IVCAD VNA Base Load Pull with Active/Hybrid Tuning. Getting Started v3.5

Size: px
Start display at page:

Download "IVCAD VNA Base Load Pull with Active/Hybrid Tuning. Getting Started v3.5"

Transcription

1 IVCAD VNA Base Load Pull with Active/Hybrid Tuning Getting Started v3.5

2 1 Setting and Configuration Block Diagram VNA setup RF source setup Power meter setup Source tuner setup Load tuner setup Power supply setup Calibration Calibration Verification using a through standard Device measurement P a g e

3 1 Setting and Configuration Block Diagram Before setting up IVCAD, the tuners need to be calibrated using ATS software and have the tuner files ready. The procedure to characterize the tuner can be found in the ATS s Help directory. Note that there are two USB tuner drivers in ATS (TunHubMech.exe and TunUSB.exe). One must be consistent using the same tuner driver in ATS for tuner characterization and the device measurement in IVCAD. Launch the IVCAD program and expand Measurement on the left under Plug-ins. Click on Setup & measurement and then New. A dialog will pop-up and will ask user to select either IV-measurement or VNA based LP measurement. Select the VNA based LP measurement. 3 P a g e

4 A new block diagram for load pull will show up. 4 P a g e

5 1.1 VNA setup Click on the VNA icon and setting up parameters for the VNA. Click on Test connection button and check for the connection. If unsuccessful, double check driver and address and make sure they are correct. VNA allows GPIB or LAN interface. For LAN we deeply recommend SICL protocol (TCPIP0:: IP address of the instrument ::inst0::instr) instead of SOCKET protocol (TCPIP0:: IP address of the instrument ::5025::SOCKET). Note that a 4-port PNAX is used for this demonstration and receiver port 3 and 4 are used for measurement. For more information on configuration using different VNA model, refer to the document IVCAD OM LoadPull MT930C.pdf from IVCAD s help menu. For X-parameter measurement with NVNA, port 1 and 3 must be used for standard configuration. 5 P a g e

6 1.2 RF source setup Click on the Src1 icon and setting up parameters for RF source. (Note: Src2 will not be used) Note: To use the internal RF source for the measurement take care about the internal isolation between source and receivers (a test procedure is depicts in the VNA Operating manual of IVCAD) To use internal RF source of the VNA set the address of the VNA, it s possible to use GPIB or LAN protocol (TCPIP0:: IP address of the instrument ::inst0::instr). 6 P a g e

7 1.3 Power meter setup Click on the Power Meter icon and setting up parameters for power meter. 7 P a g e

8 1.4 Source tuner setup Click on the Source tuning station icon and select the type of tuning mode (Passive, Active or Manual Hybrid), then setting up parameters for source tuner P a g e

9 Click on the Mode tab and select the tuning mode. The different between each tuning mode and their capability is described in the Tuner configuration dialog in the previous page. Click on the Harmonic tab and enter the weight of the tuning requirement in case a multiharmonic tuner is used. Select the calibrated tuner file from the drop down list. 1.5 Load tuner setup Click on the Load tuning station and setting up parameters for the load tuner. When setting up load tuner, it will first ask for the tuning mode; passive, active or manual hybrid. Passive will be purely mechanical tuner, active is going to be purely active injection (also called active load pull), and manual hybrid will be passive tuner combined with active injection for both at fundamental and harmonics, depending on the active source setup. (Note: Manual hybrid setup will be demonstrated in this document) 9 P a g e

10 Click on the Passive tuner tab and configure for the passive load tuner. It is going to be exactly the same as source tuner configuration as described before, except for load termination file. Click on the Deembedding tab and select termination file from the drop down list. Click on the Active tuner tab and configure for active source. Select the number of active RF source (support up to 4 active sources). Check each RF source to enable the source to be used. 10 P a g e

11 Click on the RF source number (the button with label <undefined> ) that needs to be configured. Repeat for additional RF source if the harmonic count is more than 1. Auto range option may be selected to use very low power (lower than -30dBm for most of the RF source), but the use of this option may cause some phase shifting caused by the internal attenuators. Use of External RF source is preferable is this case. 11 P a g e

12 1.6 Power supply setup Click on the power supply icon on the block diagram and setting up for power supply. 1. Check Enable to active the power supply 2. Check Input (for gate), output (for drain) and any auxiliary supply that need to be used in the setup. 3. Check Same input and output measurement instrument if the power supply is multi channels and uses the same power supply to bias both gate and drain. 4. Check Power off after measurement and the power supply will be off after measurement. Otherwise, it will leave the power supply on until user manually turn it off. 5. Make sure that the power ON sequence is in the right order. Click on the up and down arrow to change the order. Click on the input power supply to configure the instrument. Click on Test connection to check the GPIB connection. 12 P a g e

13 Click on the output power supply to configure the instrument. Click on Test connection to check the GPIB connection. Click on the measurement unit button and configure the instrument used to measure voltage and current. 13 P a g e

14 14 P a g e

15 2 Calibration Once the block diagram is setup and properly configured, we can proceed with the calibration. The actually hardware setup for calibration will look like the diagram below. Note that the attenuation for the receiver input need to be carefully selected so that the power going into the receiver will stay below -20dBm which is the receiver s linear operating range. PNAX PM PS Rcv R3 Rcv C Rcv D Rcv R4 Cal ref B.T B.T Click on the Calibration tab and then click New Calibration to initialize the calibration wizard. Select Coaxial power calibration for in-fixture DUT, and Unsexed power calibration for onwafer DUT. Also select where the power sensor to be connected for amplitude power calibration. 15 P a g e

16 Click Next and all the instruments as well as tuners will be initialized and it will show up the hardware with a green check. If there is any red cross appears next to the hardware, it needs to go back check the setting for that specific hardware. 16 P a g e

17 Next dialog is to setup the power level to perform 2-ports vector calibration and the frequency. Select whether frequency sweep, 1-tone, or 2-tones depending on the type of measurement. Click on Inject into list to register the list of frequencies to be calibrated. Click next and the VNA will be configure according to the setup and ready for the calibration. Use VNA front panel to perform 2-port vector calibration (see the diagram for the calibration reference). 17 P a g e

18 Click next when the calibration is done, and the following dialog will ask to calibrate the power sensor. Skip this step if the sensor is already zeroed and calibrated. Otherwise, perform power sensor calibration and click next when it is done. In the next dialog, setup the power level to perform amplitude calibration. Pmax power sensor is the maximum power that the power sensor can handle. Pinitial source power is the starting power of the RF source for optimization. Ptarget power sensor is the power level to be read at the power sensor reference. 18 P a g e

19 Next dialog will display where the sensor should be connected. Connect the power sensor on the port as shown in the diagram and proceed to the next step. Click next and it will start to perform a power sweep base on the Pinitial and Ptarget from the previous dialog. 19 P a g e

20 Once the amplitude calibration is done, click next to finish and enter a comment is needed. After the calibration, a calibration with an ID number is assigned under Available calibration section on the right. 20 P a g e

21 At this level, it is possible to run an automatic determination of the S parameter block files which are in front of the tuners, and at the rear of the tuners, if these ones have not been taken into account during the tune calibration. This one will be needed in order to drive the tuners directly at the right impedance. Select the line which corresponds to the calibration of interest. Select Tuner autodeembedding, and the frequencies of interest. The frequencies available will be the common frequencies which can be found into the source and load tuner calibration files, plus the VNA calibration. 21 P a g e

22 3 Calibration Verification using a through standard Once the calibration is finished, the driver amplifier can be added at the input to drive the input power and it will not affect the receiver calibration. The VNA cable at the output can be removed and terminate the load tuner with the components that used to obtain the load termination file (.s1p). For active/hybrid setup, the termination could include isolator, diplexer/triplexer, amplifier, etc. The actual hardware setup for active/hybrid load pull measurement will be similar to the diagram shown below. PNAX AMP AMP Rcv R3 Rcv C Rcv D Rcv R4 Cal ref LPF B.T B.T com HPF 50Ω The setup need to be initialized before the actual measurement can be performed. Click on the Initialize bench from the measurement menu and all the instruments will be initialized and the calibration ID will be recalled and write it to the VNA. 22 P a g e

23 Once the bench is initialized, go to common tab and enter the fundamental frequency and number of harmonic to be measured. Scroll down and enter the file name under desire directory. 23 P a g e

24 Click on Power sweep tab and enter power type and desire power range for the sweep. There are 4 different power type user can selecte. i. Raw power the power generated at the VNA ii. Source power available power at the DUT iii. Input power Power deliver at the DUT iv. Output power Power deliver at the device output Next step is to set the source and load tuner to be conjugate of each other. 24 P a g e

25 From the Plugins under Measurement, click on Tuner Manager. The smith chart for source and load tuning station will appear. o 1/ Select the F0 frequency o 2/ Set the source gamma (0.8 and 120 for source, 0.8 and -120 for load) o 3/ Click on Move button after setting the gamma every time. 25 P a g e

26 If the active source is disabled, only the passive tuner will be used to get to target gamma. If active source is enabled, passive tuner will operate as a pre-match tuner and active tuning will be used to get to the target gamma. If 2 nd harmonic active source is enabled when using a fundamental tuner, the matching is only done by the harmonic active source because pre-match may not be optimal. Go back to Setup & measurement and click on Start on the right top corner to begin a power sweep. 26 P a g e

27 Once the measurement is done, IVCAD display a report about the measurement To view the data in visualization, enable the source data file in Datasource and click on Visualization under Plugins. Expend Load Pull and click on Load Pull viewer. A power sweep curve will be display on the right window and user can select to display different parameter from the Custom tab above the graph. Select the parameter to be Power gain as we are expecting 0dB for a through. 27 P a g e

28 Check the power gain curve and it should be around 0dB Also check the Gamma_in magnitude and phase and it should be the same as gamma load of 0.8 magnitude and -45 degree as we set it in the load tuning station. 28 P a g e

29 29 P a g e

30 4 Device measurement Once the power gain and gamma_in are verified, the calibration is considered to be accurate and the device measurement can be performed. The first thing to do after putting the DUT is to check the bias. Click on the DUT biasing from the plug in window. Click Power supplies ON, enter the voltage for gate and drain, click on Apply levels and check the current. 30 P a g e

31 Go back to the Setup & measurement and enter the frequency, stop conditions and the file name. 31 P a g e

32 Now user can freely choose to perform either power sweep or impedance sweep. The common procedure would be to perform source pull first to find out the best impedance for power gain. Leave the source impedance at optimum gain and perform load pull at around 1dB or 3dB compression for optimum output power or PAE. Then perform power sweep while the load impedance is set to either optimum power or PAE. To select impedance pattern in the impedance sweep select the shape and configure it, once the preview (blue point) is correct press Add to validate the pattern. It s possible to add as many pattern shape as needed. To perform source pull, click on impedance sweep tab and select Source pull for optimization type. Also select power type and power level to do the source pull. To select the source impedance, scroll down and select one of the four tabs below the smith chart for different impedance pattern. 32 P a g e

33 33 P a g e

34 Once the impedance is set, click on the Start from the top right corner to start the measurement. The display will show the load and source gamma, as well as the source pull contour in real time. 34 P a g e

35 When the measurement is done and the data is loaded into the data source, the source pull contour can be display using visualization. 35 P a g e

36 To perform load pull, select the optimization type to Load Pull and select the load impedance and click Start to initiate the measurement. Example of load contour is displayed below from visualization. 36 P a g e

37 To perform active fundamental or 2 nd harmonic active load pull, simply select the active source from load tuning station, then select either f0 or 2.f0 for optimization frequency under impedance sweep tab and select the impedance pattern to be measured, Click Start to initiate the measurement. 37 P a g e

38 To perform power sweep, click on Power sweep tab and enter power type and power range. Click Start to initiate the measurement. When the measurement is finished, load data into data source and the Pin vs. Pout and PAE curves can be viewed using visualization. Note: For additional software features, terms and definitions please refer to the IVCAD operation manual IVCAD OM LoadPull MT930C.pdf which can be found in IVCAD s Help menu. 38 P a g e

Load Pull with X-Parameters A New Paradigm for Modeling and Design

Load Pull with X-Parameters A New Paradigm for Modeling and Design Load Pull with X-Parameters A New Paradigm for Modeling and Design Gary Simpson, CTO Maury Microwave Anaheim, May 2010 For a more detailed version of this presentation, go to www.maurymw.com/presentation.htm

More information

X-Parameters with Active and Hybrid Active Load Pull

X-Parameters with Active and Hybrid Active Load Pull X-Parameters with Active and Hybrid Active Load Pull Gary Simpson, CTO Maury Microwave EuMW 2012 www.maurymw.com 1 General Load Pull Overview 2 Outline 1. Introduction to Maury Microwave 2. Basics and

More information

Focus Microwaves Inc. 277 Lakeshore Road Pointe-Claire Quebec, H9S-4L2, Canada Tel Fax Application Note 26

Focus Microwaves Inc. 277 Lakeshore Road Pointe-Claire Quebec, H9S-4L2, Canada Tel Fax Application Note 26 Focus Microwaves Inc. 277 Lakeshore Road Pointe-Claire Quebec, H9S-4L2, Canada Tel 514-630-6067 Fax 514-630-7466 Application Note 26 Create Your Own Load Pull Tests using MATLAB-TUNE MATLAB-TUNE is a library

More information

Vector-Receiver Load Pull Measurement

Vector-Receiver Load Pull Measurement MAURY MICROWAVE CORPORATION Vector-Receiver Load Pull Measurement Article Reprint of the Special Report first published in The Microwave Journal February 2011 issue. Reprinted with permission. Author:

More information

External Source Control

External Source Control External Source Control X-Series Signal Analyzers Option ESC DEMO GUIDE Introduction External source control for X-Series signal analyzers (Option ESC) allows the Keysight PXA, MXA, EXA, and CXA to control

More information

Experiment 12 - Measuring X-Parameters Using Nonlinear Vector Netowrk Analyzer

Experiment 12 - Measuring X-Parameters Using Nonlinear Vector Netowrk Analyzer ECE 451 Automated Microwave Measurements Laboratory Experiment 12 - Measuring X-Parameters Using Nonlinear Vector Netowrk Analyzer 1 Introduction In this experiment, rstly, we will be measuring X-parameters

More information

IMD Measurement Wizard for the E5072A ENA Series Network Analyzer Operation Manual. Agilent Technologies June 2012

IMD Measurement Wizard for the E5072A ENA Series Network Analyzer Operation Manual. Agilent Technologies June 2012 IMD Measurement Wizard for the E5072A ENA Series Network Analyzer Operation Manual Agilent Technologies June 2012 1 Important Notice Notices The information contained in this document is subject to change

More information

Product Note 33. ALPS-308, Active Load Pull System for PCN Applications

Product Note 33. ALPS-308, Active Load Pull System for PCN Applications 970 Montee de Liesse, #308 Ville St-Laurent, Quebec, Canada, H4T 1W7 Tel: 514-335-6227 Fax: 514-335-6287 Email focusmw@compuserve.com Web Site: http://www.focus-microwaves.com Product Note 33 ALPS-308,

More information

MEASUREMENT OF LARGE SIGNAL DEVICE INPUT IMPEDANCE DURING LOAD PULL

MEASUREMENT OF LARGE SIGNAL DEVICE INPUT IMPEDANCE DURING LOAD PULL Model M956D CORPORAION MEASUREMEN OF LARGE SIGNAL DEVICE INPU IMPEDANCE DURING LOAD PULL Abstract Knowledge of device input impedance as a function of power level and load matching is useful to fully understand

More information

Focus Microwaves Inc. 970 Montee de Liesse, Ste. 308 Ville St-Laurent, Quebec H4T-1W7, Canada Tel Fax

Focus Microwaves Inc. 970 Montee de Liesse, Ste. 308 Ville St-Laurent, Quebec H4T-1W7, Canada Tel Fax Focus Microwaves Inc. 970 Montee de Liesse, Ste. 308 Ville St-Laurent, Quebec H4T-1W7, Canada Tel 514-335-6227 Fax 514-335-6287 Product Note No 12A Measurement Software for the Computer Controlled Microwave

More information

LXI -Certified Multi-Harmonic Automated Tuners

LXI -Certified Multi-Harmonic Automated Tuners LXI -Certified Multi-Harmonic Automated Tuners DATA SHEET / 4T-050G03 MODELS: MT981ML01 MT982ML01 MT983ML01 // JANUARY 2018 What is load pull? Load Pull is the act of presenting a set of controlled impedances

More information

PXIe Contents CALIBRATION PROCEDURE

PXIe Contents CALIBRATION PROCEDURE CALIBRATION PROCEDURE PXIe-5632 This document contains the verification and adjustment procedures for the PXIe-5632 Vector Network Analyzer. Refer to ni.com/calibration for more information about calibration

More information

LXI -Certified 7mm Automated Tuners

LXI -Certified 7mm Automated Tuners LXI -Certified 7mm Automated Tuners DATA SHEET / 4T-050G07 MODELS: XT982GL01 XT982GL30 XT982AL02 XT-SERIES TUNERS REPRESENT THE NEXT EVOLUTION IN TUNER TECHNOLOGY. FASTER, MORE ACCURATE, MORE REPEATABLE.

More information

LXI -Certified 2.4mm & 1.85mm Automated Tuners

LXI -Certified 2.4mm & 1.85mm Automated Tuners LXI -Certified 2.4mm & 1.85mm Automated Tuners DATA SHEET / 4T-050G04A MODELS: MT984AL01 MT985AL01 // JUNE 2018 What is load pull? Load Pull is the act of presenting a set of controlled impedances to a

More information

LXI -Certified 3.5mm Automated Tuners

LXI -Certified 3.5mm Automated Tuners LXI -Certified 3.5mm Automated Tuners DATA SHEET / 4T-050G08 MODELS: XT983BL01 XT-SERIES TUNERS REPRESENT THE NEXT EVOLUTION IN TUNER TECHNOLOGY. FASTER, MORE ACCURATE, MORE REPEATABLE. Products covered

More information

LXI -Certified 7mm Automated Tuners

LXI -Certified 7mm Automated Tuners LXI -Certified 7mm Automated Tuners DATA SHEET / 4T-050G02 MODELS: MT982GL01 MT982GL30 MT982BL01 MT982EL30 MT982AL02 // JANUARY 2018 What is load pull? Load Pull is the act of presenting a set of controlled

More information

LXI -Certified 3.5mm, 2.4mm & 1.85mm Automated Tuners

LXI -Certified 3.5mm, 2.4mm & 1.85mm Automated Tuners LXI -Certified 3.5mm, 2.4mm & 1.85mm Automated Tuners DATA SHEET / 4T-050G04 MODELS: MT983BL01 MT984AL01 MT985AL01 // JANUARY 2018 What is load pull? Load Pull is the act of presenting a set of controlled

More information

Making Pulse Power Measurements With Maury ATS 4.00

Making Pulse Power Measurements With Maury ATS 4.00 MAURY MICROWAVE CORPORATION 8 November 2004 Making Pulse Power Measurements With Maury ATS 4.00 Author: John Sevic, MSEE; Automated Tuner System Technical Manager, Maury Microwave Corporation Abstract:

More information

Product Overview: Main Features: AV3672A/B/C -S Vector Network Analyzer. (10MHz~13.5 GHz/26.5 GHz/43.5 GHz)

Product Overview: Main Features: AV3672A/B/C -S Vector Network Analyzer. (10MHz~13.5 GHz/26.5 GHz/43.5 GHz) AV3672A/B/C -S Vector Network Analyzer (10MHz~13.5 GHz/26.5 GHz/43.5 GHz) Product Overview: AV3672*-S series vector network analyzer is consist of AV3672A-S(10MHz~13.5GHz), AV3672B-S(10MHz~26.5GHz)and

More information

Load Pull with X-Parameters

Load Pull with X-Parameters Load Pull with X-Parameters A New Paradigm for Modeling and Design Gary Simpson, CTO Maury Microwave March 2009 For a more detailed version of this presentation, go to www.maurymw.com/presentations 1 Outline

More information

PNA Family Microwave Network Analyzers (N522x/3x/4xB) CONFIGURATION GUIDE

PNA Family Microwave Network Analyzers (N522x/3x/4xB) CONFIGURATION GUIDE PNA Family Microwave Network Analyzers (N522x/3x/4xB) CONFIGURATION GUIDE Table of Contents PNA Family Network Analyzer Configurations... 05 Test set and power configuration options...05 Hardware options...

More information

LXI High-Gamma Automated Tuners (HGT ) And LXI High-Power Automated Tuners

LXI High-Gamma Automated Tuners (HGT ) And LXI High-Power Automated Tuners LXI High-Gamma Automated Tuners (HGT ) And LXI High-Power Automated Tuners DATA SHEET / T-050G06 MODELS: XT98HL XT98HL XT98HL5 XT98AL XT98BL0 XT98BL8 XT98VL0 XT-SERIES TUNERS REPRESENT THE NEXT EVOLUTION

More information

Product Note 75 DLPS, a Differential Load Pull System

Product Note 75 DLPS, a Differential Load Pull System 63 St-Regis D.D.O, Quebec H9B 3H7, Canada Tel 54-684-4554 Fax 54-684-858 E-mail: info@ focus-microwaves.com Website: http://www.focus-microwaves.com Product Note 75 DLPS, a Differential Load Pull System

More information

Fast network analyzers also for balanced measurements

Fast network analyzers also for balanced measurements GENERAL PURPOSE Network analyzers 44297/5 FIG 1 The new Vector Network Analyzer R&S ZVB, here with four-port configuration. Vector Network Analyzers R&S ZVB Fast network analyzers also for balanced measurements

More information

LXI High-Gamma Automated Tuners (HGT ) And LXI High-Power Automated Tuners

LXI High-Gamma Automated Tuners (HGT ) And LXI High-Power Automated Tuners LXI High-Gamma Automated Tuners (HGT ) And LXI High-Power Automated Tuners DATA SHEET / T-050G0 MODELS: MT98HL MT98HL MT98HL5 MT98AL MT98BL5 MT98BL0 MT98BL8 MT98WL0 MT98VL0 MT98EL0 // MARCH 08 What is

More information

NATIONAL UNIVERSITY of SINGAPORE

NATIONAL UNIVERSITY of SINGAPORE NATIONAL UNIVERSITY of SINGAPORE Faculty of Engineering Electrical & Computer Engineering Department EE3104 Introduction to RF and Microwave Systems & Circuits Experiment 1 Familiarization on VNA Calibration

More information

AV3672 Series Vector Network Analyzer

AV3672 Series Vector Network Analyzer AV3672 Series Vector Network Analyzer AV3672A/B/C/D/E (10MHz 13.5 GHz/26.5 GHz/43.5 GHz/50 GHz/67 GHz) Product Overview: AV3672 series vector network analyzer include AV3672A (10MHz 13.5GHz), AV3672B (10MHz

More information

MACRO FILE AND DESIGN WINDOW COMPRESSION LOAD PULL MEASUREMENTS

MACRO FILE AND DESIGN WINDOW COMPRESSION LOAD PULL MEASUREMENTS TECHNICAL FEATURE MACRO FILE AND DESIGN WINDOW COMPRESSION LOAD PULL MEASUREMENTS This article describes measurement and evaluation algorithms that allow full load pull tests to be performed while drining

More information

Power Added Efficiency Measurement with R&S ZNB/ R&S ZVA

Power Added Efficiency Measurement with R&S ZNB/ R&S ZVA Power Added Efficiency Measurement with R&S ZNB/ R&S ZVA Application Note Products: R&S ZNB R&S ZVA Power Added Efficiency (PAE) is a key parameter for the characterization of an amplifier. This application

More information

EXPERIMENT EM3 INTRODUCTION TO THE NETWORK ANALYZER

EXPERIMENT EM3 INTRODUCTION TO THE NETWORK ANALYZER ECE 351 ELECTROMAGNETICS EXPERIMENT EM3 INTRODUCTION TO THE NETWORK ANALYZER OBJECTIVE: The objective to this experiment is to introduce the student to some of the capabilities of a vector network analyzer.

More information

Configuration of PNA-X, NVNA and X parameters

Configuration of PNA-X, NVNA and X parameters Configuration of PNA-X, NVNA and X parameters VNA 1. S-Parameter Measurements 2. Harmonic Measurements NVNA 3. X-Parameter Measurements Introducing the PNA-X 50 GHz 43.5 GHz 26.5 GHz 13.5 GHz PNA-X Agilent

More information

Keysight Technologies PNA Microwave Network Analyzers

Keysight Technologies PNA Microwave Network Analyzers Keysight Technologies PNA Microwave Network Analyzers Application Note Banded Millimeter-Wave Measurements with the PNA 02 Keysight PNA Microwave Network Analyzers Application Note Table of Contents Introduction...

More information

A Comparison of Harmonic Tuning Methods for Load Pull Systems

A Comparison of Harmonic Tuning Methods for Load Pull Systems MAURY MICROWAVE CORPORATION A Comparison of Harmonic Tuning Methods for Load Pull Systems Author: Gary Simpson, MSEE Director of Technical Development in Engineering, Maury Microwave Corporation July 2009

More information

Large-Signal Network Analysis Technology for HF analogue and fast switching components

Large-Signal Network Analysis Technology for HF analogue and fast switching components Large-Signal Network Analysis Technology for HF analogue and fast switching components Applications This slide set introduces the large-signal network analysis technology applied to high-frequency components.

More information

PXA Configuration. Frequency range

PXA Configuration. Frequency range Keysight Technologies Making Wideband Measurements Using the Keysight PXA Signal Analyzer as a Down Converter with Infiniium Oscilloscopes and 89600 VSA Software Application Note Introduction Many applications

More information

Load Pull Validation of Large Signal Cree GaN Field Effect Transistor (FET) Model

Load Pull Validation of Large Signal Cree GaN Field Effect Transistor (FET) Model APPLICATION NOTE Load Pull Validation of Large Signal Cree GaN Field Effect Transistor (FET) Model Introduction Large signal models for RF power transistors, if matched well with measured performance,

More information

CHAPTER 4 LARGE SIGNAL S-PARAMETERS

CHAPTER 4 LARGE SIGNAL S-PARAMETERS CHAPTER 4 LARGE SIGNAL S-PARAMETERS 4.0 Introduction Small-signal S-parameter characterization of transistor is well established. As mentioned in chapter 3, the quasi-large-signal approach is the most

More information

Hot S 22 and Hot K-factor Measurements

Hot S 22 and Hot K-factor Measurements Application Note Hot S 22 and Hot K-factor Measurements Scorpion db S Parameter Smith Chart.5 2 1 Normal S 22.2 Normal S 22 5 0 Hot S 22 Hot S 22 -.2-5 875 MHz 975 MHz -.5-2 To Receiver -.1 DUT Main Drive

More information

A Survey of Load Pull Simulation Capabilities How do they Help You Design Power Amplifiers?

A Survey of Load Pull Simulation Capabilities How do they Help You Design Power Amplifiers? A Survey of Load Pull Simulation Capabilities How do they Help You Design Power Amplifiers? Agilent EEsof EDA IMS 2010 MicroApps Andy Howard Agilent Technologies 1 Outline Power amplifier design questions

More information

A Testbench for Analysis of Bias Network Effects in an RF Power Amplifier with DPD. Marius Ubostad and Morten Olavsbråten

A Testbench for Analysis of Bias Network Effects in an RF Power Amplifier with DPD. Marius Ubostad and Morten Olavsbråten A Testbench for Analysis of Bias Network Effects in an RF Power Amplifier with DPD Marius Ubostad and Morten Olavsbråten Dept. of Electronics and Telecommunications Norwegian University of Science and

More information

PLANAR 814/1. Vector Network Analyzer

PLANAR 814/1. Vector Network Analyzer PLANAR 814/1 Vector Network Analyzer Frequency range: 100 khz 8 GHz Measured parameters: S11, S12, S21, S22 Wide output power range: -60 dbm to +10 dbm >150 db dynamic range (1 Hz IF bandwidth) Direct

More information

Agilent Technologies Gli analizzatori di reti della serie-x

Agilent Technologies Gli analizzatori di reti della serie-x Agilent Technologies Gli analizzatori di reti della serie-x Luigi Fratini 1 Introducing the PNA-X Performance Network Analyzer For Active Device Test 500 GHz & beyond! 325 GHz 110 GHz 67 GHz 50 GHz 43.5

More information

Measuring Power Line Impedance

Measuring Power Line Impedance By Florian Hämmerle & Tobias Schuster 2017 by OMICRON Lab V1.1 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com for technical support. Page 2 of 13 Table of Contents 1 MEASUREMENT

More information

Quick Start Guide for the PULSE PROFILING APPLICATION

Quick Start Guide for the PULSE PROFILING APPLICATION Quick Start Guide for the PULSE PROFILING APPLICATION MODEL LB480A Revision: Preliminary 02/05/09 1 1. Introduction This document provides information to install and quickly start using your PowerSensor+.

More information

TEST EQUIPMENT PLUS. Signal Hound USB-SA44B / USB-TG44A. Application Note 1: The Smith Chart. Rev. 0

TEST EQUIPMENT PLUS. Signal Hound USB-SA44B / USB-TG44A. Application Note 1: The Smith Chart. Rev. 0 Rev. 0 TEST EQUIPMENT PLUS Signal Hound USB-SA44B / USB-TG44A Application Note 1: The Smith Chart USING THE SMITH CHART Chapter 1 1 Using the Smith Chart Making Single-Frequency Vector Impedance Measurements

More information

Microwave & RF Device Characterization Solutions

Microwave & RF Device Characterization Solutions Microwave & RF Device Characterization Solutions MT2000 Mixed-Signal Active Load Pull System (1.0 MHz to 40.0 GHz) And MT2001 System Software From Powered by Maury Microwave is ISO: 9001:2008/AS9100C Certified.

More information

RF Characterization Report

RF Characterization Report SMA-J-P-H-ST-MT1 Mated with: RF316-01SP1-01BJ1-0305 Description: 50-Ω SMA Board Mount Jack, Mixed Technology Samtec, Inc. 2005 All Rights Reserved Table of Contents Introduction...1 Product Description...1

More information

PLANAR S5048 and TR5048

PLANAR S5048 and TR5048 PLANAR S5048 and TR5048 Vector Network Analyzers KEY FEATURES Frequency range: 20 khz 4.8 GHz COM/DCOM compatible for LabView Measured parameters: and automation programming S11, S12, S21, S22 (S5048)

More information

Keysight Technologies PNA-X Series Microwave Network Analyzers

Keysight Technologies PNA-X Series Microwave Network Analyzers Keysight Technologies PNA-X Series Microwave Network Analyzers Active-Device Characterization in Pulsed Operation Using the PNA-X Application Note Introduction Vector network analyzers (VNA) are the common

More information

Compact Series: S5065 & S5085 Vector Network Analyzers KEY FEATURES

Compact Series: S5065 & S5085 Vector Network Analyzers KEY FEATURES Compact Series: S5065 & S5085 Vector Network Analyzers KEY FEATURES Frequency range: 9 khz - 6.5 or 8.5 GHz Measured parameters: S11, S12, S21, S22 Wide output power adjustment range: -50 dbm to +5 dbm

More information

RLC Software User s Manual

RLC Software User s Manual RLC Software User s Manual Venable Instruments 4201 S. Congress, Suite 201 Austin, TX 78745 512-837-2888 www.venable.biz Introduction The RLC software allows you to measure the frequency response of RLC

More information

The New Load Pull Characterization Method for Microwave Power Amplifier Design

The New Load Pull Characterization Method for Microwave Power Amplifier Design IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 10 March 2016 ISSN (online): 2349-6010 The New Load Pull Characterization Method for Microwave Power Amplifier

More information

How do I optimize desired Amplifier Specifications?

How do I optimize desired Amplifier Specifications? How do I optimize desired Amplifier Specifications? PAE (accuracy

More information

On Wafer Load Pull and Noise Measurements using Computer Controlled Microwave Tuners

On Wafer Load Pull and Noise Measurements using Computer Controlled Microwave Tuners 970 Montee de Liesse, #308 Ville St-Laurent, Quebec, Canada, H4T 1W7 Tel: 514-335-6227 Fax: 514-335-6287 Email focusmw@compuserve.com Web Site: http://www.focus-microwaves.com Application Note No 14 On

More information

Circuit Characterization with the Agilent 8714 VNA

Circuit Characterization with the Agilent 8714 VNA Circuit Characterization with the Agilent 8714 VNA By: Larry Dunleavy Wireless and Microwave Instruments University of South Florida Objectives 1) To examine the concepts of reflection, phase shift, attenuation,

More information

Bode 100. User Manual

Bode 100. User Manual Bode 100 User Manual Bode 100 User Manual Article Number VESD0661 - Manual Version: Bode100.AE.3 OMICRON Lab 2008. All rights reserved. This User Manual is a publication of OMICRON electronics GmbH. This

More information

A True Differential Millimeter Wave System with Port Power Control. Presented by: Suren Singh

A True Differential Millimeter Wave System with Port Power Control. Presented by: Suren Singh A True Differential Millimeter Wave System with Port Power Control Presented by: Suren Singh Agenda Need for True Differential and RF Power Control Vector Network Analyzer RF Port Power Control Port Power

More information

Exercise 5: Power amplifier measurement

Exercise 5: Power amplifier measurement Exercise 5: Power amplifier measurement The objective of this laboratory exercise is the calibrated measurement of important parameters of a power amplifier. This includes performance parameters like gain,

More information

Compact Series: S5048 & TR5048 Vector Network Analyzers KEY FEATURES

Compact Series: S5048 & TR5048 Vector Network Analyzers KEY FEATURES Compact Series: S5048 & TR5048 Vector Network Analyzers KEY FEATURES Frequency range: 20 khz - 4.8 GHz Measured parameters: S11, S12, S21, S22 (S5048) S11, S21 (TR5048) Wide output power adjustment range:

More information

Design of Class F Power Amplifiers Using Cree GaN HEMTs and Microwave Office Software to Optimize Gain, Efficiency, and Stability

Design of Class F Power Amplifiers Using Cree GaN HEMTs and Microwave Office Software to Optimize Gain, Efficiency, and Stability White Paper Design of Class F Power Amplifiers Using Cree GaN HEMTs and Microwave Office Software to Optimize Gain, Efficiency, and Stability Overview This white paper explores the design of power amplifiers

More information

Faculty of Electrical & Electronics Engineering BEE4233 Antenna and Propagation. LAB 1: Introduction to Antenna Measurement

Faculty of Electrical & Electronics Engineering BEE4233 Antenna and Propagation. LAB 1: Introduction to Antenna Measurement Faculty of Electrical & Electronics Engineering BEE4233 Antenna and Propagation LAB 1: Introduction to Antenna Measurement Mapping CO, PO, Domain, KI : CO2,PO3,P5,CTPS5 CO1: Characterize the fundamentals

More information

Vector Network Analyzer Application note

Vector Network Analyzer Application note Vector Network Analyzer Application note Version 1.0 Vector Network Analyzer Introduction A vector network analyzer is used to measure the performance of circuits or networks such as amplifiers, filters,

More information

Improving Amplitude Accuracy with Next-Generation Signal Generators

Improving Amplitude Accuracy with Next-Generation Signal Generators Improving Amplitude Accuracy with Next-Generation Signal Generators Generate True Performance Signal generators offer precise and highly stable test signals for a variety of components and systems test

More information

Experiment 8: An AC Circuit

Experiment 8: An AC Circuit Experiment 8: An AC Circuit PART ONE: AC Voltages. Set up this circuit. Use R = 500 Ω, L = 5.0 mh and C =.01 μf. A signal generator built into the interface provides the emf to run the circuit from Output

More information

Cable and Antenna Analyzer

Cable and Antenna Analyzer Measurement Guide Cable and Antenna Analyzer for Anritsu s RF and Microwave Handheld Instruments BTS Master Anritsu Company 490 Jarvis Drive Morgan Hill, CA 95037-2809 USA http://www.anritsu.com Part Number:

More information

Vector Network Analyzers (VERY) Basics. Tom Powers USPAS SRF Testing Course 19 Jan. 2014

Vector Network Analyzers (VERY) Basics. Tom Powers USPAS SRF Testing Course 19 Jan. 2014 Vector Network Analyzers (VERY) Basics Tom Powers USPAS SRF Testing Course 19 Jan. 2014 S-Parameters A scattering matrix relates the voltage waves incident on the ports of a network to those reflected

More information

Experiment 10 - Power Amplier Measurements Using Vector Network Analyzer

Experiment 10 - Power Amplier Measurements Using Vector Network Analyzer ECE 451 Automated Microwave Measurements Laboratory Experiment 10 - Power Amplier Measurements Using Vector Network Analyzer 1 Introduction This experiment contains two portions: measurement and simulation

More information

MBC DG GUI MBC INTERFACE

MBC DG GUI MBC INTERFACE MBC DG GUI MBC INTERFACE User Manual Version 2.6 Table des matières Interface - Introduction... 3 Interface - Setup... 3 Minimum Computer Requirements... 3 Software installation... 3 Hardware Setup...

More information

Platform Migration 8510 to PNA. Graham Payne Application Engineer Agilent Technologies

Platform Migration 8510 to PNA. Graham Payne Application Engineer Agilent Technologies Platform Migration 8510 to PNA Graham Payne Application Engineer Agilent Technologies We set the standard... 8410 8510 When we introduced the 8510, we changed the way S-parameter measurements were made!

More information

Chapter 2 Passive Load-Pull Systems

Chapter 2 Passive Load-Pull Systems Chapter 2 Passive Load-Pull Systems In general, a passive load-pull system is built around a passive tuner. The tuner is used in combination with peripheral equipment and components, such as a vector network

More information

SDI. Table of Contents

SDI. Table of Contents NMSC-2 User Manual 2 Table of Contents Introduction........ 4 Hardware Installation.... 5 NMSC Power On.. 8 Overview... 9 FFT Measurement Screen.. 10 FFT Setup..... 11 FFT Detector..... 14 FFT Calibration.....

More information

Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 3571

Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 3571 Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 3571 Keywords: automotive keyless entry, MAX2640, LNA, 315MHz, RKE, stability, automotive, keyless entry APPLICATION

More information

MT1000 and MT2000 Mixed-Signal Active Load Pull System (1.0 MHz to 40.0 GHz) And MT2001 System Software

MT1000 and MT2000 Mixed-Signal Active Load Pull System (1.0 MHz to 40.0 GHz) And MT2001 System Software MT1000 and MT0 Mixed-Signal Active Load Pull System (1.0 MHz to 40.0 GHz) And MT1 System Software DATA SHEET / 4T-097 U.S. Patent No. 8,456,175 B2 Several international patents also available // SEPTEMBER

More information

PGT313 Digital Communication Technology. Lab 6. Spectrum Analysis of CDMA Signal

PGT313 Digital Communication Technology. Lab 6. Spectrum Analysis of CDMA Signal PGT313 Digital Communication Technology Lab 6 Spectrum Analysis of CDMA Signal Objectives i) To measure the channel power of a CDMA modulated RF signal using an oscilloscope and the VSA software ii) To

More information

Using Enhanced Load-Pull Measurements for the Design of Base Station Power Amplifiers

Using Enhanced Load-Pull Measurements for the Design of Base Station Power Amplifiers Application Note Using Enhanced Load-Pull Measurements for the Design of Base Station Power Amplifiers Overview Load-pull simulation is a very simple yet powerful concept in which the load or source impedance

More information

The CO2 Sensor Calibration Kit

The CO2 Sensor Calibration Kit The CO2 Sensor Kit For use with all BAPI CO 2 Sensors Instruction Manual CO 2 Kit Product Identification and Overview BAPI s CO 2 Sensor Kit is designed to calibrate and verify the operation of all BAPI

More information

Printed Version of NVNA Help File Supports A Keysight PNA-X Nonlinear Vector Network Analyzer (NVNA)

Printed Version of NVNA Help File Supports A Keysight PNA-X Nonlinear Vector Network Analyzer (NVNA) Printed Version of NVNA Help File Supports A.02.08.11 Keysight PNA-X Nonlinear Vector Network Analyzer (NVNA) Table of Contents NVNA Online Help What's New... 9 NVNA Overview... 11 System Configuration...

More information

Impedance 50 (75 connectors via adapters)

Impedance 50 (75 connectors via adapters) VECTOR NETWORK ANALYZER PLANAR 304/1 DATA SHEET Frequency range: 300 khz to 3.2 GHz Measured parameters: S11, S21, S12, S22 Dynamic range of transmission measurement magnitude: 135 db Measurement time

More information

New Ultra-Fast Noise Parameter System... Opening A New Realm of Possibilities in Noise Characterization

New Ultra-Fast Noise Parameter System... Opening A New Realm of Possibilities in Noise Characterization New Ultra-Fast Noise Parameter System... Opening A New Realm of Possibilities in Noise Characterization David Ballo Application Development Engineer Agilent Technologies Gary Simpson Chief Technology Officer

More information

TSEK03 LAB 1: LNA simulation using Cadence SpectreRF

TSEK03 LAB 1: LNA simulation using Cadence SpectreRF TSEK03 Integrated Radio Frequency Circuits 2018/Ted Johansson 1/26 TSEK03 LAB 1: LNA simulation using Cadence SpectreRF Ver. 2018-09-18 for Cadence 6 & MMSIM 14 Receiver Front-end LO RF Filter 50W LNA

More information

TTR500 Series Vector Network Analyzer Printable Help

TTR500 Series Vector Network Analyzer Printable Help xx ZZZ TTR500 Series Vector Network Analyzer Printable Help *P077125400* 077-1254-00 ZZZ TTR500 Series Vector Network Analyzer Printable Help www.tek.com 077-1254-00 Copyright Tektronix. All rights reserved.

More information

Agilent PNA-X Series Microwave Network Analyzers

Agilent PNA-X Series Microwave Network Analyzers Agilent PNA-X Series Microwave Network Analyzers Reach for unrivaled excellence 1 Choose the leader in network analysis Industry s Most Advanced RF Test Solution Reach for unrivaled excellence The PNA-X

More information

Laboratory Experiment #1 Introduction to Spectral Analysis

Laboratory Experiment #1 Introduction to Spectral Analysis J.B.Francis College of Engineering Mechanical Engineering Department 22-403 Laboratory Experiment #1 Introduction to Spectral Analysis Introduction The quantification of electrical energy can be accomplished

More information

Basic Transceiver tests with the 8800S

Basic Transceiver tests with the 8800S The most important thing we build is trust ADVANCED ELECTRONIC SOLUTIONS AVIATION SERVICES COMMUNICATIONS AND CONNECTIVITY MISSION SYSTEMS Basic Transceiver tests with the 8800S Basic Interconnects Interconnect

More information

Agilent PNA Microwave Network Analyzers

Agilent PNA Microwave Network Analyzers Agilent PNA Microwave Network Analyzers Application Note 1408-15 Banded Millimeter-Wave Measurements with the PNA Table of Contents Introduction...3 System Configuration...4 System Operation...8 Configuring

More information

CAL U100B CAL U100B CDN M016 CAL U100B CDN M016 CAL U100B. Used as M2 CDN. Used as M3 CDN

CAL U100B CAL U100B CDN M016 CAL U100B CDN M016 CAL U100B. Used as M2 CDN. Used as M3 CDN out < +0 out < +0 ch. < +0 ch. < +0 ch. < +7 ch. < +0 ch. < +0 ch. < +7 LL LL nd nd 0 8... Test setup calibration with a CDN The calibration setup always refers to the type of CDN. The CDN user manuals

More information

Abstract: Stringent system specifications impose tough performance requirements on the RF and microwave cables used in aerospace and defense

Abstract: Stringent system specifications impose tough performance requirements on the RF and microwave cables used in aerospace and defense 1 Abstract: Stringent system specifications impose tough performance requirements on the RF and microwave cables used in aerospace and defense communication systems. With typical tools, it can be very

More information

Smart Measurement Solutions. Bode 100. User Manual

Smart Measurement Solutions. Bode 100. User Manual Smart Measurement Solutions Bode 100 User Manual Bode 100 User Manual Bode 100 User Manual Article Number VESD0661 - Manual Version: Bode100.AE.4 OMICRON Lab 2010. All rights reserved. This User Manual

More information

PART III LABORATORY MANUAL. Electromagnetic Waves and Transmission Lines By Dr. Jayanti Venkataraman

PART III LABORATORY MANUAL. Electromagnetic Waves and Transmission Lines By Dr. Jayanti Venkataraman PART III LABORATORY MANUAL 202 Experiment I - Calibration of the Network Analyzer Objective: Calibrate the Network Analyzer for Transmission Procedure: (i) Turn the Power On (ii) Set the Frequency for

More information

IMD and RF Power Measurements with the Keysight PNA-X N5249A

IMD and RF Power Measurements with the Keysight PNA-X N5249A IMD and RF Power Measurements with the Keysight PNA-X N5249A Simone Rusticelli IRA Technical Report N 505/17 Reviewed by: Federico Perini Table of contents IMD and RF Power Measurements with the Keysight

More information

Contents. CALIBRATION PROCEDURE NI PXIe-5668R 14 GHz and 26.5 GHz Signal Analyzer

Contents. CALIBRATION PROCEDURE NI PXIe-5668R 14 GHz and 26.5 GHz Signal Analyzer CALIBRATION PROCEDURE NI PXIe-5668R 14 GHz and 26.5 GHz Signal Analyzer This document contains the verification procedures for the National Instruments PXIe-5668R (NI 5668R) vector signal analyzer (VSA)

More information

Advanced Test Equipment Rentals ATEC (2832)

Advanced Test Equipment Rentals ATEC (2832) Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) Agilent 2-Port and 4-Port PNA-X Network Analyzer N5249A - 10 MHz to 8.5 GHz N5241A - 10 MHz to 13.5 GHz N5242A - 10

More information

Bench LCR Meter Model 891

Bench LCR Meter Model 891 Data Sheet Bench LCR Meter The 891 is a compact, precise, and versatile LCR meter capable of measuring inductors, capacitors, and resistors at DC or from 20 Hz to 300 khz. The instrument s 2U half-rack

More information

Optoelectronic Components Testing with a VNA(Vector Network Analyzer) VNA Roadshow Budapest 17/05/2016

Optoelectronic Components Testing with a VNA(Vector Network Analyzer) VNA Roadshow Budapest 17/05/2016 Optoelectronic Components Testing with a VNA(Vector Network Analyzer) VNA Roadshow Budapest 17/05/2016 Content Introduction Photonics & Optoelectronics components Optical Measurements VNA (Vector Network

More information

Revision Date: 6/6/2013. Quick Start Guide

Revision Date: 6/6/2013. Quick Start Guide Revision Date: 6/6/2013 Quick Start Guide Important Notice Copyright 2013Frontline Test Equipment. All rights reserved. i Important Notice Table of Contents Purpose 1 Minimum Hardware Requirements 1 Internet

More information

Suitable firmware can be found on Anritsu's web site under the instrument library listings.

Suitable firmware can be found on Anritsu's web site under the instrument library listings. General Caution Please use a USB Memory Stick for firmware updates. Suitable firmware can be found on Anritsu's web site under the instrument library listings. If your existing firmware is older than v1.19,

More information

Keysight MOI for USB Type-C Connectors & Cable Assemblies Compliance Tests (Type-C to Legacy Cable Assemblies)

Keysight MOI for USB Type-C Connectors & Cable Assemblies Compliance Tests (Type-C to Legacy Cable Assemblies) Revision 01.01 Jan-21, 2016 Universal Serial Bus Type-C TM Specification Revision 1.1 Keysight Method of Implementation (MOI) for USB Type-C TM Connectors and Cables Assemblies Compliance Tests Using Keysight

More information

print close Chris Bean, AWR Group, NI

print close Chris Bean, AWR Group, NI 1 of 12 3/28/2016 2:42 PM print close Microwaves and RF Chris Bean, AWR Group, NI Mon, 2016-03-28 10:44 The latest version of an EDA software tool works directly with device load-pull data to develop the

More information

PLANAR 804/1. Vector Network Analyzer

PLANAR 804/1. Vector Network Analyzer PLANAR 804/1 Vector Network Analyzer Frequency range: 100 khz 8 GHz Measured parameters: S11, S12, S21, S22 Wide output power range: -60 dbm to +10 dbm >145 db dynamic range (1 Hz IF bandwidth) Time domain

More information

Vector Network Analysis

Vector Network Analysis Portfolio Brochure Vector Network Analysis Product Portfolio Vector Network Analysis VNA Innovation Timeline In 1965, Anritsu filed the patent that defined the first modern Vector Network Analyzer (VNA).

More information