.1832 * Digital video broadcast-return channel terrestrial (DVB-RCT) deployment scenarios and planning considerations

RECOMMENDATION ITU-R BT.1832 * Digital video broadcast-return channel terrestrial (DVB-RCT) deployment scenarios and planning considerations Rec. ITU-R BT.1832 1 RECOMMENDATION ITU-R BT.1832 * Digital video broadcast-return channel terrestrial (DVB-RCT) deployment scenarios and planning considerations (Question ITU-R 16/6) (2007) Scope This

More information

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved.

2012 LitePoint Corp LitePoint, A Teradyne Company. All rights reserved. LTE TDD What to Test and Why 2012 LitePoint Corp. 2012 LitePoint, A Teradyne Company. All rights reserved. Agenda LTE Overview LTE Measurements Testing LTE TDD Where to Begin? Building a LTE TDD Verification

More information

Pulse Communication Systems Pvt. Ltd. PRODUCT CATALOG

Pulse Communication Systems Pvt. Ltd. PRODUCT CATALOG Pulse Communication Systems Pvt. Ltd. PRODUCT CATALOG MANUFACTURERS OF TWO WAY RADIO GATEWAYS AND TELECOM SOLUTIONS SINCE 1992 ABOUT THE COMPANY (ISO 9001:2015 Certified Organization) 1 Hello! We Are Pulse

More information

Data and Computer Communications

Data and Computer Communications Data and Computer Communications Chapter 14 Cellular Wireless Networks Eighth Edition by William Stallings Cellular Wireless Networks key technology for mobiles, wireless nets etc developed to increase

More information

Transmission Medium/ Media

Transmission Medium/ Media Transmission Medium/ Media The successful transmission of data depends principally on two factors: the quality of the signal being transmitted and the characteristics of the transmission medium Transmission

More information

Ammar Abu-Hudrouss Islamic University Gaza

Ammar Abu-Hudrouss Islamic University Gaza Wireless Communications n Ammar Abu-Hudrouss Islamic University Gaza ١ Course Syllabus References 1. A. Molisch,, Wiely IEEE, 2nd Edition, 2011. 2. Rappaport, p : Principles and Practice, Prentice Hall

More information

Introduction to GSM. Introduction to GSM, page Development of GSM. History of GSM. Market situation. GSM s future development

Introduction to GSM. Introduction to GSM, page Development of GSM. History of GSM. Market situation. GSM s future development Introduction to GSM, page 1 Introduction to GSM 1. Development of GSM History of GSM Market situation GSM s future development Services offered by GSM GSM specifications 2. OSI reference model 3. RF interface

More information

Wireless systems. includes issues of

Wireless systems. includes issues of Wireless systems includes issues of hardware processors, storage, peripherals, networks,... representation of information, analog vs. digital, bits & bytes software applications, operating system organization

More information

Series MICROWAVE LINKS DIGITAL & ANALOG - FIXED & MOBILE. The high quality, professional and cost-effective solution

Series MICROWAVE LINKS DIGITAL & ANALOG - FIXED & MOBILE. The high quality, professional and cost-effective solution MICROWAVE LINKS DIGITAL & ANALOG - FIXED & MOBILE Series PM The high quality, professional and cost-effective solution In 1982 ABE Elettronica introduced The Microwave Link line which was immediately successful,

More information

SNS COLLEGE OF ENGINEERING COIMBATORE DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK

SNS COLLEGE OF ENGINEERING COIMBATORE DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK SNS COLLEGE OF ENGINEERING COIMBATORE 641107 DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK EC6801 WIRELESS COMMUNICATION UNIT-I WIRELESS CHANNELS PART-A 1. What is propagation model? 2. What are the

More information

EE 577: Wireless and Personal Communications

EE 577: Wireless and Personal Communications EE 577: Wireless and Personal Communications Dr. Salam A. Zummo Lecture 1: Introduction 1 Common Applications of Wireless Systems AM/FM Radio Broadcast VHF and UHF TV Broadcast Cordless Phones (e.g., DECT)

More information

ITU-T. Series L Supplement 23 (04/2016)

ITU-T. Series L Supplement 23 (04/2016) I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU Series L Supplement 23 (04/2016) SERIES L: ENVIRONMENT AND ICTS, CLIMATE CHANGE,

More information

EC 551 Telecommunication System Engineering Mohamed Khedr

EC 551 Telecommunication System Engineering Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week

More information

1. INTEROPERABILITY GATEWAY DEVICES

1. INTEROPERABILITY GATEWAY DEVICES 1. INTEROPERABILITY GATEWAY DEVICES Category Definition: Devices that interface multiple radios, of multiple makes and models, to analog telephones, to IP telephone networks, and to other devices; allowing

More information

Contents. Telecom Systems Chae Y. Lee. FDM Bell Systems s FDM Synchronous TDM T1, T3 Statistical TDM Multiple Access: FDMA, TDMA, CDMA

Contents. Telecom Systems Chae Y. Lee. FDM Bell Systems s FDM Synchronous TDM T1, T3 Statistical TDM Multiple Access: FDMA, TDMA, CDMA Multiplexing Contents FDM Bell Systems s FDM Synchronous TDM T1, T3 Statistical TDM Multiple Access: FDMA, TDMA, CDMA 2 Multiplexing/Demultiplexing Multiplexing is the process of combining two or more

More information

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth.

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth. UNIT- 7 Radio wave propagation and propagation models EM waves below 2Mhz tend to travel as ground waves, These wave tend to follow the curvature of the earth and lose strength rapidly as they travel away

More information

Long Term Evolution (LTE) Radio Network Planning Using Atoll

Long Term Evolution (LTE) Radio Network Planning Using Atoll Long Term Evolution (LTE) Radio Network Planning Using Atoll Gullipalli S.D. Rohit Gagan, Kondamuri N. Nikhitha, Electronics and Communication Department, Baba Institute of Technology and Sciences - Vizag

More information

Department of Computer Science Institute for System Architecture, Chair for Computer Networks

Department of Computer Science Institute for System Architecture, Chair for Computer Networks Department of Computer Science Institute for System Architecture, Chair for Computer Networks LTE, WiMAX and 4G Mobile Communication and Mobile Computing Prof. Dr. Alexander Schill http://www.rn.inf.tu-dresden.de

More information

Delivery of radio services over IP bidirectional. Simon Mason, Head of New Product Development

Delivery of radio services over IP bidirectional. Simon Mason, Head of New Product Development Delivery of radio services over IP bidirectional networks Simon Mason, Head of New Product Development Presentation How does the internet work for Radio and TV Radio listening Last mile Conclusion Radio

More information

Unguided Media and Matched Filter After this lecture, you will be able to Example?

Unguided Media and Matched Filter After this lecture, you will be able to Example? Unguided Media and Matched Filter After this lecture, you will be able to describe the physical and transmission characteristics of various unguided media Example? B.1 Unguided media Guided to unguided

More information

WiMAX and Non-Standard Solutions

WiMAX and Non-Standard Solutions Unit 14 WiMAX and Non-Standard Solutions Developed by: Ermanno Pietrosemoli, EsLaREd Creative Commons License: Attribution Non-Commercial Share-Alike 3.0 Objectives Describe WiMAX technology, its motivation

More information

Chapter 1 Acknowledgment:

Chapter 1 Acknowledgment: Chapter 1 Acknowledgment: This material is based on the slides formatted by Dr Sunilkumar S. Manvi and Dr Mahabaleshwar S. Kakkasageri, the authors of the textbook: Wireless and Mobile Networks, concepts

More information

Airmux-400 Broadband Wireless Multiplexer

Airmux-400 Broadband Wireless Multiplexer Data Sheet For North America Only Airmux-400 Point-to-point and multi point-to-point broadband radio solution for Cost-effective multi point-to-point encrypted wireless broadband multiplexer Net throughput

More information

RADWIN JET POINT-TO-MULTIPOINT BEAMFORMING SOLUTION DELIVERS FIBER-LIKE CONNECTIVITY FOR RESIDENTIAL AND ENTERPRISE

RADWIN JET POINT-TO-MULTIPOINT BEAMFORMING SOLUTION DELIVERS FIBER-LIKE CONNECTIVITY FOR RESIDENTIAL AND ENTERPRISE RADWIN JET POINT-TO-MULTIPOINT FOR SERVICE PROVIDERS Product Brochure PtMP solution with PtP performance 750 Mbps RADWIN JET POINT-TO-MULTIPOINT BEAMFORMING SOLUTION DELIVERS FIBER-LIKE CONNECTIVITY FOR

More information

This is by far the most ideal method, but poses some logistical problems:

This is by far the most ideal method, but poses some logistical problems: NXU to Help Migrate to New Radio System Purpose This Application Note will describe a method at which NXU Network extension Units can aid in the migration from a legacy radio system to a new, or different

More information

Service and technology neutrality - universal service obligations

Service and technology neutrality - universal service obligations Service and technology neutrality - universal service obligations Jochen Mezger General Manager Program Distribution Service and technology neutrality EBU spectrum policy 3.6.2008 IRT Mezger Technology

More information

Lecture #6 Basic Concepts of Cellular Transmission (p3)

Lecture #6 Basic Concepts of Cellular Transmission (p3) November 2014 Integrated Technical Education Cluster At AlAmeeria E-716-A Mobile Communications Systems Lecture #6 Basic Concepts of Cellular Transmission (p3) Instructor: Dr. Ahmad El-Banna Agenda Duplexing

More information

Evolution Long Haul All-Indoor vs. Split-Mount Configuration

Evolution Long Haul All-Indoor vs. Split-Mount Configuration Evolution Long Haul All-Indoor vs. Split-Mount Configuration Abstract Multi-carrier, long-haul radio links can be housed in all-indoor or split-mount configurations. Considering current and future constraints

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

WIRELESS TERMINAL EQUIPMENT. ETI TELECOMMUNICATIONS Monday, 10 October 2016

WIRELESS TERMINAL EQUIPMENT. ETI TELECOMMUNICATIONS Monday, 10 October 2016 WIRELESS TERMINAL EQUIPMENT ETI2506 - TELECOMMUNICATIONS Monday, 10 October 2016 1 CLASSIFICATION OF MOBILE RADIO TRANSMISSION 1. Simplex radio systems utilize simplex channels i.e., the communication

More information

Modelling and Performances Analysis of WiMAX/IEEE Wireless MAN OFDM Physical Downlink

Modelling and Performances Analysis of WiMAX/IEEE Wireless MAN OFDM Physical Downlink Modelling and Performances Analysis of WiMAX/IEEE 802.16 Wireless MAN OFDM Physical Downlink Fareda Ali Elmaryami M. Sc Student, Zawia University, Faculty of Engineering/ EE Department, Zawia, Libya, Faredaali905@yahoo.com

More information

Planning Your Wireless Transportation Infrastructure. Presented By: Jeremy Hiebert

Planning Your Wireless Transportation Infrastructure. Presented By: Jeremy Hiebert Planning Your Wireless Transportation Infrastructure Presented By: Jeremy Hiebert Agenda Agenda o Basic RF Theory o Wireless Technology Options o Antennas 101 o Designing a Wireless Network o Questions

More information

Mobile Communication Systems. Part 7- Multiplexing

Mobile Communication Systems. Part 7- Multiplexing Mobile Communication Systems Part 7- Multiplexing Professor Z Ghassemlooy Faculty of Engineering and Environment University of Northumbria U.K. http://soe.ac.uk/ocr Contents Multiple Access Multiplexing

More information

3.1. Historical Overview. Citizens` Band Radio Cordless Telephones Improved Mobile Telephone Service (IMTS)

3.1. Historical Overview. Citizens` Band Radio Cordless Telephones Improved Mobile Telephone Service (IMTS) III. Cellular Radio Historical Overview Introduction to the Advanced Mobile Phone System (AMPS) AMPS Control System Security and Privacy Cellular Telephone Specifications and Operation 3.1. Historical

More information

RADWIN JET PtMP Beamforming solution for fiber-like connectivity

RADWIN JET PtMP Beamforming solution for fiber-like connectivity RADWIN JET Point-to-MultiPoint for Private Networks Product Brochure PtMP so l with PtuPtion perform ance 750 Mb ps RADWIN JET PtMP Beamforming solution for fiber-like connectivity RADWIN JET is a disruptive

More information

Vietnam Spectrum Occupancy Measurements and Analysis for Cognitive Radio Applications

Vietnam Spectrum Occupancy Measurements and Analysis for Cognitive Radio Applications Vietnam Spectrum Occupancy Measurements and Analysis for Cognitive Radio Applications Vo Nguyen Quoc Bao Posts and Telecommunication Institute of Technology Outline Introduction Measurement and Procedure

More information

SAMPLE. UEENEEH046B Solve fundamental problems in electronic communications systems. Learner Workbook. UEE07 Electrotechnology Training Package

SAMPLE. UEENEEH046B Solve fundamental problems in electronic communications systems. Learner Workbook. UEE07 Electrotechnology Training Package UEE07 Electrotechnology Training Package UEENEEH046B Solve fundamental problems in electronic communications systems Learner Workbook Version 1 Training and Education Support Industry Skills Unit Meadowbank

More information

TDD and FDD Wireless Access Systems

TDD and FDD Wireless Access Systems WHITE PAPER WHITE PAPER Coexistence of TDD and FDD Wireless Access Systems In the 3.5GHz Band We Make WiMAX Easy TDD and FDD Wireless Access Systems Coexistence of TDD and FDD Wireless Access Systems In

More information

RECOMMENDATION ITU-R F Radio-frequency channel arrangements for fixed wireless systems operating in the 18 GHz frequency band

RECOMMENDATION ITU-R F Radio-frequency channel arrangements for fixed wireless systems operating in the 18 GHz frequency band Rec. ITU-R F.595-8 1 RECOMMENDATION ITU-R F.595-8 Radio-frequency channel arrangements for fixed wireless systems operating in the 18 Gz frequency band (Question ITU-R 108/9) (1982-1986-1990-1992-1995-1997-1999-2002-2003)

More information

RADWIN JET PtMP Beamforming solution delivers fiber-like connectivity for residential and enterprise. 750 Mb

RADWIN JET PtMP Beamforming solution delivers fiber-like connectivity for residential and enterprise. 750 Mb RADWIN JET Point-to-MultiPoint for Service Providers Product Brochure PtMP so l with PtuPtion perform ance 750 Mb ps RADWIN JET PtMP Beamforming solution delivers fiber-like connectivity for residential

More information

IPSTAR Disaster Recovery and Emergency Communications

IPSTAR Disaster Recovery and Emergency Communications IPSTAR Disaster Recovery and Emergency Communications March 2009 COPYRIGHT THAICOM PLC 2009 PROPRIETARY Content Introduction 3 Advantages 4 Applications 5 Equipment 6-7 IPSTAR Enterprise Series IPSTAR

More information

a. Find the minimum number of samples per second needed to recover the signal without loosing information.

a. Find the minimum number of samples per second needed to recover the signal without loosing information. 1. The digital signal X(t) given below. X(t) 1 0 1 2 3 4 5 7 8 t (msec) a. If the carrier is sin (2000 π t), plot Amplitude Shift Keying (ASK) Modulated signal. b. If digital level 1 is represented by

More information

Multiple Antenna Processing for WiMAX

Multiple Antenna Processing for WiMAX Multiple Antenna Processing for WiMAX Overview Wireless operators face a myriad of obstacles, but fundamental to the performance of any system are the propagation characteristics that restrict delivery

More information

The Use of MESH Technology in Outside Broadcast

The Use of MESH Technology in Outside Broadcast Cobham Surveillance Domo Products 11 Manor Court, Barnes Wallis Road, Segensworth, Hampshire, PO15 5TH England T: +44 (0)1489 566 750 F: +44 (0)1489 880 538 The Use of MESH Technology in Outside Broadcast

More information

Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow.

Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow. Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow WiMAX Whitepaper Author: Frank Rayal, Redline Communications Inc. Redline

More information

RADWIN JET PtMP Beamforming solution delivers fiber-like connectivity for residential and enterprise. 750 Mbps. PtMP solution with PtP performance

RADWIN JET PtMP Beamforming solution delivers fiber-like connectivity for residential and enterprise. 750 Mbps. PtMP solution with PtP performance RADWIN JET Point-to-MultiPoint for Service Providers Product Brochure PtMP solution with PtP performance 750 Mbps RADWIN JET PtMP Beamforming solution delivers fiber-like connectivity for residential and

More information

Ethernet to 900 MHz RF Modem

Ethernet to 900 MHz RF Modem MLB-Z4001 Ethernet to 900 MHz RF Modem USER MANUAL MLB-Z4001 Terminal User Guide 1 Rev 1.0 Information provided by Schmidt & Co., (HK) Ltd, (herein known as the company ), is believed to be accurate and

More information

Transmission Media. Transmission Media 12/14/2016

Transmission Media. Transmission Media 12/14/2016 Transmission Media in data communications DDE University of Kashmir By Suhail Qadir System Analyst suhailmir@uok.edu.in Transmission Media the transmission medium is the physical path between transmitter

More information

Repeaters and Linking

Repeaters and Linking Presented by Rob Ewert VE1KS \ Introduction / My Background Repeaters What are they? Why do we need them? How do they work? How are they controlled What kinds are there? Where are they? What do I need

More information