Homework Analog Discovery: Oscilloscope Series Equivalent Resistance/Ohm s Law Breadboard: Series Circuit Analog Discovery: Waveforms Exporting to

Size: px
Start display at page:

Download "Homework Analog Discovery: Oscilloscope Series Equivalent Resistance/Ohm s Law Breadboard: Series Circuit Analog Discovery: Waveforms Exporting to"

Transcription

1 Homework Analog Discovery: Oscilloscope Series Equivalent Resistance/Ohm s Law Breadboard: Series Circuit Analog Discovery: Waveforms Exporting to MATLAB

2 Analog Discovery and Waveforms Make sure have waveforms on computer Take out Analog Discovery

3 Syllabus Signature Form: 25 pts PLEASE TURN IN SYLLABUS ACKNOWLEDGEMENT FORM Acknowledgement: I acknowledge that I have received the syllabus for EE 1305 (28168 or 21332) and EE1105 (26608, 23997, 28576, or 22456) for the Spring 2018 semester, and that I understand all attendance, competency, and assignment requirements. Print Name Student Signature Date

4 Turn in Homework Lab Supplies Complete P3 and P4 from Homework Problem List

5 COMMUNICATE WITH TA s AND INSTRUCTOR COMMUNICATE WITH TEAM MEMBERS Problem Solving Methodology HOW DO WE SOLVE COMPLEX ENGINEERING PROBLEMS? UNDERSTAND PROBLEM: WRITE PROBLEM STATEMENT/PROCESS GATHER INFORMATION TO SOLVE PROBLEM: DATA/UNIT CONV DEVELOP/IDENTIFY STRAGEDY TO SOLVE PROBLEM: UNIT ANALYSIS SET UP SOLUTION AND SOLVE PROBLEM: ATTEMPT SOLUTION CHECK SOLUTION: VARIOUS METHODS, DOES IT MAKE SENSE

6 Unit Analysis Source:

7 P3 P3 - An electron has charge, q, equal to 1.6 x coulombs (C), and is experiencing an electric field equal to 5 x V/cm. (a) Calculate the force on the charge using E = F/q, where E is the electric field and F is the force on the charge. (b) Calculate the work (in units of ev) done on the charge if the charge is accelerated a distance of 1 cm. Use the equation W = F x d, where W is the work done on the charge, d is the distance the charge is moved, and F is the force on the charge. Use the following unit conversions: 1.6 x J = 1 ev, 1 V = 1 J/C and 1 J = 1 N m. Show all units and unit conversions for each of your calculations.

8 P4 P4 - The current flowing through three resistors in series (R 1, R 2 and R 3 ) is 7.69 ma. Since the three resistors are in series, the current flowing through each resistor is the same. (a) Use Ohm s Law to determine the voltage drop across each resistor. (b) Add the voltage drop across each resistor. Show all units and unit conversions for each of your calculations.

9 SUPPLY TABLE Teams Monday 1:30 pm Lab (26608) Dhari Diego Camacho Bader Oscar Marco Daniel Julian Nahum Waldo Cesar Karina Jaime Miguel Diego Ramirez Audrey Vicenttinni Luis TEAM 1 TEAM 2 TEAM 3 TEAM 4 INSTRUCTOR: QUINONES TAs: Manuel,* Roberto, Hector TEAM 5 *LAB REPORT GRADER FOR THIS LAB

10 SUPPLY TABLE Teams Tuesday 10:30 am Lab (23997) Oscar Jose Isaiah Angel Kevin Sergio Jordan Sebastian Robby Mater Juan Jaime Irene Abigail Ortega Adrian (Javier) Mario Diego Abigail Bueno Jorge Michael TEAM 1 TEAM 2 TEAM 3 TEAM 4 INSTRUCTOR: QUINONES TAs: Alejandro*, Zenait, Hector TEAM 5 *LAB REPORT GRADER FOR THIS LAB

11 SUPPLY TABLE Teams Wed 10:30 am Lab (28576) Jarrah Diego Kevin Alan Luis Andres Mena Adrian Arturo Andres Meza Chris Adam Laura Rogelio Ahmed Dante Ahmad Eduardo TEAM 1 TEAM 2 TEAM 3 TEAM 4 INSTRUCTOR: QUINONES TAs: Zenait*, Daniel TEAM 5 *LAB REPORT GRADER FOR THIS LAB

12 SUPPLY TABLE Teams Thursday 10:30 am Lab (22455) Kevin Ahmad Andre Kobinna Salvador Moses Mario Meshal Jonathan Xavier Ricardo Brittany Glenn Ceasar Daniel Mohammad Judith Luis Rafed TEAM 1 TEAM 2 TEAM 3 TEAM 4 INSTRUCTOR: QUINONES TAs: Hector*, Zenait, Alejandro TEAM 5 *LAB REPORT GRADER FOR THIS LAB

13 Teams Thursday 1:30 pm Lab (22456) Jacob Arturo Majed Richard Alberto Sosa Andres Luis Alberto Delgado Angel Elihu Derek Ray Nathan Abram Saleh Fares Zachary Bader Saud Carlos Ninghao Fatemah Aritzy TEAM 1 TEAM 2 TEAM 4 TEAM 3 TEAM 5 Orion INSTRUCTOR: NAJERA TAs: Roberto*, Daniel TEAM 6 *LAB REPORT GRADER FOR THIS LAB

14 Today Analog Discovery: Oscilloscope - begin to learn how to use Analog Discovery Breadboards: Series learn how to place resistors in series on breadboard and make measurements. Analog Discovery: Wave Generator - set up an AC signal MATLAB: Exporting Data - learn how to export data from the Analog Discovery

15 Analog Discovery TAKE OUT YOUR ANALOG DISCOVERY (AD) AND CONNECT THE WIRES TO THE HARDWARE PIECE. Analog Discovery is a multi-measurement kit that allows you to transform your computer into a circuit measurement lab. You will later learn that the Analog Discovery is composed of many different devices that allow you to test a wide variety of circuits. CONNECT THE AD TO YOUR COMPUTER AND OPEN WAVEFORMS

16 Waveforms Software LOOK AT THE NUMBER OF TOOLS IN THE AD OPEN THE OSCILLOSCOPE Waveforms is the software necessary to display all the measurements into your computer. Waveforms will allow you to create workspaces to measure and test different circuit scenarios. Every function of the Analog Discovery device will be controlled through Waveforms. OPEN WAVEFORMS OPEN THE POWER SUPPLY

17 Analog Discovery: Tools SCOPE WAVEGENERATOR POWER SUPPLY PATTERNS NETWORK ANALYZER

18 Analog Discovery: Channels CHANNELS: Output channels 1 Orange (+/-) 2 Blue (+/-) Ground - Black Waveforms Generator - W1/W2 Yellow Power Supply - V+ Red (up to 5V) Wires 0 to 15 Digital wires

19 Analog Discovery: Oscilloscope Operation Select Instrument Oscilloscope Turn on Screen settings Time Scale (1 min/div to 10 ns/div) Voltage Scale (5 V/div to 100 µv/div) Offset (from scale or manual) Channels 1 and 2 (on or off) Measurements Maximum Average

20 Image: Science Buddies Staff, Squishy Circuits Project 2: Add Even More Lights, [Online document], 11/21/15, [2/15/16], Available: Series Circuit Series Circuits.only one path, same current through all resistors voltage drop across each resistor equals voltage rise across source. Series Equivalent Resistance: V Req = R 1 + R 2 + R 3 + Rn

21 Series Circuit: Equivalent Circuit Series Equivalent Resistance: Req = R 1 + R 2 + R 3 + Rn V EQUIVALENT CIRCUIT I = V R eq CURRENT THROUGH ALL RESISTORS IS THE SAME AND EQUAL TO THE CIRCUIT CURRENT OF THE EQUIVALENT CIRCUIT

22 DISCUSS WITH TEAM, TAs OR INSTRUCTOR HOW YOU ARE GOING TO SOLVE THE PROBLEM BEFORE BEGINNING. Series Circuit/Equivalent Resistance Teamwork Exercise EE 1305 Name Group #/Name Date Calculate the equivalent resistance and the circuit current for the circuit below if R1 is 100, R2 is 500, and R3 is 1 k, and the power supply is 5 V. Then calculate the voltage drop across every resistor. Equations/Unit Conv Figures/Circuits Req = R 1 + R 2 + R 3 + V = I R = I Req 10 3 = 1 k V = A 5 V Calculations Solution

23 Breadboard: Series Circuit BUILD A SERIES CIRCUIT ON YOUR BREADBOARD USING YOUR 5 V POWER SUPPLY FROM YOUR ANALOG DISCOVERY USING (A) 100, 500 AND 1 k RESISTORS IN SERIES (B) MEASURE THE VOLTAGE DROP ACROSS EACH RESISTOR. BY MOVING THE GROUND V Series Equivalent Resistance: Req = R 1 + R 2 + R 3 + Rn EQUIVALENT CIRCUIT I = V R eq CURRENT THROUGH ALL RESISTORS IS THE SAME AND EQUAL TO THE CIRCUIT CURRENT OF THE EQUIVALENT CIRCUIT

24 Analog Discovery: Wave Generator and Export Oscilloscope Data In this exercise you will be: Generate two waves Extract the window data Import the data into MATLAB, and Plot the data using MATLAB

25 Analog Discovery: Wave Generator and Export Oscilloscope Data Connect your Analog Discovery to your laptop and open Waveforms. STEP 1: Open Waveforms Select Waveforms Run Waveforms STEP 2: Connect Wires using Header Pins W1 to Ch1+ (wave from W1 will be seen by Ch1+) to Ch1- (measurement made by Ch1 will be relative to Grd) W2 to Ch2+ (wave from W2 will be seen by Ch2+) to Ch2- (measurement made by Ch2 will be relative to Grd)

26 Analog Discovery: Wave Generator and Export Oscilloscope Data STEP 3: Open Oscilloscope Select Scope Run Scope Turn on Ch1 and Ch2 measurement wires (located on extreme right side of screen)

27 Analog Discovery: Wave Generator and Export Oscilloscope Data STEP 4: Set up waves parameters for W1 andw2 Go back to Wavegen Window For W1, Select a frequency of 1 khz and an amplitude of 20 mv. To open W2, Select Channels from the menu and check 2. For W2, select a frequency of 500 Hz and an amplitude of 50 mv. Hit Run for Ch2

28 Analog Discovery: Wave Generator and Export Oscilloscope Data STEP 5: View waves W1 and W2 in the Oscilloscope Select 50 mv/div for the Range for both Ch1 and Ch2 Count the number of cycles visible on the screen for W1 Change the time settings so that there are only 5 cycles visible on the screen for W1 (channel 1). When you click on the down arrow next to Base: you can move up and down the selections using your arrow key on your keyboard. STEP 6: Ask TAs or Instructor to check your work (this is something you want to do while progressing through each Module in the lab).

29 Analog Discovery: Wave Generator and Export Oscilloscope Data STEP 7: Export Data using commands on next slide. For the filename, use your initials followed by W1W2. Ex. SQW1W2

30 Analog Discovery: Saving Window Data Click on File and then Export on the upper left side of screen Choose Main Window under Source Uncheck the Comments and Header boxes Choose a folder to save it in and save using the filename specified in the previous slide. Ex. SQW1W2. Save the file as a.csv file. You will use this file name in the MATLAB code to plot your data in MATLAB.

31 Analog Discovery: Wave Generator and Export Oscilloscope Data STEP 8: Import Data into MATLAB using commands on next slide

32 Go to MATLAB MATLAB: Importing Window Data Select File, then Open and select your file for All files (*,*) Change the imported data to Numeric Matrix this ensured that you import both columns of data, the time and the voltage. Click on Import Selection In MATLAB Command Window, type whos This will bring up the data you imported. If you are expecting to import voltage as a function of time, you will see the following: SQw1W2 8192x3 which means you have 8192 data points (time, Ch1 voltage, Ch2 voltage)

33 MAKE SURE YOUR PLOT HAS 2 CURVES/LINES, A RED ONE AND A BLUE ONE. HAS A FONT THAT IS LARGE ENOUGH TO SEE WHEN YOU COPY IT INTO A WORD DOC. HAS AN X AND Y LABEL WITH UNITS SHOWS CONSISTENCY IN THE TEXT FORMAT FOR THE X- AND Y- AXES. Analog Discovery: Wave Generator and Export Oscilloscope Data STEP 9: Plot your data using red for Ch1 and blue for Ch2. >> plot(sqw1w2(:,1),sqw1w2(:,2),'r') >> hold on >> plot(sqw1w2(:,1),sqw1w2(:,3),'b') Step 10: Add x and y labels Step 11: Label (using text and arrows) the red line as W1: 1kHz_20mV and the blue line as W2: 500Hz_50mV. Step 12: Ask your TA to check your plot for accuracy and format.

34 Analog Discovery: Wave Generator and Export Oscilloscope Data

35 MATLAB: Graphing Line Codes MATLAB Command y m c r g b w k Line Color/Style Yellow Magenta Cyan Red Green Blue White Black * Stars. Dots -- Dashed - Solid

36 Homework SUCCESS POINTS: FOCUS ON PROBLEM SOLVING STRATEGIES AND CONCEPTS WHAT ARE YOU LEARNING? P6 and 1 page result (limit to ½ page in Microsoft word) One short paragraph describing figure/data to include (1) the figure number Figure 1, (2) what the graph is voltage vs time, and (3) what signals represent waveforms settings for W1 and W2. Figure Figure 1: Description of figure

37 LECTURE Quiz 1: Unit conversions Week of 1/29 (2/1 - Najera), 2/2 - Quinones) Series and Parallel Equivalent Circuits Application examples Please bring laptops to all lectures and labs.

38 What s Next in Week 4? Will introduce LAB Shorthand notation: series and parallel Voltage divider Breadboard: Parallel circuits/voltage Divider Peer review of one page results (from lab) LECTURE Voltage, Current, Resistance and Power Module 1 Lab Report template, IEEE citation Format & Report Rubric Please bring laptops to all lectures and labs.

39 Questions?

Homework Course Vocabulary Unit Conversion Exercises Series and Parallel Circuits Observation Exercise Homework What s next?

Homework Course Vocabulary Unit Conversion Exercises Series and Parallel Circuits Observation Exercise Homework What s next? Homework Course Vocabulary Unit Conversion Exercises Series and Parallel Circuits Observation Exercise Homework What s next? Syllabus Signature Form: 25 pts TURN IN FORM AND/OR Acknowledgement: I acknowledge

More information

Introductions Teams Course Website Labs and Supplies Problem Solving Format Units/Variables Homework Observation Exercise What s next

Introductions Teams Course Website Labs and Supplies Problem Solving Format Units/Variables Homework Observation Exercise What s next Introductions Teams Course Website Labs and Supplies Problem Solving Format Units/Variables Homework Observation Exercise What s next TA Introductions Maryamsadat (Maryam) Shokrekhodaei Graduate Student

More information

Lab Week 4. Analog Discovery introduction MATLAB Circuit building and Oscilloscope Measurements Ethics

Lab Week 4. Analog Discovery introduction MATLAB Circuit building and Oscilloscope Measurements Ethics Lab Week 4 Analog Discovery introduction MATLAB Circuit building and Oscilloscope Measurements Ethics Digilent supplies You should have received an Analog Discovery from the Digilent order that you placed.

More information

Lecture Week 4. Quiz 2 Ohm s Law Series Circuits Parallel Circuits Equivalent Circuits Workshop

Lecture Week 4. Quiz 2 Ohm s Law Series Circuits Parallel Circuits Equivalent Circuits Workshop Lecture Week 4 Quiz 2 Ohm s Law Series Circuits Parallel Circuits Equivalent Circuits Workshop Quiz 2 - Ohm s Law Please clear desks and turn off phones and put them in back packs You need pencil, straight

More information

Course Description Introductions Course Website Labs and Supplies Course Terminology Module Demo Problem Solving Format Units/Variables MATLAB What s

Course Description Introductions Course Website Labs and Supplies Course Terminology Module Demo Problem Solving Format Units/Variables MATLAB What s Course Description Introductions Course Website Labs and Supplies Course Terminology Module Demo Problem Solving Format Units/Variables MATLAB What s next Course Description: Learning Outcomes STUDENTS

More information

Lecture Week 4. Homework Voltage Divider Equivalent Circuit Observation Exercise

Lecture Week 4. Homework Voltage Divider Equivalent Circuit Observation Exercise Lecture Week 4 Homework Voltage Divider Equivalent Circuit Observation Exercise Homework: P6 Prove that the equation relating change in potential energy to voltage is dimensionally consistent, using the

More information

EE1305/EE1105 Homework Problems Packet

EE1305/EE1105 Homework Problems Packet EE1305/EE1105 Homework Problems Packet P1 - The gate length of a tri-gate transistor is 22 nm. How many gate lengths fit across a human hair with a diameter of 100 μm? Show all units and unit conversions

More information

Lecture Week 5. Voltage Divider Method Equivalent Circuits Review Lab Report Template and Rubric Workshop

Lecture Week 5. Voltage Divider Method Equivalent Circuits Review Lab Report Template and Rubric Workshop Lecture Week 5 Voltage Divider Method Equivalent Circuits Review Lab Report Template and Rubric Workshop Voltage Divider Method The voltage divider is a method/tool that can be used to: Design voltage

More information

Lab 13 AC Circuit Measurements

Lab 13 AC Circuit Measurements Lab 13 AC Circuit Measurements Objectives concepts 1. what is impedance, really? 2. function generator and oscilloscope 3. RMS vs magnitude vs Peak-to-Peak voltage 4. phase between sinusoids skills 1.

More information

Lecture Week 5. Quiz #2 Ohm s Law Homework Power Review Shorthand Notation Active Components Ideal Op-amps

Lecture Week 5. Quiz #2 Ohm s Law Homework Power Review Shorthand Notation Active Components Ideal Op-amps Lecture Week 5 Quiz #2 Ohm s Law Homework Power Review Shorthand Notation Active Components Ideal Op-amps Quiz 2 Ohm s Law (20 pts.) Please clear desks and turn off phones and put them in back packs You

More information

BME 3512 Bioelectronics Laboratory Two - Passive Filters

BME 3512 Bioelectronics Laboratory Two - Passive Filters BME 35 Bioelectronics Laboratory Two - Passive Filters Learning Objectives: Understand the basic principles of passive filters. Laboratory Equipment: Agilent Oscilloscope Model 546A Agilent Function Generator

More information

Lab 2: Diode Characteristics and Diode Circuits

Lab 2: Diode Characteristics and Diode Circuits 1. Learning Outcomes Lab 2: Diode Characteristics and Diode Circuits At the end of this lab, the students should be able to compare the experimental data to the theoretical curve of the diodes. The students

More information

Real Analog - Circuits 1 Chapter 1: Lab Projects

Real Analog - Circuits 1 Chapter 1: Lab Projects Real Analog - Circuits 1 Chapter 1: Lab Projects 1.2.2: Dependent Sources and MOSFETs Overview: In this lab assignment, a qualitative discussion of dependent sources is presented in the context of MOSFETs

More information

Homework KCL/KVL Review Bode Plots Active Filters

Homework KCL/KVL Review Bode Plots Active Filters Homework KCL/KVL Review Bode Plots Active Filters Homeworkdue 3/6 (Najera), due 3/9 (Quinones) SUCCESS POINTS: REPORT WRITING CHECK TO MAKE SURE EVERYTHING YOU SAY REFER DIRECTLY TO YOUR TABLES AND GRAPHS?

More information

1. Hand Calculations (in a manner suitable for submission) For the circuit in Fig. 1 with f = 7.2 khz and a source vin () t 1.

1. Hand Calculations (in a manner suitable for submission) For the circuit in Fig. 1 with f = 7.2 khz and a source vin () t 1. Objectives The purpose of this laboratory project is to introduce to equipment, measurement techniques, and simulations commonly used in AC circuit analysis. In this laboratory session, each student will:

More information

Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits

Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits 1. Learning Outcomes In this lab, the students evaluate characteristics of the non-ideal operational amplifiers. Students use a simulation tool

More information

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17 LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

More information

Week 4: Experiment 24. Using Nodal or Mesh Analysis to Solve AC Circuits with an addition of Equivalent Impedance

Week 4: Experiment 24. Using Nodal or Mesh Analysis to Solve AC Circuits with an addition of Equivalent Impedance Week 4: Experiment 24 Using Nodal or Mesh Analysis to Solve AC Circuits with an addition of Equivalent Impedance Lab Lectures You have two weeks to complete Experiment 27: Complex Power 2/27/2012 (Pre-Lab

More information

EE 3302 LAB 1 EQIUPMENT ORIENTATION

EE 3302 LAB 1 EQIUPMENT ORIENTATION EE 3302 LAB 1 EQIUPMENT ORIENTATION Pre Lab: Calculate the theoretical gain of the 4 th order Butterworth filter (using the formula provided. Record your answers in Table 1 before you come to class. Introduction:

More information

Figure E2-1 The complete circuit showing the oscilloscope and Bode plotter.

Figure E2-1 The complete circuit showing the oscilloscope and Bode plotter. Example 2 An RC network using the oscilloscope and Bode plotter In this example we use the oscilloscope and the Bode plotter in an RC circuit that has an AC source. The circuit which we will construct

More information

Integrators, differentiators, and simple filters

Integrators, differentiators, and simple filters BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

More information

Real Analog - Circuits 1 Chapter 11: Lab Projects

Real Analog - Circuits 1 Chapter 11: Lab Projects Real Analog - Circuits 1 Chapter 11: Lab Projects 11.2.1: Signals with Multiple Frequency Components Overview: In this lab project, we will calculate the magnitude response of an electrical circuit and

More information

Getting started with Mobile Studio.

Getting started with Mobile Studio. Getting started with Mobile Studio. IMPORTANT!!! DO NOT PLUG THE MOBILE STUDIO BOARD INTO THE USB PORT YET. First Lab: For the first lab experiment you will essentially play with the Mobile Studio Board

More information

ENGR 1110: Introduction to Engineering Lab 7 Pulse Width Modulation (PWM)

ENGR 1110: Introduction to Engineering Lab 7 Pulse Width Modulation (PWM) ENGR 1110: Introduction to Engineering Lab 7 Pulse Width Modulation (PWM) Supplies Needed Motor control board, Transmitter (with good batteries), Receiver Equipment Used Oscilloscope, Function Generator,

More information

Experiment 8: An AC Circuit

Experiment 8: An AC Circuit Experiment 8: An AC Circuit PART ONE: AC Voltages. Set up this circuit. Use R = 500 Ω, L = 5.0 mh and C =.01 μf. A signal generator built into the interface provides the emf to run the circuit from Output

More information

Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits

Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits 1. Learning Outcomes In this lab, the students evaluate characteristics of the non-ideal operational amplifiers. Students use a simulation tool

More information

Class #3: Experiment Signals, Instrumentation, and Basic Circuits

Class #3: Experiment Signals, Instrumentation, and Basic Circuits Class #3: Experiment Signals, Instrumentation, and Basic Circuits Purpose: The objectives of this experiment are to gain some experience with the tools we use (i.e. the electronic test and measuring equipment

More information

ESE 150 Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 Lab 04: The Discrete Fourier Transform (DFT) LAB 04 In this lab we will do the following: 1. Use Matlab to perform the Fourier Transform on sampled data in the time domain, converting it to the frequency domain 2. Add two sinewaves together of differing

More information

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1 .A Working with Lab Equipment Electronics Design Laboratory 1 1.A.0 1.A.1 3 1.A.4 Procedures Turn in your Pre Lab before doing anything else Setup the lab waveform generator to output desired test waveforms,

More information

EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 0: Course Introduction

EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 0: Course Introduction EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 0: Course Introduction The primary goal of the one-unit EE110 course is to serve as a small window to allow the freshman

More information

Introduction to the Analog Discovery

Introduction to the Analog Discovery Introduction to the Analog Discovery The Analog Discovery from Digilent (http://store.digilentinc.com/all-products/scopes-instruments) is a versatile and powerful USB-connected instrument that lets you

More information

EE 3305 Lab I Revised July 18, 2003

EE 3305 Lab I Revised July 18, 2003 Operational Amplifiers Operational amplifiers are high-gain amplifiers with a similar general description typified by the most famous example, the LM741. The LM741 is used for many amplifier varieties

More information

Chapter 3 THE DIFFERENTIATOR AND INTEGRATOR Name: Date

Chapter 3 THE DIFFERENTIATOR AND INTEGRATOR Name: Date AN INTRODUCTION TO THE EXPERIMENTS The following two experiments are designed to demonstrate the design and operation of the op-amp differentiator and integrator at various frequencies. These two experiments

More information

Tektronix digital oscilloscope, BK Precision Function Generator, coaxial cables, breadboard, the crystal earpiece from your AM radio kit.

Tektronix digital oscilloscope, BK Precision Function Generator, coaxial cables, breadboard, the crystal earpiece from your AM radio kit. Experiment 0: Review I. References The 174 and 275 Lab Manuals Any standard text on error analysis (for example, Introduction to Error Analysis, J. Taylor, University Science Books, 1997) The manual for

More information

Analog Discovery Arbitrary Function Generator for Windows 7 by Mr. David Fritz and Ms. Ellen Robertson

Analog Discovery Arbitrary Function Generator for Windows 7 by Mr. David Fritz and Ms. Ellen Robertson Analog Discovery Arbitrary Function Generator for Windows 7 by Mr. David Fritz and Ms. Ellen Robertson Financial support to develop this tutorial was provided by the Bradley Department of Electrical and

More information

Part 1: DC Concepts and Measurement

Part 1: DC Concepts and Measurement EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 1 DC Concepts and Measurement: Ohm's Law, Voltage ad Current Introduction to Analog Discovery Scope Last week we introduced

More information

Magnitude and Phase Measurements. Analog Discovery

Magnitude and Phase Measurements. Analog Discovery Magnitude and Phase Measurements Analog Discovery Set up the oscilloscope to measure the signal of the reference voltage (the input voltage from the arbitrary function generator, in this case) and the

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

ELEG 205 Analog Circuits Laboratory Manual Fall 2016

ELEG 205 Analog Circuits Laboratory Manual Fall 2016 ELEG 205 Analog Circuits Laboratory Manual Fall 2016 University of Delaware Dr. Mark Mirotznik Kaleb Burd Patrick Nicholson Aric Lu Kaeini Ekong 1 Table of Contents Lab 1: Intro 3 Lab 2: Resistive Circuits

More information

EE 4314 Lab 3 Handout Speed Control of the DC Motor System Using a PID Controller Fall Lab Information

EE 4314 Lab 3 Handout Speed Control of the DC Motor System Using a PID Controller Fall Lab Information EE 4314 Lab 3 Handout Speed Control of the DC Motor System Using a PID Controller Fall 2012 IMPORTANT: This handout is common for all workbenches. 1. Lab Information a) Date, Time, Location, and Report

More information

Sirindhorn International Institute of Technology Thammasat University at Rangsit

Sirindhorn International Institute of Technology Thammasat University at Rangsit Sirindhorn International Institute of Technology Thammasat University at Rangsit School of Information, Computer and Communication Technology Practice Problems for the Final Examination COURSE : ECS204

More information

Lab 4: Analysis of the Stereo Amplifier

Lab 4: Analysis of the Stereo Amplifier ECE 212 Spring 2010 Circuit Analysis II Names: Lab 4: Analysis of the Stereo Amplifier Objectives In this lab exercise you will use the power supply to power the stereo amplifier built in the previous

More information

Each individual is to report on the design, simulations, construction, and testing according to the reporting guidelines attached.

Each individual is to report on the design, simulations, construction, and testing according to the reporting guidelines attached. EE 352 Design Project Spring 2015 FM Receiver Revision 0, 03-02-15 Interim report due: Friday April 3, 2015, 5:00PM Project Demonstrations: April 28, 29, 30 during normal lab section times Final report

More information

ELEG 205 Analog Circuits Laboratory Manual Fall 2017

ELEG 205 Analog Circuits Laboratory Manual Fall 2017 ELEG 205 Analog Circuits Laboratory Manual Fall 2017 University of Delaware Dr. Mark Mirotznik Kaleb Burd Aric Lu Patrick Nicholson Colby Banbury Table of Contents Policies Policy Page 3 Labs Lab 1: Intro

More information

IME-100 ECE. Lab 1. Electrical and Computer Engineering Department Kettering University. G. Tewolde, IME100-ECE,

IME-100 ECE. Lab 1. Electrical and Computer Engineering Department Kettering University. G. Tewolde, IME100-ECE, IME-100 ECE Lab 1 Electrical and Computer Engineering Department Kettering University 1-1 IME-100, ECE Lab1 Circuit Design, Simulation, and Layout In this laboratory exercise, you will do the following:

More information

EE 233 Circuit Theory Lab 3: First-Order Filters

EE 233 Circuit Theory Lab 3: First-Order Filters EE 233 Circuit Theory Lab 3: First-Order Filters Table of Contents 1 Introduction... 1 2 Precautions... 1 3 Prelab Exercises... 2 3.1 Inverting Amplifier... 3 3.2 Non-Inverting Amplifier... 4 3.3 Integrating

More information

Instructions for the final examination:

Instructions for the final examination: School of Information, Computer and Communication Technology Sirindhorn International Institute of Technology Thammasat University Practice Problems for the Final Examination COURSE : ECS304 Basic Electrical

More information

University of California, San Diego Department of Electrical and Computer Engineering

University of California, San Diego Department of Electrical and Computer Engineering University of California, San Diego Department of Electrical and Computer Engineering Part One: Introduction of Lab TAs ECE65, Spring 2007 Lab 0, ECE 65 Lab Orientation 1) James Liao, geniojames@yahoo.com

More information

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm EGR 220: Engineering Circuit Theory Lab 1: Introduction to Laboratory Equipment Pre-lab Read through the entire lab handout

More information

Lab 6: Building a Function Generator

Lab 6: Building a Function Generator ECE 212 Spring 2010 Circuit Analysis II Names: Lab 6: Building a Function Generator Objectives In this lab exercise you will build a function generator capable of generating square, triangle, and sine

More information

PHYS Contemporary Physics Laboratory Laboratory Exercise: LAB 01 Resistivity, Root-mean-square Voltage, Potentiometer (updated 1/25/2017)

PHYS Contemporary Physics Laboratory Laboratory Exercise: LAB 01 Resistivity, Root-mean-square Voltage, Potentiometer (updated 1/25/2017) PHYS351001 Contemporary Physics Laboratory Laboratory Exercise: LAB 01 Resistivity, Root-mean-square Voltage, Potentiometer (updated 1/25/2017) PART I: SOME FUNDAMENTAL CONCEPTS: 1. Limits on accuracy

More information

Class #16: Experiment Matlab and Data Analysis

Class #16: Experiment Matlab and Data Analysis Class #16: Experiment Matlab and Data Analysis Purpose: The objective of this experiment is to add to our Matlab skill set so that data can be easily plotted and analyzed with simple tools. Background:

More information

ECE2049: Embedded Systems in Engineering Design Lab Exercise #4 C Term 2018

ECE2049: Embedded Systems in Engineering Design Lab Exercise #4 C Term 2018 ECE2049: Embedded Systems in Engineering Design Lab Exercise #4 C Term 2018 Who's Watching the Watchers? Which is better, the SPI Digital-to-Analog Converter or the Built-in Analog-to-Digital Converter

More information

Introduction to basic laboratory instruments

Introduction to basic laboratory instruments BEE 233 Laboratory-1 Introduction to basic laboratory instruments 1. Objectives To learn safety procedures in the laboratory. To learn how to use basic laboratory instruments: power supply, function generator,

More information

Experiment A8 Electronics III Procedure

Experiment A8 Electronics III Procedure Experiment A8 Electronics III Procedure Deliverables: checked lab notebook, plots Overview Electronics have come a long way in the last century. Using modern fabrication techniques, engineers can now print

More information

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009 University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009 Lab 1 Power Amplifier Circuits Issued August 25, 2009 Due: September 11, 2009

More information

Non_Inverting_Voltage_Follower -- Overview

Non_Inverting_Voltage_Follower -- Overview Non_Inverting_Voltage_Follower -- Overview Non-Inverting, Unity-Gain Amplifier Objectives: After performing this lab exercise, learner will be able to: Understand and comprehend working of opamp Design

More information

Class #3: Experiment Signals, Instrumentation, and Basic Circuits

Class #3: Experiment Signals, Instrumentation, and Basic Circuits Class #3: Experiment Signals, Instrumentation, and Basic Circuits Purpose: The objectives of this experiment are to gain some experience with the tools we use (i.e. the electronic test and measuring equipment

More information

BIOE 123 Module 3. Electronics 2: Time Varying Circuits. Lecture (30 min) Date. Learning Goals

BIOE 123 Module 3. Electronics 2: Time Varying Circuits. Lecture (30 min) Date. Learning Goals BIOE 123 Module 3 Electronics 2: Time Varying Circuits Lecture (30 min) Date Learning Goals Learn about the behavior of capacitors and inductors Learn how to analyze time-varying circuits to quantify parameters

More information

ESE 150 Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 Lab 04: The Discrete Fourier Transform (DFT) LAB 04 In this lab we will do the following: 1. Use Matlab to perform the Fourier Transform on sampled data in the time domain, converting it to the frequency domain 2. Add two sinewaves together of differing

More information

Frequency Selective Circuits

Frequency Selective Circuits Lab 15 Frequency Selective Circuits Names Objectives in this lab you will Measure the frequency response of a circuit Determine the Q of a resonant circuit Build a filter and apply it to an audio signal

More information

Lab 2 Operational Amplifier

Lab 2 Operational Amplifier Lab 2 Operational Amplifier Last Name: First Name: Student Number: Lab Section: Monday Tuesday Wednesday Thursday Friday TA Signature: Note: The Pre-Lab section must be completed prior to the lab session.

More information

ME 461 Laboratory #5 Characterization and Control of PMDC Motors

ME 461 Laboratory #5 Characterization and Control of PMDC Motors ME 461 Laboratory #5 Characterization and Control of PMDC Motors Goals: 1. Build an op-amp circuit and use it to scale and shift an analog voltage. 2. Calibrate a tachometer and use it to determine motor

More information

Lab 5: MOSFET I-V Characteristics

Lab 5: MOSFET I-V Characteristics 1. Learning Outcomes Lab 5: MOSFET I-V Characteristics In this lab, students will determine the MOSFET I-V characteristics of both a P-Channel MOSFET and an N- Channel MOSFET. Also examined is the effect

More information

Reference Sources. Prelab. Proakis chapter 7.4.1, equations to as attached

Reference Sources. Prelab. Proakis chapter 7.4.1, equations to as attached Purpose The purpose of the lab is to demonstrate the signal analysis capabilities of Matlab. The oscilloscope will be used as an A/D converter to capture several signals we have examined in previous labs.

More information

DEPARTMENT OF ELECTRONIC ENGINEERING PRACTICAL MANUAL CONTROL SYSTEMS 3 CSYS 302

DEPARTMENT OF ELECTRONIC ENGINEERING PRACTICAL MANUAL CONTROL SYSTEMS 3 CSYS 302 Name: Student number: Mark: DEPARTMENT OF ELECTRONIC ENGINEERING PRACTICAL MANUAL CONTROL SYSTEMS 3 (Process Instrumentation and Mechatronics) CSYS 30 Latest Revision: Semester 1-016 1 INTRODUCTION The

More information

BME/ISE 3511 Laboratory One - Laboratory Equipment for Measurement. Introduction to biomedical electronic laboratory instrumentation and measurements.

BME/ISE 3511 Laboratory One - Laboratory Equipment for Measurement. Introduction to biomedical electronic laboratory instrumentation and measurements. BME/ISE 3511 Laboratory One - Laboratory Equipment for Measurement Learning Objectives: Introduction to biomedical electronic laboratory instrumentation and measurements. Supplies and Components: Breadboard

More information

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope EET 150 Introduction to EET Lab Activity 8 Function Generator Introduction Required Parts, Software and Equipment Parts Figure 1 Component /Value Quantity Resistor 10 kω, ¼ Watt, 5% Tolerance 1 Resistor

More information

Inverting_Amplifier -- Overview

Inverting_Amplifier -- Overview Inverting_Amplifier -- Overview Inverting Amplifier Objectives: After performing this lab exercise, learner will be able to: Understand and comprehend working of opamp Design & build inverting amplifier

More information

LAB I. INTRODUCTION TO LAB EQUIPMENT

LAB I. INTRODUCTION TO LAB EQUIPMENT LAB I. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE In this lab you will learn how to properly operate the basic bench equipment used for characterizing active devices: 1. Oscilloscope (Keysight DSOX 1102A),

More information

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits Table of Contents: Pre-Lab Assignment 2 Background 2 National Instruments MyDAQ 2 Resistors 3 Capacitors

More information

Electronics I. laboratory measurement guide

Electronics I. laboratory measurement guide Electronics I. laboratory measurement guide Andras Meszaros, Mark Horvath 2015.02.01. 5. Measurement Basic circuits with operational amplifiers 2015.02.01. In this measurement you will need both controllable

More information

Revised: Summer 2010

Revised: Summer 2010 EE 2274 PRE-LAB EXPERIMENT 5 DIODE OR GATE & CLIPPING CIRCUIT COMPLETE PRIOR TO COMING TO LAB Part I: 1. Design a diode, Figure 1 OR gate in which the maximum input current,, Iin is less than 5mA. Show

More information

INTRODUCTION TO AC FILTERS AND RESONANCE

INTRODUCTION TO AC FILTERS AND RESONANCE AC Filters & Resonance 167 Name Date Partners INTRODUCTION TO AC FILTERS AND RESONANCE OBJECTIVES To understand the design of capacitive and inductive filters To understand resonance in circuits driven

More information

Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15. Figure 2: DAD pin configuration

Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15. Figure 2: DAD pin configuration Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15 INTRODUCTION The Diligent Analog Discovery (DAD) allows you to design and test both analog and digital circuits. It can produce, measure and

More information

Lab 3 SPECTRUM ANALYSIS OF THE PERIODIC RECTANGULAR AND TRIANGULAR SIGNALS 3.A. OBJECTIVES 3.B. THEORY

Lab 3 SPECTRUM ANALYSIS OF THE PERIODIC RECTANGULAR AND TRIANGULAR SIGNALS 3.A. OBJECTIVES 3.B. THEORY Lab 3 SPECRUM ANALYSIS OF HE PERIODIC RECANGULAR AND RIANGULAR SIGNALS 3.A. OBJECIVES. he spectrum of the periodic rectangular and triangular signals.. he rejection of some harmonics in the spectrum of

More information

Sonoma State University Department of Engineering Science Spring 2017

Sonoma State University Department of Engineering Science Spring 2017 EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 4 Introduction to AC Measurements (I) AC signals, Function Generators and Oscilloscopes Function Generator (AC) Battery

More information

Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer

Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer The objective of this lab is to become familiar with methods to measure the dc current-voltage (IV) behavior of diodes

More information

Plotting. Aaron S. Donahue. Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame January 28, 2013 CE20140

Plotting. Aaron S. Donahue. Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame January 28, 2013 CE20140 Plotting Aaron S. Donahue Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame January 28, 2013 CE20140 A. S. Donahue (University of Notre Dame) Lecture 4 1 / 15

More information

Introduction to Simulink Assignment Companion Document

Introduction to Simulink Assignment Companion Document Introduction to Simulink Assignment Companion Document Implementing a DSB-SC AM Modulator in Simulink The purpose of this exercise is to explore SIMULINK by implementing a DSB-SC AM modulator. DSB-SC AM

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering EE320L Electronics I Laboratory Laboratory Exercise #2 Basic Op-Amp Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose of

More information

Low_Pass_Filter_1st_Order -- Overview

Low_Pass_Filter_1st_Order -- Overview Low_Pass_Filter_1st_Order -- Overview 1 st Order Low Pass Filter Objectives: After performing this lab exercise, learner will be able to: Understand and comprehend working of opamp Comprehend basics of

More information

Lab Exercise # 9 Operational Amplifier Circuits

Lab Exercise # 9 Operational Amplifier Circuits Objectives: THEORY Lab Exercise # 9 Operational Amplifier Circuits 1. To understand how to use multiple power supplies in a circuit. 2. To understand the distinction between signals and power. 3. To understand

More information

EXPERIMENT 1 PRELIMINARY MATERIAL

EXPERIMENT 1 PRELIMINARY MATERIAL EXPERIMENT 1 PRELIMINARY MATERIAL BREADBOARD A solderless breadboard, like the basic model in Figure 1, consists of a series of square holes, and those columns of holes are connected to each other via

More information

STEP RESPONSE OF 1 ST AND 2 ND ORDER CIRCUITS

STEP RESPONSE OF 1 ST AND 2 ND ORDER CIRCUITS STEP RESPONSE OF 1 ST AND 2 ND ORDER CIRCUITS YOUR NAME GTA S SIGNATURE LAB MEETING TIME Objectives: To observe responses of first and second order circuits - RC, RL and RLC circuits, source-free or with

More information

Week 15. Mechanical Waves

Week 15. Mechanical Waves Chapter 15 Week 15. Mechanical Waves 15.1 Lecture - Mechanical Waves In this lesson, we will study mechanical waves in the form of a standing wave on a vibrating string. Because it is the last week of

More information

University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS

University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS Issued 10/5/2008 Pre Lab Completed 10/12/2008 Lab Due in Lecture 10/21/2008 Introduction In this lab you will characterize

More information

Electronics Design Laboratory Lecture #1, Fall 2014

Electronics Design Laboratory Lecture #1, Fall 2014 Electronics Design Laboratory Lecture #1, Fall 2014 Dr. Daniel Seltzer Teaching Assistants: Fenglong Lu & Ali Sepahvand Electronics Design Laboratory 1 Daniel Seltzer seltzer@colorado.edu Fenglong Lu Fenglong.Lu@colorado.edu

More information

Laboratory Project 1: AC Circuit Measurements and Simulation

Laboratory Project 1: AC Circuit Measurements and Simulation Objectives The purpose of this laboratory project is to introduce to equipment, measurement techniques, and simulations commonly used in C circuit analysis. In this laboratory session, each student will:

More information

EE 210 Lab Exercise #5: OP-AMPS I

EE 210 Lab Exercise #5: OP-AMPS I EE 210 Lab Exercise #5: OP-AMPS I ITEMS REQUIRED EE210 crate, DMM, EE210 parts kit, T-connector, 50Ω terminator, Breadboard Lab report due at the ASSIGNMENT beginning of the next lab period Data and results

More information

BIO 365L Neurobiology Laboratory. Training Exercise 1: Introduction to the Computer Software: DataPro

BIO 365L Neurobiology Laboratory. Training Exercise 1: Introduction to the Computer Software: DataPro BIO 365L Neurobiology Laboratory Training Exercise 1: Introduction to the Computer Software: DataPro 1. Don t Panic. When you run DataPro, you will see a large number of windows, buttons, and boxes. In

More information

EE 1210 Op Amps, Gain, and Signal Integrity Laboratory Project 6

EE 1210 Op Amps, Gain, and Signal Integrity Laboratory Project 6 Objective Information The purposes of this laboratory project are for the student to observe an inverting operational amplifier circuit, to demonstrate how the resistors in an operational amplifier circuit

More information

Electric Circuit Fall 2017 Lab3 LABORATORY 3. Diode. Guide

Electric Circuit Fall 2017 Lab3 LABORATORY 3. Diode. Guide LABORATORY 3 Diode Guide Diodes Overview Diodes are mostly used in practice for emitting light (as Light Emitting Diodes, LEDs) or controlling voltages in various circuits. Typical diode packages in same

More information

Lab 5: MOSFET I-V Characteristics

Lab 5: MOSFET I-V Characteristics 1. Learning Outcomes Lab 5: MOSFET I-V Characteristics In this lab, students will determine the MOSFET I-V characteristics of both a P-Channel MOSFET and an N- Channel MOSFET. Also examined is the effect

More information

MAE106 Laboratory Exercises Lab # 1 - Laboratory tools

MAE106 Laboratory Exercises Lab # 1 - Laboratory tools MAE106 Laboratory Exercises Lab # 1 - Laboratory tools University of California, Irvine Department of Mechanical and Aerospace Engineering Goals To learn how to use the oscilloscope, function generator,

More information

Intro To Engineering II for ECE: Lab 7 The Op Amp Erin Webster and Dr. Jay Weitzen, c 2014 All rights reserved.

Intro To Engineering II for ECE: Lab 7 The Op Amp Erin Webster and Dr. Jay Weitzen, c 2014 All rights reserved. Lab 7: The Op Amp Laboratory Objectives: 1) To introduce the operational amplifier or Op Amp 2) To learn the non-inverting mode 3) To learn the inverting mode 4) To learn the differential mode Before You

More information

EECE Circuits and Signals: Biomedical Applications. Lab 3. Basic Instruments, Components and Circuits. Introduction to Spice and AC circuits

EECE Circuits and Signals: Biomedical Applications. Lab 3. Basic Instruments, Components and Circuits. Introduction to Spice and AC circuits EECE 2150 - Circuits and Signals: Biomedical Applications Lab 3 Basic Instruments, Components and Circuits. Introduction to Spice and AC circuits Introduction and Preamble: In this lab you will experiment

More information

Build Your Own Bose WaveRadio Bass Preamp Active Filter Design

Build Your Own Bose WaveRadio Bass Preamp Active Filter Design EE230 Filter Laboratory Build Your Own Bose WaveRadio Bass Preamp Active Filter Design Objectives 1) Design an active filter on paper to meet a particular specification 2) Verify your design using Spice

More information

EE 210 Lab Exercise #3 Introduction to PSPICE

EE 210 Lab Exercise #3 Introduction to PSPICE EE 210 Lab Exercise #3 Introduction to PSPICE Appending 4 in your Textbook contains a short tutorial on PSPICE. Additional information, tutorials and a demo version of PSPICE can be found at the manufacturer

More information

Laboratory 2 (drawn from lab text by Alciatore)

Laboratory 2 (drawn from lab text by Alciatore) Laboratory 2 (drawn from lab text by Alciatore) Instrument Familiarization and Basic Electrical Relations Required Components: 2 1k resistors 2 1M resistors 1 2k resistor Objectives This exercise is designed

More information