Lecture 5: Simulation of OFDM communication systems

Size: px
Start display at page:

Download "Lecture 5: Simulation of OFDM communication systems"

Transcription

1 Lecture 5: Simulation of OFDM communication systems March 28 April 9 28 Yuping Zhao (Doctor of Science in technology) Professor, Peking University Beijing, China Yuping.zhao@pku.edu.cn

2 Single carrier communcation systems Frequency bandwidth = B Symbol period T=/B B (MHz) If τ_max>t intersymbol interference (ISI) T=/B (μs) Time Equalization 2

3 OFDM communication system B Frequency Δf (khz) Bandwidth is divided into N sub-band Symbol period is N time longer Time T (ms) Δf=B/N Symbol duration T=N/B; T=/ Δf 3

4 4 ( ) = < =., ), (,, 2 exp ), ( otherwise k t g T t t f j k t g k π = = = = T T T p k T dt k t g dt p t g k t g p k dt p t g k t g 2 * *., ), ( ), ( ), (,, ), ( ), ( for the kth sub-carrier Orthogonal condition 4

5 OFDM-BPSK signal:,,-,-, data Real part: cos(2πf k t) Imaginary part: sing(2πf k t) OFDM -5 symbol

6 OFDM spectrum 6

7 F( f ( t)) => F( j2 π f ) F f t e => F j π f Δf j2πδft ( ( ) ) ( 2 ( )) Δf 7

8 Block diagram of OFDM systems Binary data Encoding (BPSK ) X(k) x(n) x (n) s(t) Guard Lowpass IFFT insertion filtering Carrier modulation Binary data decoding (BPSK ) y (k) y(n) y (n) r(t) Lowpass Guard filtering FFT deleting A/D converting Channel Carrier demodulation Channel estimation OFDM symbol synchronisation 8

9 99 Using FFT and IFFT,,...,,,..., 2 exp ) ( = = = N n N k kn N j k g π = = = = =, 2 exp 2 exp, 2 exp 2 exp N n N n p k kn N j pn N j p k N kn N j pn N j π π π π

10 OFDM signal expressions Assume the information data be X(k), then the transmitted signal is s(n) N 2π s( n) = X( k)exp j nk k = N n N The received signals () t = s( t) w( t) r + w(t): AWGN signal.

11 The signal on the kth subcarrier 2 ( ) ( )exp N n Yk rn j kn N N π = =, 2 )exp ( ) ( = = N k kn N j n w N k W N n π 2 ( )exp ( ), N n sn j kn Wk k N N N π = = +

12 About the guard interval Multipath delay profile Time τ_max (5μs,7μs,...) 2

13 OFDM Symbol s(t) Guard interval G > τ_max h ( t ) OFDM Symbol s ( t ) Same signals 3

14 4

15 Problems in OFDM systems Peak to average power ratio (PAPR) Symbol synchronization Channel response estimation Impact of frequency error Impact of clock error 5

16 Peak to average power ratio (PAPR) Pdf function of the OFDM samples 3 Central Limit theorem, N= Figure The peak to average power ratio (PAPR ) is very large! 6

17 The impact of high PAPR to OFDM Normal amplifier response Output Input Linear range 7

18 Truncation of OFDM time domain signals caused by amplifier 3 Central Limit theorem, N=

19 About the OFDM time domain signals It appears as Gaussian distribution The truncation of amplifier may cause distortion of the received signals The incorrect A/D conversion range may cause the distortion of the received signals The special time domain synchronization procedure should be introduced 9

20 Symbol synchronization Why the synchronization is needed? To get the starting point of the FFT window The guard period is used for the symbol synchronization The guard period is not used for the signal demodulation 2

21 Symbol Symbol h ( t ) OFDM Symbol s ( t ) Same signals 2

22 Synchronization using guard interval Delay T conju gate Get the phase Frequen cy error Input time domain signals Integral Get the maximum synch 22

23 L 相关窗 23

24 L 相关窗 24

25 L 相关窗 25

26 L 相关窗 26

27 L 相关窗 27

28 The symbol synchronization of OFDM systems Figure 2 The correlation function for OFDM synchronization (ideal condition) 28

29 The correlation function for OFDM synchronization (SNR = 3dB, Multipath channel, carrier frequency error) 29

30 Frequency domain channel response Figure 3 Note: when transmitted signal on all sub carriers are, you get the frequency domain channel response 3

31 Pilot for OFDM frequency domain signals 3

32 Interpolation results Zero order interpolation 32

33 Interpolation results first order (linear) interpolation 33

34 Signal Constellation with different lowpass filters R=.5; % roll-factor delay=3; % number of side lobes 34

35 Signal Constellation with different lowpass filters R=.2; % roll-factor delay=3; % number of side lobes 35

36 Signal Constellation with different lowpass filters R=.2; % roll-factor delay=5; % number of side lobes 36

37 Exercise 2 Build OFDM system with 8 times upper sampling The channel are three types: Ch-: No AWGN and no multipath delay Ch-2: AWGN channel Ch-3: multipath delay without AWGN (channel parameters can be decided by yourself) 37

38 Exercise 2: Show the following figures and discuss the results Get time domain signal histograms for Ch-, Ch-2, Ch-3, after down sampling, three figures (figure -3, see instruction 2-) Perform time domain symbol synchronizations before or after down sampling for Ch-, Ch-2, Ch-3, three figures, (Figure 4-6, see instruction 2-2) Modulate signal on all sub-carriers, show the frequency domain response for Ch-, Ch-2, Ch-3, in real and imaginary parts separately, three figures (figure 7-9, see instruction 2-3) Assume the pilot signals are given in page 32 and 33, using Ch-3 channel, perform interpolation for channel response estimation. Draw the figure together with Figure 9 see instruction 2-4) The instructions are given in the following pages 38

39 Instruction 2-: for Figure -3 Binary data 6QAM modulat ion Binary data 6QAM demodu lation X(k) x(n) x (n) s(t) Guard insertion Up sampling N-points IFFT y (k) y(n) y (n) r(t) N-points FFT Guard deleting show Histogram Down sampling Lowpass filtering Channel Lowpass filtering A/D converting Suggestions and instruction are shows in the next page 39

40 Instruction 2-: How to make OFDM system OFDM systems can be made simply by adding the yellow color blocks to your first exercise -6QAM communication system (Assume FFT point N=52; length of guard interval = ) Build OFDM transmitter Generate binary data sequence, for example length=n 4 Perform 6QAM modulation Make 6QAM symbol as frames of length N, total frames Perform IFFT to each frame Add guard interval to each frame, then, frame length = N+G Make a vector consist of all frames, length of vector=(n+g) Up sampling and low pass filtering Build OFDM Receiver Make received symbol (after down sampling) as frames of length N+G, total frames Remove guard interval for each frame Perform IFFT to each frame Make a vector consist of all frames, length of vector=n In AWGN channel, the BER performance should be same as the original 6QAM system The histogram is shown in blue block for three channels 4

41 Instruction 2-2: synchronization for OFDM ---After down sampling Binary data 6QAM modulatio n Binary data 6QAM demodulation X(k) x(n) x (n) s(t) Guard insertion Up sampling N-points IFFT y (k) y(n) y (n) r(t) N-points FFT Guard deleting Down sampling OFDM symbol synchronisation Lowpass filtering Channel Lowpass filtering A/D converting The instruction for the synchronization is shown in next page 4

42 Instruction 2-2: synchronization for OFDM ---After down sampling FFT length = N; Guard length = G Delay N samples conju gate x(n) Input time domain signals (After down sampling) Sum up G signals y(n) Get the maximum The peak value -- synchroniz ation point In your report, you need to show y(n) value, where n is time domain index. y(n) can be expressed as (n=,2,3 ) y G i= ( ) ( ) * n = x n + i x ( n + i + N ) 42

43 Instruction 2-2: synchronization for OFDM ---After down sampling FFT length = N; Guard length = G Binary data 6QAM modulation X(k) x(n) x (n) s(t) Guard insertion Up sampling N-points IFFT Lowpass filtering Binary data 6QAM demodulation y (k) y(n) y (n) r(t) N-points FFT Guard deleting Down sampling Channel Lowpass filtering A/D converting OFDM symbol synchronisation 43

44 Instruction 2-2: synchronization for OFDM ---before down sampling FFT length = N; Guard length = G; Up sampling rate = K Delay N K samples conju gate x(n) Input time domain signals (Before down sampling) Sum up G K signals y(n) Get the maximum The peak value -- synchroniz ation point y G K ( ) ( ) * n = x n + i x ( n + i + N K ) i= 44

45 Instruction 2-3: Show Channel response of OFDM systems,,, 6QAM modulation X(k) x(n) x (n) s(t) Guard insertion Up sampling N-points IFFT Lowpass filtering,,, 6QAM demodulation y (k) y(n) y (n) r(t) N-points FFT Show Channel response (real and Imaginary parts), for one frame ONLY Guard deleting Down sampling Channel Lowpass filtering A/D converting For figure 7,8,9 45

46 Instructions 2-4: channel response estimation of OFDM,,,,,,,,,,,, X(k) x(n) x (n) s(t) Guard insertion Up sampling N-points IFFT Lowpass filtering,,, y (k) y(n) y (n) r(t) N-points FFT Interpolation to get channel response (real and imaginary), show one frame ONLY Guard deleting Down sampling Channel Lowpass filtering A/D converting Detail explanation is given in next page 46

47 Instructions 2-4: channel response estimation of OFDM systems Assume you have pilot subcarriers with carrier number,5,9,3, The pilot subcarriers are modulated by signal value and rest of subcarriers are empty You get received signals at those pilot subcarriers (in fact it is frequency domain channel response) You need to get the frequency domain channel response of the empty subcarriers, you can do the interpolation as shown in the next page 47

48 Interpolation results Accurate channel response Solid line: accurate channel response of your figure 9 Dotted line: Linear interpolation results 48

49 49

Receiver Designs for the Radio Channel

Receiver Designs for the Radio Channel Receiver Designs for the Radio Channel COS 463: Wireless Networks Lecture 15 Kyle Jamieson [Parts adapted from C. Sodini, W. Ozan, J. Tan] Today 1. Delay Spread and Frequency-Selective Fading 2. Time-Domain

More information

Lecture 4: Make fixed point simulation using Matlab

Lecture 4: Make fixed point simulation using Matlab Lecture 4: Make fixed point simulation using Matlab March 28 April 19 2008 Yuping Zhao (Doctor of Science in technology) Professor, Peking University Beijing, China Yuping.zhao@pku.edu.cn General explanation

More information

Revision of Wireless Channel

Revision of Wireless Channel Revision of Wireless Channel Quick recap system block diagram CODEC MODEM Wireless Channel Previous three lectures looked into wireless mobile channels To understand mobile communication technologies,

More information

Principles and Experiments of Communications

Principles and Experiments of Communications 1 Principles and Experiments of Communications Weiyao Lin Dept. of Electronic Engineering Shanghai Jiao Tong University Textbook: Chapter 11 Lecture 06: Multicarrier modulation and OFDM Multicarrier Modulation

More information

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system 1 2 TSTE17 System Design, CDIO Introduction telecommunication OFDM principle How to combat ISI How to reduce out of band signaling Practical issue: Group definition Project group sign up list will be put

More information

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont.

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont. TSTE17 System Design, CDIO Lecture 5 1 General project hints 2 Project hints and deadline suggestions Required documents Modulation, cont. Requirement specification Channel coding Design specification

More information

Multi-carrier Modulation and OFDM

Multi-carrier Modulation and OFDM 3/28/2 Multi-carrier Modulation and OFDM Prof. Luiz DaSilva dasilval@tcd.ie +353 896-366 Multi-carrier systems: basic idea Typical mobile radio channel is a fading channel that is flat or frequency selective

More information

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates?

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates? Page 1 Outline 18-452/18-750 Wireless Networks and Applications Lecture 7: Physical Layer OFDM Peter Steenkiste Carnegie Mellon University RF introduction Modulation and multiplexing Channel capacity Antennas

More information

Orthogonal Frequency Division Multiplexing (OFDM)

Orthogonal Frequency Division Multiplexing (OFDM) Orthogonal Frequency Division Multiplexing (OFDM) Presenter: Engr. Dr. Noor M. Khan Professor Department of Electrical Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN

More information

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Amr Shehab Amin 37-20200 Abdelrahman Taha 31-2796 Yahia Mobasher 28-11691 Mohamed Yasser

More information

Performance Analysis of ICI in OFDM systems using Self-Cancellation and Extended Kalman Filtering

Performance Analysis of ICI in OFDM systems using Self-Cancellation and Extended Kalman Filtering Performance Analysis of ICI in OFDM systems using Self-Cancellation and Extended Kalman Filtering C.Satya Haritha, K.Prasad Abstract - Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier

More information

Experimenting with Orthogonal Frequency-Division Multiplexing OFDM Modulation

Experimenting with Orthogonal Frequency-Division Multiplexing OFDM Modulation FUTEBOL Federated Union of Telecommunications Research Facilities for an EU-Brazil Open Laboratory Experimenting with Orthogonal Frequency-Division Multiplexing OFDM Modulation The content of these slides

More information

UNIFIED DIGITAL AUDIO AND DIGITAL VIDEO BROADCASTING SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM

UNIFIED DIGITAL AUDIO AND DIGITAL VIDEO BROADCASTING SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM UNIFIED DIGITAL AUDIO AND DIGITAL VIDEO BROADCASTING SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM 1 Drakshayini M N, 2 Dr. Arun Vikas Singh 1 drakshayini@tjohngroup.com, 2 arunsingh@tjohngroup.com

More information

Lecture 1: Introduction on simulation of communication systems

Lecture 1: Introduction on simulation of communication systems Lecture 1: Introduction on simulation of communication systems March 28 April 19 2008 Yuping Zhao (Doctor of Science in technology) Professor, Peking University Beijing, China Yuping.zhao@pku.edu.cn 1

More information

OFDM Transceiver with Gaussian and Alpha-Stable Noise. Presenter: Umber Noreen Supervisors: Ahcene Bounceur Laurent Clavier

OFDM Transceiver with Gaussian and Alpha-Stable Noise. Presenter: Umber Noreen Supervisors: Ahcene Bounceur Laurent Clavier OFDM Transceiver with Gaussian and Alpha-Stable Noise Presenter: Umber Noreen Supervisors: Ahcene Bounceur Laurent Clavier 1 Contents What is OFDM Why OFDM for Broadband Systems OFDM Transceiver Step by

More information

Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels

Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels Prashanth G S 1 1Department of ECE, JNNCE, Shivamogga ---------------------------------------------------------------------***----------------------------------------------------------------------

More information

Performance Analysis of Ofdm Transceiver using Gmsk Modulation Technique

Performance Analysis of Ofdm Transceiver using Gmsk Modulation Technique Performance Analysis of Ofdm Transceiver using Gmsk Modulation Technique Gunjan Negi Student, ECE Department GRD Institute of Management and Technology Dehradun, India negigunjan10@gmail.com Anuj Saxena

More information

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2)

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2) 192620010 Mobile & Wireless Networking Lecture 2: Wireless Transmission (2/2) [Schiller, Section 2.6 & 2.7] [Reader Part 1: OFDM: An architecture for the fourth generation] Geert Heijenk Outline of Lecture

More information

Lecture 13. Introduction to OFDM

Lecture 13. Introduction to OFDM Lecture 13 Introduction to OFDM Ref: About-OFDM.pdf Orthogonal frequency division multiplexing (OFDM) is well-known to be effective against multipath distortion. It is a multicarrier communication scheme,

More information

EC 551 Telecommunication System Engineering. Mohamed Khedr

EC 551 Telecommunication System Engineering. Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr 1 Mohamed Khedr., 2008 Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week

More information

Part 3. Multiple Access Methods. p. 1 ELEC6040 Mobile Radio Communications, Dept. of E.E.E., HKU

Part 3. Multiple Access Methods. p. 1 ELEC6040 Mobile Radio Communications, Dept. of E.E.E., HKU Part 3. Multiple Access Methods p. 1 ELEC6040 Mobile Radio Communications, Dept. of E.E.E., HKU Review of Multiple Access Methods Aim of multiple access To simultaneously support communications between

More information

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context 4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context Mohamed.Messaoudi 1, Majdi.Benzarti 2, Salem.Hasnaoui 3 Al-Manar University, SYSCOM Laboratory / ENIT, Tunisia 1 messaoudi.jmohamed@gmail.com,

More information

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels Abstract A Orthogonal Frequency Division Multiplexing (OFDM) scheme offers high spectral efficiency and better resistance to

More information

Channel Estimation by 2D-Enhanced DFT Interpolation Supporting High-speed Movement

Channel Estimation by 2D-Enhanced DFT Interpolation Supporting High-speed Movement Channel Estimation by 2D-Enhanced DFT Interpolation Supporting High-speed Movement Channel Estimation DFT Interpolation Special Articles on Multi-dimensional MIMO Transmission Technology The Challenge

More information

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Lecture 3: Wireless Physical Layer: Modulation Techniques Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Modulation We saw a simple example of amplitude modulation in the last lecture Modulation how

More information

A Research Concept on Bit Rate Detection using Carrier offset through Analysis of MC-CDMA SYSTEM

A Research Concept on Bit Rate Detection using Carrier offset through Analysis of MC-CDMA SYSTEM Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IMPACT FACTOR: 5.258 IJCSMC,

More information

CH. 7 Synchronization Techniques for OFDM Systems

CH. 7 Synchronization Techniques for OFDM Systems CH. 7 Synchronization Techniues for OFDM Systems 1 Contents Introduction Sensitivity to Phase Noise Sensitivity to Freuency Offset Sensitivity to Timing Error Synchronization Using the Cyclic Extension

More information

Comparison of ML and SC for ICI reduction in OFDM system

Comparison of ML and SC for ICI reduction in OFDM system Comparison of and for ICI reduction in OFDM system Mohammed hussein khaleel 1, neelesh agrawal 2 1 M.tech Student ECE department, Sam Higginbottom Institute of Agriculture, Technology and Science, Al-Mamon

More information

By : Hamid Aminoroaya

By : Hamid Aminoroaya By : Hamid Aminoroaya There is a substantial need for more frequency bandwidth and the efficient and flexible use of existing bands. Cognitive Radio Multi-carrier modulation OFDM (orthogonal frequency

More information

Waveform Design Choices for Wideband HF

Waveform Design Choices for Wideband HF Waveform Design Choices for Wideband HF J. W. Nieto Harris Corporation RF Communications Division HFIA 2009, #1 Presentation Overview Motivation Waveforms Design Objectives Waveform Choices Summary HFIA

More information

Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary

Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary M.Tech Scholar, ECE Department,SKIT, Jaipur, Abstract Orthogonal Frequency Division

More information

Digital Modulation Schemes

Digital Modulation Schemes Digital Modulation Schemes 1. In binary data transmission DPSK is preferred to PSK because (a) a coherent carrier is not required to be generated at the receiver (b) for a given energy per bit, the probability

More information

Frame Synchronization Symbols for an OFDM System

Frame Synchronization Symbols for an OFDM System Frame Synchronization Symbols for an OFDM System Ali A. Eyadeh Communication Eng. Dept. Hijjawi Faculty for Eng. Technology Yarmouk University, Irbid JORDAN aeyadeh@yu.edu.jo Abstract- In this paper, the

More information

ELT Receiver Architectures and Signal Processing Fall Mandatory homework exercises

ELT Receiver Architectures and Signal Processing Fall Mandatory homework exercises ELT-44006 Receiver Architectures and Signal Processing Fall 2014 1 Mandatory homework exercises - Individual solutions to be returned to Markku Renfors by email or in paper format. - Solutions are expected

More information

Adaptive communications techniques for the underwater acoustic channel

Adaptive communications techniques for the underwater acoustic channel Adaptive communications techniques for the underwater acoustic channel James A. Ritcey Department of Electrical Engineering, Box 352500 University of Washington, Seattle, WA 98195 Tel: (206) 543-4702,

More information

Performance Analysis Of OFDM Using QPSK And 16 QAM

Performance Analysis Of OFDM Using QPSK And 16 QAM Performance Analysis Of OFDM Using QPSK And 16 QAM Virat Bhambhe M.Tech. Student, Electrical and Electronics Engineering Gautam Buddh Technical University (G.B.T.U.), Lucknow (U.P.), India Dr. Ragini Tripathi

More information

MITIGATING CARRIER FREQUENCY OFFSET USING NULL SUBCARRIERS

MITIGATING CARRIER FREQUENCY OFFSET USING NULL SUBCARRIERS International Journal on Intelligent Electronic System, Vol. 8 No.. July 0 6 MITIGATING CARRIER FREQUENCY OFFSET USING NULL SUBCARRIERS Abstract Nisharani S N, Rajadurai C &, Department of ECE, Fatima

More information

A Study of Channel Estimation in OFDM Systems

A Study of Channel Estimation in OFDM Systems A Study of Channel Estimation in OFDM Systems Sinem Coleri, Mustafa Ergen,Anuj Puri, Ahmad Bahai Abstract The channel estimation techniques for OFDM systems based on pilot arrangement are investigated.

More information

A New Data Conjugate ICI Self Cancellation for OFDM System

A New Data Conjugate ICI Self Cancellation for OFDM System A New Data Conjugate ICI Self Cancellation for OFDM System Abhijeet Bishnu Anjana Jain Anurag Shrivastava Department of Electronics and Telecommunication SGSITS Indore-452003 India abhijeet.bishnu87@gmail.com

More information

BER ANALYSIS OF WiMAX IN MULTIPATH FADING CHANNELS

BER ANALYSIS OF WiMAX IN MULTIPATH FADING CHANNELS BER ANALYSIS OF WiMAX IN MULTIPATH FADING CHANNELS Navgeet Singh 1, Amita Soni 2 1 P.G. Scholar, Department of Electronics and Electrical Engineering, PEC University of Technology, Chandigarh, India 2

More information

Presentation Outline. Advisors: Dr. In Soo Ahn Dr. Thomas L. Stewart. Team Members: Luke Vercimak Karl Weyeneth. Karl. Luke

Presentation Outline. Advisors: Dr. In Soo Ahn Dr. Thomas L. Stewart. Team Members: Luke Vercimak Karl Weyeneth. Karl. Luke Bradley University Department of Electrical and Computer Engineering Senior Capstone Project Presentation May 2nd, 2006 Team Members: Luke Vercimak Karl Weyeneth Advisors: Dr. In Soo Ahn Dr. Thomas L.

More information

ANALYSIS OF BER AND SEP OF QPSK SIGNAL FOR MULTIPLE ANENNAS

ANALYSIS OF BER AND SEP OF QPSK SIGNAL FOR MULTIPLE ANENNAS ANALYSIS OF BER AND SEP OF QPSK SIGNAL FOR MULTIPLE ANENNAS Suganya.S 1 1 PG scholar, Department of ECE A.V.C College of Engineering Mannampandhal, India Karthikeyan.T 2 2 Assistant Professor, Department

More information

Performance Analysis of Parallel Acoustic Communication in OFDM-based System

Performance Analysis of Parallel Acoustic Communication in OFDM-based System Performance Analysis of Parallel Acoustic Communication in OFDM-based System Junyeong Bok, Heung-Gyoon Ryu Department of Electronic Engineering, Chungbuk ational University, Korea 36-763 bjy84@nate.com,

More information

OFDM system: Discrete model Spectral efficiency Characteristics. OFDM based multiple access schemes. OFDM sensitivity to synchronization errors

OFDM system: Discrete model Spectral efficiency Characteristics. OFDM based multiple access schemes. OFDM sensitivity to synchronization errors Introduction - Motivation OFDM system: Discrete model Spectral efficiency Characteristics OFDM based multiple access schemes OFDM sensitivity to synchronization errors 4 OFDM system Main idea: to divide

More information

Techniques for Mitigating the Effect of Carrier Frequency Offset in OFDM

Techniques for Mitigating the Effect of Carrier Frequency Offset in OFDM IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 3, Ver. III (May - Jun.2015), PP 31-37 www.iosrjournals.org Techniques for Mitigating

More information

Clipping and Filtering Technique for reducing PAPR In OFDM

Clipping and Filtering Technique for reducing PAPR In OFDM IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719, Volume 2, Issue 9 (September 2012), PP 91-97 Clipping and Filtering Technique for reducing PAPR In OFDM Saleh Albdran 1, Ahmed

More information

ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall Mohamed Essam Khedr. Channel Estimation

ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall Mohamed Essam Khedr. Channel Estimation ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall 2007 Mohamed Essam Khedr Channel Estimation Matlab Assignment # Thursday 4 October 2007 Develop an OFDM system with the

More information

Orthogonal frequency division multiplexing (OFDM)

Orthogonal frequency division multiplexing (OFDM) Orthogonal frequency division multiplexing (OFDM) OFDM was introduced in 1950 but was only completed in 1960 s Originally grew from Multi-Carrier Modulation used in High Frequency military radio. Patent

More information

Optimal Number of Pilots for OFDM Systems

Optimal Number of Pilots for OFDM Systems IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 8, Issue 6 (Nov. - Dec. 2013), PP 25-31 Optimal Number of Pilots for OFDM Systems Onésimo

More information

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document.

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document. Mansor, Z. B., Nix, A. R., & McGeehan, J. P. (2011). PAPR reduction for single carrier FDMA LTE systems using frequency domain spectral shaping. In Proceedings of the 12th Annual Postgraduate Symposium

More information

Optimized BPSK and QAM Techniques for OFDM Systems

Optimized BPSK and QAM Techniques for OFDM Systems I J C T A, 9(6), 2016, pp. 2759-2766 International Science Press ISSN: 0974-5572 Optimized BPSK and QAM Techniques for OFDM Systems Manikandan J.* and M. Manikandan** ABSTRACT A modulation is a process

More information

Analysis of Different Modulation Techniques of Bit Error Rate For Conventional and Wavelet Based OFDM in LTE

Analysis of Different Modulation Techniques of Bit Error Rate For Conventional and Wavelet Based OFDM in LTE Analysis of Different Modulation Techniques of Bit Error Rate For Conventional and Wavelet Based OFDM in LTE S. Venkatesh (PG Scholar) 1 Dr. M. Narsing Yadav Ph.D Prof. HOD 2 R. Raja Kishore M.tech Asst.

More information

ENHANCING BER PERFORMANCE FOR OFDM

ENHANCING BER PERFORMANCE FOR OFDM RESEARCH ARTICLE OPEN ACCESS ENHANCING BER PERFORMANCE FOR OFDM Amol G. Bakane, Prof. Shraddha Mohod Electronics Engineering (Communication), TGPCET Nagpur Electronics & Telecommunication Engineering,TGPCET

More information

Evaluation of BER and PAPR by using Different Modulation Schemes in OFDM System

Evaluation of BER and PAPR by using Different Modulation Schemes in OFDM System International Journal of Computer Networks and Communications Security VOL. 3, NO. 7, JULY 2015, 277 282 Available online at: www.ijcncs.org E-ISSN 2308-9830 (Online) / ISSN 2410-0595 (Print) Evaluation

More information

Performance Analysis Of OFDM Using 4 PSK, 8 PSK And 16 PSK

Performance Analysis Of OFDM Using 4 PSK, 8 PSK And 16 PSK Performance Analysis Of OFDM Using 4 PSK, 8 PSK And 16 PSK Virat Bhambhe M.Tech. Student, Electrical and Electronics Engineering Gautam Buddh Technical University (G.B.T.U.), Lucknow (U.P.), India Dr.

More information

Pilot-Assisted DFT Window Timing/ Frequency Offset Synchronization and Subcarrier Recovery 5.1 Introduction

Pilot-Assisted DFT Window Timing/ Frequency Offset Synchronization and Subcarrier Recovery 5.1 Introduction 5 Pilot-Assisted DFT Window Timing/ Frequency Offset Synchronization and Subcarrier Recovery 5.1 Introduction Synchronization, which is composed of estimation and control, is one of the most important

More information

EE6604 Personal & Mobile Communications. Week 10. Modulation Techniques

EE6604 Personal & Mobile Communications. Week 10. Modulation Techniques EE6604 Personal & Mobile Communications Week 10 Modulation Techniques 1 Modulation for Wireless Systems To achieve high spectral efficiency, power- and bandwidth-efficient modulation techniques are used

More information

IMPROVED CHANNEL ESTIMATION FOR OFDM BASED WLAN SYSTEMS. G.V.Rangaraj M.R.Raghavendra K.Giridhar

IMPROVED CHANNEL ESTIMATION FOR OFDM BASED WLAN SYSTEMS. G.V.Rangaraj M.R.Raghavendra K.Giridhar IMPROVED CHANNEL ESTIMATION FOR OFDM BASED WLAN SYSTEMS GVRangaraj MRRaghavendra KGiridhar Telecommunication and Networking TeNeT) Group Department of Electrical Engineering Indian Institute of Technology

More information

Exercises for chapter 2

Exercises for chapter 2 Exercises for chapter Digital Communications A baseband PAM system uses as receiver filter f(t) a matched filter, f(t) = g( t), having two choices for transmission filter g(t) g a (t) = ( ) { t Π =, t,

More information

SC - Single carrier systems One carrier carries data stream

SC - Single carrier systems One carrier carries data stream Digital modulation SC - Single carrier systems One carrier carries data stream MC - Multi-carrier systems Many carriers are used for data transmission. Data stream is divided into sub-streams and each

More information

Study on OFDM Symbol Timing Synchronization Algorithm

Study on OFDM Symbol Timing Synchronization Algorithm Vol.7, No. (4), pp.43-5 http://dx.doi.org/.457/ijfgcn.4.7..4 Study on OFDM Symbol Timing Synchronization Algorithm Jing Dai and Yanmei Wang* College of Information Science and Engineering, Shenyang Ligong

More information

UNIT I Source Coding Systems

UNIT I Source Coding Systems SIDDHARTH GROUP OF INSTITUTIONS: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: DC (16EC421) Year & Sem: III-B. Tech & II-Sem Course & Branch: B. Tech

More information

Revision of Lecture 3

Revision of Lecture 3 Revision of Lecture 3 Modulator/demodulator Basic operations of modulation and demodulation Complex notations for modulation and demodulation Carrier recovery and timing recovery This lecture: bits map

More information

Wireless Communication

Wireless Communication Wireless Communication Systems @CS.NCTU Lecture 3: 802.11 PHY and OFDM Instructor: Kate Ching-Ju Lin ( 林靖茹 ) Reference 1. OFDM Tutorial online: http://home.iitj.ac.in/~ramana/ofdmtutorial.pdf 2. OFDM Wireless

More information

Channel Estimation in Wireless OFDM Systems

Channel Estimation in Wireless OFDM Systems Estimation in Wireless OFDM Systems Govind Patidar M. Tech. Scholar, Electronics & Communication Engineering Mandsaur Institute of Technology Mandsaur,India gp.patidar10@gmail.com Abstract Orthogonal frequency

More information

Chapter 5 OFDM. Office Hours: BKD Tuesday 14:00-16:00 Thursday 9:30-11:30

Chapter 5 OFDM. Office Hours: BKD Tuesday 14:00-16:00 Thursday 9:30-11:30 Chapter 5 OFDM 1 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30 2 OFDM: Overview Let S 1, S 2,, S N be the information symbol. The discrete baseband OFDM modulated symbol can be expressed

More information

Bit error rate simulation using 16 qam technique in matlab

Bit error rate simulation using 16 qam technique in matlab Volume :2, Issue :5, 59-64 May 2015 www.allsubjectjournal.com e-issn: 2349-4182 p-issn: 2349-5979 Impact Factor: 3.762 Ravi Kant Gupta M.Tech. Scholar, Department of Electronics & Communication, Bhagwant

More information

WAVELET OFDM WAVELET OFDM

WAVELET OFDM WAVELET OFDM EE678 WAVELETS APPLICATION ASSIGNMENT WAVELET OFDM GROUP MEMBERS RISHABH KASLIWAL rishkas@ee.iitb.ac.in 02D07001 NACHIKET KALE nachiket@ee.iitb.ac.in 02D07002 PIYUSH NAHAR nahar@ee.iitb.ac.in 02D07007

More information

June 09, 2014 Document Version: 1.1.0

June 09, 2014 Document Version: 1.1.0 DVB-T2 Analysis Toolkit Data Sheet An ideal solution for SFN network planning, optimization, maintenance and Broadcast Equipment Testing June 09, 2014 Document Version: 1.1.0 Contents 1. Overview... 3

More information

Performance Analysis of Concatenated RS-CC Codes for WiMax System using QPSK

Performance Analysis of Concatenated RS-CC Codes for WiMax System using QPSK Performance Analysis of Concatenated RS-CC Codes for WiMax System using QPSK Department of Electronics Technology, GND University Amritsar, Punjab, India Abstract-In this paper we present a practical RS-CC

More information

CHAPTER 3 ADAPTIVE MODULATION TECHNIQUE WITH CFO CORRECTION FOR OFDM SYSTEMS

CHAPTER 3 ADAPTIVE MODULATION TECHNIQUE WITH CFO CORRECTION FOR OFDM SYSTEMS 44 CHAPTER 3 ADAPTIVE MODULATION TECHNIQUE WITH CFO CORRECTION FOR OFDM SYSTEMS 3.1 INTRODUCTION A unique feature of the OFDM communication scheme is that, due to the IFFT at the transmitter and the FFT

More information

Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model

Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model M. Prem Anand 1 Rudrashish Roy 2 1 Assistant Professor 2 M.E Student 1,2 Department of Electronics & Communication

More information

Fourier Transform Time Interleaving in OFDM Modulation

Fourier Transform Time Interleaving in OFDM Modulation 2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications Fourier Transform Time Interleaving in OFDM Modulation Guido Stolfi and Luiz A. Baccalá Escola Politécnica - University

More information

Selected answers * Problem set 6

Selected answers * Problem set 6 Selected answers * Problem set 6 Wireless Communications, 2nd Ed 243/212 2 (the second one) GSM channel correlation across a burst A time slot in GSM has a length of 15625 bit-times (577 ) Of these, 825

More information

Fund. of Digital Communications Ch. 3: Digital Modulation

Fund. of Digital Communications Ch. 3: Digital Modulation Fund. of Digital Communications Ch. 3: Digital Modulation Klaus Witrisal witrisal@tugraz.at Signal Processing and Speech Communication Laboratory www.spsc.tugraz.at Graz University of Technology November

More information

Major Leaps in Evolution of IEEE WLAN Technologies

Major Leaps in Evolution of IEEE WLAN Technologies Major Leaps in Evolution of IEEE 802.11 WLAN Technologies Thomas A. KNEIDEL Rohde & Schwarz Product Management Mobile Radio Tester WLAN Mayor Player in Wireless Communications Wearables Smart Homes Smart

More information

Single Carrier Ofdm Immune to Intercarrier Interference

Single Carrier Ofdm Immune to Intercarrier Interference International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 3 (March 2014), PP.42-47 Single Carrier Ofdm Immune to Intercarrier Interference

More information

REDUCING PAPR OF OFDM BASED WIRELESS SYSTEMS USING COMPANDING WITH CONVOLUTIONAL CODES

REDUCING PAPR OF OFDM BASED WIRELESS SYSTEMS USING COMPANDING WITH CONVOLUTIONAL CODES REDUCING PAPR OF OFDM BASED WIRELESS SYSTEMS USING COMPANDING WITH CONVOLUTIONAL CODES Pawan Sharma 1 and Seema Verma 2 1 Department of Electronics and Communication Engineering, Bhagwan Parshuram Institute

More information

Bit Loading and Peak Average Power Reduction Techniques for Adaptive Orthogonal Frequency Division Multiplexing Systems

Bit Loading and Peak Average Power Reduction Techniques for Adaptive Orthogonal Frequency Division Multiplexing Systems University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2004 Bit Loading and Peak Average Power Reduction Techniques for Adaptive Orthogonal

More information

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE Overview 18-759: Wireless Networks Lecture 9: OFDM, WiMAX, LTE Dina Papagiannaki & Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2009 http://www.cs.cmu.edu/~prs/wireless09/

More information

Broadband OFDM-FDMA System for the Uplink of a Wireless LAN

Broadband OFDM-FDMA System for the Uplink of a Wireless LAN Broadband OFDM-FDMA System for the Uplink of a Wireless LAN Dirk Galda and Hermann Rohling Department of Telecommunications,TU of Hamburg-Harburg Eißendorfer Straße 40, 21073 Hamburg, Germany Elena Costa,

More information

TCM-coded OFDM assisted by ANN in Wireless Channels

TCM-coded OFDM assisted by ANN in Wireless Channels 1 Aradhana Misra & 2 Kandarpa Kumar Sarma Dept. of Electronics and Communication Technology Gauhati University Guwahati-781014. Assam, India Email: aradhana66@yahoo.co.in, kandarpaks@gmail.com Abstract

More information

Optical Wireless Communication System with PAPR Reduction

Optical Wireless Communication System with PAPR Reduction IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 78-834,p- ISSN: 78-8735. PP 01-05 www.iosrjournals.org Optical Wireless Communication System with PAPR Reduction Minu Theresa

More information

Chapter 2: Signal Representation

Chapter 2: Signal Representation Chapter 2: Signal Representation Aveek Dutta Assistant Professor Department of Electrical and Computer Engineering University at Albany Spring 2018 Images and equations adopted from: Digital Communications

More information

BER Analysis of OFDM Communication Systems with Intercarrier Interference

BER Analysis of OFDM Communication Systems with Intercarrier Interference International Conference on Communication Technology ICCT'98 October 22-24, 1998 Beijing, China BER Analysis of OFDM Communication Systems with Intercarrier Interference Yuping Zhao") and Sven-Gustav Haggman(2)

More information

2.

2. PERFORMANCE ANALYSIS OF STBC-MIMO OFDM SYSTEM WITH DWT & FFT Shubhangi R Chaudhary 1,Kiran Rohidas Jadhav 2. Department of Electronics and Telecommunication Cummins college of Engineering for Women Pune,

More information

Principles of Multicarrier Modulation and OFDM a

Principles of Multicarrier Modulation and OFDM a Principles of Multicarrier Modulation and OFDM a Lie-Liang Yang Communications Research Group Faculty of Physical and Applied Sciences, University of Southampton, SO17 1BJ, UK. Tel: +44 23 8059 3364, Fax:

More information

Chapter 0 Outline. NCCU Wireless Comm. Lab

Chapter 0 Outline. NCCU Wireless Comm. Lab Chapter 0 Outline Chapter 1 1 Introduction to Orthogonal Frequency Division Multiplexing (OFDM) Technique 1.1 The History of OFDM 1.2 OFDM and Multicarrier Transmission 1.3 The Applications of OFDM 2 Chapter

More information

NAVAL POSTGRADUATE SCHOOL THESIS

NAVAL POSTGRADUATE SCHOOL THESIS NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SIGNAL DETECTION AND FRAME SYNCHRONIZATION OF MULTIPLE WIRELESS NETWORKING WAVEFORMS by Keith C. Howland September 2007 Thesis Advisor: Co-Advisor:

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June ISSN International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014 901 Improvement the performance of IEEE 802.16d (WiMAX) Baseband system with Channel Estimation, Equalization and

More information

Performance Evaluation of IEEE STD d Transceiver

Performance Evaluation of IEEE STD d Transceiver IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735. Volume 6, Issue 2 (May. - Jun. 2013), PP 21-26 Performance Evaluation of IEEE STD 802.16d Transceiver

More information

Comparative Study of OFDM & MC-CDMA in WiMAX System

Comparative Study of OFDM & MC-CDMA in WiMAX System IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 1, Ver. IV (Jan. 2014), PP 64-68 Comparative Study of OFDM & MC-CDMA in WiMAX

More information

Chapter 2 Overview - 1 -

Chapter 2 Overview - 1 - Chapter 2 Overview Part 1 (last week) Digital Transmission System Frequencies, Spectrum Allocation Radio Propagation and Radio Channels Part 2 (today) Modulation, Coding, Error Correction Part 3 (next

More information

Peak-to-Average Power Ratio (PAPR)

Peak-to-Average Power Ratio (PAPR) Peak-to-Average Power Ratio (PAPR) Wireless Information Transmission System Lab Institute of Communications Engineering National Sun Yat-sen University 2011/07/30 王森弘 Multi-carrier systems The complex

More information

CAMPARATIVE BIT ERROR RATE PERFORMANCE ANALYSIS OF 4G OFDM SYSTEM USING DIFFERENT MODULATION TECHNIQUE

CAMPARATIVE BIT ERROR RATE PERFORMANCE ANALYSIS OF 4G OFDM SYSTEM USING DIFFERENT MODULATION TECHNIQUE CAMPARATIVE BIT ERROR RATE PERFORMANCE ANALYSIS OF 4G OFDM SYSTEM USING DIFFERENT MODULATION TECHNIQUE 1 KANCHAN VIJAY PATIL, 2 R D PATANE 1 Lecturer, Electronics and Telecommunication, ARMIET, Maharashtra,

More information

Performance analysis of OFDM with QPSK using AWGN and Rayleigh Fading Channel

Performance analysis of OFDM with QPSK using AWGN and Rayleigh Fading Channel Performance analysis of OFDM with QPSK using AWGN and Rayleigh Fading Channel 1 V.R.Prakash* (A.P) Department of ECE Hindustan university Chennai 2 P.Kumaraguru**(A.P) Department of ECE Hindustan university

More information

Performance Analysis of Cognitive Radio based WRAN over Rayleigh Fading Channel with Alamouti-STBC 2X1, 2X2&2X4 Multiplexing

Performance Analysis of Cognitive Radio based WRAN over Rayleigh Fading Channel with Alamouti-STBC 2X1, 2X2&2X4 Multiplexing Performance Analysis of Cognitive Radio based WRAN over Rayleigh Fading Channel with Alamouti-STBC 2X1 2X2&2X4 Multiplexing Rahul Koshti Assistant Professor Narsee Monjee Institute of Management Studies

More information

Comparison of BER for Various Digital Modulation Schemes in OFDM System

Comparison of BER for Various Digital Modulation Schemes in OFDM System ISSN: 2278 909X Comparison of BER for Various Digital Modulation Schemes in OFDM System Jaipreet Kaur, Hardeep Kaur, Manjit Sandhu Abstract In this paper, an OFDM system model is developed for various

More information

FFT Factorization Technique for OFDM System

FFT Factorization Technique for OFDM System International Journal of Computer Applications (975 8887) FFT Factorization Technique for OFDM System Tanvi Chawla Haryana College of Technology & Management, Kaithal, Haryana, India ABSTRACT For OFDM

More information

An Equalization Technique for Orthogonal Frequency-Division Multiplexing Systems in Time-Variant Multipath Channels

An Equalization Technique for Orthogonal Frequency-Division Multiplexing Systems in Time-Variant Multipath Channels IEEE TRANSACTIONS ON COMMUNICATIONS, VOL 47, NO 1, JANUARY 1999 27 An Equalization Technique for Orthogonal Frequency-Division Multiplexing Systems in Time-Variant Multipath Channels Won Gi Jeon, Student

More information