3GPP ProSe/D2D and its proposed extensions to other topics such as V2X, Wearable devices RAN Aspects. ICL 蔡華龍 (Hua-Lung Tsai) 105 年 09 月 12 日

Size: px
Start display at page:

Download "3GPP ProSe/D2D and its proposed extensions to other topics such as V2X, Wearable devices RAN Aspects. ICL 蔡華龍 (Hua-Lung Tsai) 105 年 09 月 12 日"

Transcription

1 3GPP ProSe/D2D and its proposed extensions to other topics such as V2X, Wearable devices RAN Aspects ICL 蔡華龍 (Hua-Lung Tsai) 105 年 09 月 12 日

2 Outline Introduce LTE-A ProSe (D2D) in Rel. 12/13 Further Enhancements LTE Device to Device, UE to Network Relays for IoT and Wearables in Rel.14 LTE-based V2X Services &V2V services based on LTE sidelink in Rel. 13/14 Sidelink Communication in New Radio Access Technology

3 Re1-13 WID Enhanced LTE Device to Device Proximity Services New WI: Enhanced Device to Device ProSe (RP ) Dec. 2014, RAN#66 RAN2 leads this working item (Qualcomm) Objective: Type 1 discovery for the partial and outside network coverage scenarios targeting public safety use Support the extension of network coverage using UE-to-Network Relays, including service continuity (if needed), based on Release 12 D2D communication, considering applicability to voice, video. Enhance D2D discovery support in the presence of multiple carriers and PLMNs Interference Issues 3

4 韓國 D2D 系統布建資訊 Korean government decided to use LTE technologies for Public Safety to build nationwide Public Safety Broadband Network (PSBN) on July Based on the Information Strategy Planning (ISP) of the Ministry of Public Safety and Security (MPSS), Korea will initiate the establishment of trial Public Safety Broadband Network (PSBN) in Pyeong-Chang City in 2015 which will host the 2018 Winter Olympic Games. This Public Safety Broadband Network (PSBN) will be expanded to 8 other major cities in 2016 and finally deployed nationwide by 2017 SAMSUNG disclose 2016 LTE products support Rel.12/13 LTE D2D Source : 3GPP Contribution R

5 D2D ProSe support three scenarios Source : appear in IEEE Communications Magazine Enhanced LTE Device-to-Device Proximity Services

6 Classification PS Case In coverage Partial Out-Of-Coverage Discovery Communication R12 (Inter-cell, intra-cell) R13 (inter-carrier, inter-plmn R12 (Inter-cell, intra-cell) R13 (type1) R12 R13 (UE-to-Network Relay, Group priority communications) R13 (type1) R12 Non- PS Case In coverage Partial Out-Of-Coverage Discovery R12 (Inter-cell, intra-cell) R13 (inter-carrier, inter-plmn) Communication X X X X X Source : appear in IEEE Communications Magazine Enhanced LTE Device-to-Device Proximity Services

7 Major Feature Of D2D ProSe In Rel-12 & 13 Features Release 12 Release 13 Discovery Only supported in in-coverage Supported in-coverage, partial-coverage, and out-of-coverage. UE-to-Network relay for discovery is supported. Purposes of discovery Public safety Public safety and non-public safety for incoverage, public safety for partial-coverage and out-ofcoverage Synchronization to facilitate discovery Achieved by enbs Additional mechanisms are needed Communications Synchronization to facilitate Communications Broadcast (without feedback channels) for in-coverage, partial-coverage, and out-of-coverage Achieved by enbs for in-coverage, ns while additional mechanisms are needed for partial-coverage and out-of-coverage Broadcast with Layer 3 relay for partial-coverage Reuse the mechanisms in Release 12 Priority Control Not yet supported Supported Source :IEEE Communications Magazine Enhanced LTE Device-to-Device Proximity Services 7

8 Further Enhancements LTE Device to Device, UE to Network Relays for Wearables New SI: Enhanced Device to Device ProSe (RP ) March. 2016, RAN#71 RAN2 leads this working item (Qualcomm, Huawei, Intel,LG) Objective: Enhancement of UE-to-Network relaying functionality for Wearable and IoT Enhancements to enable reliable unicast PC5 link to at least support low power, low rate and low complexity/cost devices. (IoT)

9 Use Case to LTE Device to Device, UE to Network Relays for IoT and Wearables Source: Qualcomm RP

10 Architecture R On Scenarios and Objectives for Wearables and fed2d Ericsson rue: relay UE wue: wearable UE Source: R Schematic architecture showing the considered nodes and interfaces Coverage scenarios

11 PC5 R Scenarios for FeD2D Qualcomm PC5 based UE-to-Network Relay Uu (Uplink and Downlink) Uu (Downlink) Relay UE Bidirectional relay Uni-directional relay Remote UE Advantage of D2D relay for Cat-M remote UE Advantage of D2D relay for NB-IOT remote UE

12 Introduction V2X China shows great interest in vehicular communications In 2014, CCSA has finished the feasible study for vehicle safety application based on TD-LTE The series of industrial standard of communication based on LTE for vehicle application began In 2015, the frequency study of V2X also started National Regulatory Authority in China will allocate the frequency of connected vehicles Vehicle manufacturers and cellular network operators also show strong interests in vehicle wireless communications for proximity safety services as well as commercial applications 3GPP s goal is to realize connected car via LTE *CCSA (China Communications Standards Association) 中國通信標準化協會 12

13 V2X 國際主流性評估 LTE-V2X activities in China National key project Standardization and prototyping for LTE-V wireless transmission technology ( ) was released by MIIT Shanghai Intelligent Connected Vehicle Pilot Area was approved by MIIT, China. Initial plan was disclosed by Shanghai International Automobile City Phase 1 (present ): 40 connected vehicles (802.11p and LTE-V2X) Phase 2 ( ): 400 connected vehicles (802.11p and LTE-V2X) Phase 3 ( ): 1000 connected vehicles (LTE-V2X) Major Companies Focus Topics Important RAN# 70 Huawei & L.G. V2V services based on LTE sidelink - Enhancement to sidelink physical layer structure necessary for V2V - Enhancement to sidelink synchronization procedure necessary for V2V - Necessary sidelink resource allocation enhancement option(s) for V2V 13

14 Re1-13 SID Feasibility Study on LTE-based V2X Services New SI: Feasibility Study on LTE-based V2X Services (RP ) June. 2015, RAN#68 RAN1 leads this working item (LG, Huawei, CATT) Objective: To define the evaluation methodology for LTE-based V2V, V2I and V2P services to compare the performance of different technical options For support of PC5 transport for V2V services (PC5 is specific for D2D ) For support of Uu transport for V2V, and Uu,PC5 transport for V2I and V2P services 14

15 Rel.14 WID Support for V2V services based on LTE sidelink New WI proposal: Support for V2V services based on LTE sidelink (RP ) Dec. 2015, RAN#70 RAN1 leads this working item (LG Electronics, Huawei, HiSilicon, CATT, CATR) Objective (RAN2): To identify what are necessary sidelink resource allocation enhancement option(s) among the ones captured in TR for V2V services and specify the identified option(s) To specify a mechanism to enable E-UTRAN to select between PC5 and Uu for transport of V2V messages within network coverage, if necessary, in coordination with other working groups To specify necessary radio protocols and RRC signaling to support the above features

16 Road Side Unit Definition for V2X an entity supporting V2I Service that can transmit to, and receive from a UE using V2I application. RSU is implemented in an enodeb or a stationary UE. V2I Service (Vehicular-to-Infrastructure/Network) a type of V2X Service, where one party is a UE and the other party is an RSU both using V2I application. V2P Service (Vehicular-to-Pedestrian) a type of V2X Service, where both parties of the communication are UEs using V2P application V2V Service (Vehicular-to-Vehicular) a type of V2X Service, where both parties of the communication are UEs using V2V application 16

17 Deployment 2GHz 6GHz Source : CMCC & NTT DoCoMo 17

18 PC5 transport uses a dedicated carrier V2X Spectrum Uu transport and authorization/control for PC5 transport could use a licensed carrier which is also used for LTE network coverage. Authorization/control enodeb Authorization/control for PC5 licensed spectrum dedicated spectrum 2GHz 6GHz for PC5 Uu PC5 PC5 PC5 * SA: scheduling assignment

19 A Following enb instruction w/ intra-carrier cell coverage, w/ or w/o GNSS coverage V2X Synchronization scenario & procedure In coverage GNSS/GNSSequivalent Out of coverage B GNSS/GNSS-Equivalent w/o intra carrier cell coverage, w/ GNSS coverage GNSS GNSS enb w/ reliable GNSS enb,hop1 In coverage, GNSS,hop1 Out of coverage, GNSS,hop1 Standalone enb,hop3 enb,hop2 GNSS,hop3 GNSS,hop2 GNSS,hop3 GNSS,hop2 C w/o reliable GNSS w/ inter-carrier cellular coverage or w/o cellular coverage, w/o GNSS coverage Source : Samsung

20 Enhance DMRS in high Doppler case Maximum Doppler frequency is about 1.5kHz (for 6GHz carrier frequency and 280km/hr vehicle speed) Maximum carrier frequency is about 6kHz (for 6GHz carrier frequency and 1ppm mismatch, carrier spacing is 15kHz) Enhanced DMRS design Increase DMRS density Legacy DMRS location DMRS location with increased density A G C G U A R D A G C G U A R D Each DMRS contains 6PRBs 144REs to 288REs increase carrier spacing for DMRS PAPR issue and Standard Impact New DMRS pattern

21 PC5 enhancements for V2V (Resource Allocation) TDM (Rel. 12 D2D) FDM SA pool data pool SA One periodicity e.g. 40ms data Hybrid TDM &FDM One periodicity e.g. 40ms Source : Huawei

22 Enhancements to LTE D2D in Rel. 14 D2D first introduced in Release 12 D2D discovery for commercial & Public Safety use cases D2D group cast communication for Public Safety Enhancements to D2D continued in Release 13 D2D discovery enhancements to inter-frequency D2D based UE to Network relays D2D based V2X being explored in Release 14 D2D also has applications to IoT and wearables that need to be explored Source : Qualcomm RP

23 New Radio Technology in Sidelink New Radio Technology in Sidelink (Qualcomm) embb IoT &MTC Source: R

24 New Radio Technology in Sidelink (cont d) New Radio Technology in Sidelink (Qualcomm) NR side link design should support V2V, ProSe, Public safety as defined in LTE, plus additional mesh embb, mesh mmtc and mesh URLLC services NR side link design should support unicast services. NR side link design should support ranging and positioning capability for new services, e.g., V2V and mission critical. Provide harmonized solution for DL, UL and SL in order provide forward compatibility for phase introduction of side link features. Suggest the group study SL in terms of: timing synchronization, discovery, node selection, traffic scheduling and mobility management/paging procedures. NR side link design should support unlicensed services. Source: R

25 New Radio Technology in Sidelink (cont d) New Radio Technology in Sidelink (Huawei) Support for UE-NW Relays Group-based UE cooperation Network multicast phase UE cooperation phase UE CG CUE1 TUE TUE CUE CUE1 TUE Source :R Access links TRP CUE2 Cooperation link TRP CUE2 Cooperation link (a) In-coverage TUE (b) Out-of-coverage TUE

26 New Radio Technology in Sidelink (cont d) New Radio Technology in Sidelink (Huawei) Management/scheduling function for UE-NW relay Source :R

27 New Radio Technology in Sidelink (cont d) New Radio Technology in Sidelink (Huawei) Unicast for sidelink operation Sidelink should be able to handle unicast transmissions at the PHY layer, and feedback mechanisms (e.g., CSI, ACK/NAK feedback) should be supported on the sidelink. Unlicensed sidelink operation Licensed CC1 Licensed CC1 Licensed CC1 Licensed CC1 unlicensed CC0 unlicensed CC0 licensed CC0/CC2 Source :R

28 New Radio Technology in Sidelink (cont d) New Radio Technology in Sidelink (Huawei) Evolved D2D The sidelink (uplink) and the cellular link (downlink) using the same waveform can also be easily spatially multiplexed just as what is done by MU-MIMO. This will lead to higher spectral efficiency. Source :R

29 New Radio Technology in Sidelink (cont d) New Radio Technology in Sidelink (LG) ev2x by Sidelink

30

From D2D to V2X. Hung-Yu Wei. National Taiwan University. Acknowledgement to Mei-Ju Shih

From D2D to V2X. Hung-Yu Wei. National Taiwan University. Acknowledgement to Mei-Ju Shih From D2D to V2X Hung-Yu Wei National Taiwan University Acknowledgement to Mei-Ju Shih OUTLINE Preview RAN2#91 Rel-13 ed2d General UE-to-Network Relays ProSe discovery in partial- and outside network coverage

More information

DEVELOPMENT TRENDS OF D2D COMMUNICATIONS IN THE LTE 魏存毅國 立台北 大學通訊系

DEVELOPMENT TRENDS OF D2D COMMUNICATIONS IN THE LTE 魏存毅國 立台北 大學通訊系 DEVELOPMENT TRENDS OF D2D COMMUNICATIONS IN THE LTE 魏存毅國 立台北 大學通訊系 The evolution A set of radio access technologies is required to satisfy future requirements Required Performance TRx Spectrum efficiency

More information

3GPP Activities on ITS

3GPP Activities on ITS 3GPP Activities on ITS March, 2016 SungDuck CHUN LG Electronics 1. History Overall Timeline 3GPP started feasibility study of 3GPP support of V2X communication from 1Q 2015 Discussion started from 3GPP

More information

3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li

3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li 3GPP RAN1 Status: LTE Licensed-Assisted Access (LAA) to Unlicensed Spectrum Richard Li Mar. 4, 2016 1 Agenda Status Overview of RAN1 Working/Study Items Narrowband Internet of Things (NB-IoT) (Rel-13)

More information

5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc.

5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc. 5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc. Yinan Qi Samsung Electronics R&D Institute UK, Staines, Middlesex TW18 4QE,

More information

LTE Release 14 Outlook

LTE Release 14 Outlook LTE Release 14 Outlook Christian Hoymann, David Astely, Magnus Stattin, Gustav Wikström, Jung-Fu (Thomas) Cheng, Henning Wiemann, Niklas Johansson, Mattias Frenne, Ricardo Blasco, Joerg Huschke, Andreas

More information

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks Lectio praecursoria Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks Author: Junquan Deng Supervisor: Prof. Olav Tirkkonen Department of Communications and Networking Opponent:

More information

5G Technology Introduction, Market Status Overview and Worldwide Trials. Dr. Taro Eichler Technology Manager Wireless Communication

5G Technology Introduction, Market Status Overview and Worldwide Trials. Dr. Taro Eichler Technology Manager Wireless Communication 5G Technology Introduction, Market Status Overview and Worldwide Trials Dr. Taro Eichler Technology Manager Wireless Communication Mobile World Congress 2017 Barcelona (It not Smartphones anymore) Automation

More information

Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G

Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G ICTC 2015 Evolution of LTE-Advanced in 3GPP Rel-13/14: a Path to 5G Juho Lee Samsung Electronics Presentation Outline LTE/LTE-Advanced evolution: an overview LTE-Advanced in Rel-13 Expectation for LTE-Advanced

More information

C O M PAN Y R E S T R I C T E D

C O M PAN Y R E S T R I C T E D What is 5G? It s a paradigm shift 1G~1985 2G1992 3G2001 4G2010 5G2020 Transition from analog to digital www Define use case Analyze requirements Define technology embb www Define technology framework Find

More information

Evolution of cellular wireless systems from 2G to 5G. 5G overview th October Enrico Buracchini TIM INNOVATION DEPT.

Evolution of cellular wireless systems from 2G to 5G. 5G overview th October Enrico Buracchini TIM INNOVATION DEPT. Evolution of cellular wireless systems from 2G to 5G 5G overview 6-13 th October 2017 Enrico Buracchini TIM INNOVATION DEPT. Up to now.we are here. Source : Qualcomm presentation @ 5G Tokyo Bay Summit

More information

Adaptive Transmission Scheme for Vehicle Communication System

Adaptive Transmission Scheme for Vehicle Communication System Sangmi Moon, Sara Bae, Myeonghun Chu, Jihye Lee, Soonho Kwon and Intae Hwang Dept. of Electronics and Computer Engineering, Chonnam National University, 300 Yongbongdong Bukgu Gwangju, 500-757, Republic

More information

NR Physical Layer Design: NR MIMO

NR Physical Layer Design: NR MIMO NR Physical Layer Design: NR MIMO Younsun Kim 3GPP TSG RAN WG1 Vice-Chairman (Samsung) 3GPP 2018 1 Considerations for NR-MIMO Specification Design NR-MIMO Specification Features 3GPP 2018 2 Key Features

More information

K E Y S I G H T I N 5 G. Mombasawala Mohmedsaaed General Manager (Applications)

K E Y S I G H T I N 5 G. Mombasawala Mohmedsaaed General Manager (Applications) K E Y S I G H T I N 5 G Mombasawala Mohmedsaaed 18.05.2018 General Manager (Applications) EPC 1 e M B B m M T C u R L C C CP+ UP UP The first NR specification (3GPP Release 15) supports increased data

More information

5G NR Update and UE Validation

5G NR Update and UE Validation 5G NR Update and UE Validation Sr. Project Manager/ Keysight JianHua Wu 3GPP Status Update 2 5G Scenarios and Use Cases B R O A D R A N G E O F N E W S E R V I C E S A N D PA R A D I G M S Amazingly fast

More information

LTE and NB-IoT. Luca Feltrin. RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna. Telecom Italia Mobile S.p.a. - TIM

LTE and NB-IoT. Luca Feltrin. RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna. Telecom Italia Mobile S.p.a. - TIM LTE and NB-IoT Luca Feltrin RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna Telecom Italia Mobile S.p.a. - TIM Index Ø 3GPP and LTE Specifications Ø LTE o Architecture o PHY Layer o Procedures

More information

Background: Cellular network technology

Background: Cellular network technology Background: Cellular network technology Overview 1G: Analog voice (no global standard ) 2G: Digital voice (again GSM vs. CDMA) 3G: Digital voice and data Again... UMTS (WCDMA) vs. CDMA2000 (both CDMA-based)

More information

5G New Radio. Ian Wong, Ph.D. Senior Manager, Advanced Wireless Research. ni.com NI CONFIDENTIAL

5G New Radio. Ian Wong, Ph.D. Senior Manager, Advanced Wireless Research. ni.com NI CONFIDENTIAL 5G New Radio Ian Wong, Ph.D. Senior Manager, Advanced Wireless Research ni.com ITU Vision for IMT-2020 and Beyond > 10 Gbps Peak rates > 1M / km 2 Connections < 1 ms Latency New ITU Report on IMT-2020

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Marc Barberis 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile Broadband IoT

More information

Vehicular Safety Critical Communications: a Case Study for Unsupervised LTE D2D

Vehicular Safety Critical Communications: a Case Study for Unsupervised LTE D2D EURECOM Department of Communication Systems Campus SophiaTech CS 50193 06904 Sophia Antipolis cedex FRANCE Research Report RR-16-327 Vehicular Safety Critical Communications: a Case Study for Unsupervised

More information

THE USE OF MHZ FOR 5G EARLY ROLLOUT: OPPORTUNITIES AND CHALLENGES

THE USE OF MHZ FOR 5G EARLY ROLLOUT: OPPORTUNITIES AND CHALLENGES THE USE OF 3300-3800 MHZ FOR 5G EARLY ROLLOUT: OPPORTUNITIES AND CHALLENGES 5G Spectrum and Policy Forum 29 June 2017, GSMA MWC Shanghai Global mobile Suppliers Association Hu Wang (wanghu.wanghu@huawei.com)

More information

A 5G Paradigm Based on Two-Tier Physical Network Architecture

A 5G Paradigm Based on Two-Tier Physical Network Architecture A 5G Paradigm Based on Two-Tier Physical Network Architecture Elvino S. Sousa Jeffrey Skoll Professor in Computer Networks and Innovation University of Toronto Wireless Lab IEEE Toronto 5G Summit 2015

More information

3GPP: Evolution of Air Interface and IP Network for IMT-Advanced. Francois COURAU TSG RAN Chairman Alcatel-Lucent

3GPP: Evolution of Air Interface and IP Network for IMT-Advanced. Francois COURAU TSG RAN Chairman Alcatel-Lucent 3GPP: Evolution of Air Interface and IP Network for IMT-Advanced Francois COURAU TSG RAN Chairman Alcatel-Lucent 1 Introduction Reminder of LTE SAE Requirement Key architecture of SAE and its impact Key

More information

5G Standardization Status in 3GPP

5G Standardization Status in 3GPP As the radio interface of mobile phones has evolved, it has typically been changed about every ten years, and the 5G (5th Generation) interface is expected to start being used in the 2020s. Similar to

More information

LTE-U Forum: Alcatel-Lucent, Ericsson, Qualcomm Technologies Inc., Samsung Electronics & Verizon. LTE-U SDL Coexistence Specifications V1.

LTE-U Forum: Alcatel-Lucent, Ericsson, Qualcomm Technologies Inc., Samsung Electronics & Verizon. LTE-U SDL Coexistence Specifications V1. LTE-U Forum LTE-U Forum: Alcatel-Lucent, Ericsson, Qualcomm Technologies Inc., Samsung Electronics & Verizon LTE-U SDL Coexistence Specifications V1.0 (2015-02) Disclaimer and Copyright Notification Copyright

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 What s Behind 5G Wireless Communications? 서기환과장 2015 The MathWorks, Inc. 2 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile

More information

With release 12, the third generation. Is Your Handset PA Ready for LTE Device-to-Device Proximity Services?

With release 12, the third generation. Is Your Handset PA Ready for LTE Device-to-Device Proximity Services? Is Your Handset PA Ready for LTE Device-to-Device Proximity Services? Andreas Roessler Rohde & Schwarz, Munich, Germany With release 12, the third generation partnership project (3GPP) has taken on the

More information

Interference management Within 3GPP LTE advanced

Interference management Within 3GPP LTE advanced Interference management Within 3GPP LTE advanced Konstantinos Dimou, PhD Senior Research Engineer, Wireless Access Networks, Ericsson research konstantinos.dimou@ericsson.com 2013-02-20 Outline Introduction

More information

When technology meets spectrum: Bring 5G vision into Reality

When technology meets spectrum: Bring 5G vision into Reality When technology meets spectrum: Bring 5G vision into Reality 5G India 2018, 2 nd international conference (May 17-18, 2018) WU Yong www.huawei.com 5G Vision: Enabling a full connected world Enhance Mobile

More information

LTE Aida Botonjić. Aida Botonjić Tieto 1

LTE Aida Botonjić. Aida Botonjić Tieto 1 LTE Aida Botonjić Aida Botonjić Tieto 1 Why LTE? Applications: Interactive gaming DVD quality video Data download/upload Targets: High data rates at high speed Low latency Packet optimized radio access

More information

Panel Workshop Starts at 4:30 pm

Panel Workshop Starts at 4:30 pm Panel Discussion @NoMA Workshop Starts at 4:30 pm www.huawei.com Outline of the Panel Discussion Building connections between academic and industry DL NoMA in 3GPP UL NoMA in 3GPP Some thinking towards

More information

5G - The multi antenna advantage. Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology

5G - The multi antenna advantage. Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology 5G - The multi antenna advantage Bo Göransson, PhD Expert, Multi antenna systems Systems & Technology Content What is 5G? Background (theory) Standardization roadmap 5G trials & testbeds 5G product releases

More information

Vehicle to X communication complementing the automated driving system and more

Vehicle to X communication complementing the automated driving system and more Technology Week 2017 November 15 Taipei November 16 Hsin-Chu Vehicle to X communication complementing the automated driving system and more Joerg Koepp Market Segment Manager IoT Rohde & Schwarz What is

More information

LTE systems: overview

LTE systems: overview LTE systems: overview Luca Reggiani LTE overview 1 Outline 1. Standard status 2. Signal structure 3. Signal generation 4. Physical layer procedures 5. System architecture 6. References LTE overview 2 Standard

More information

Long Term Evolution (LTE)

Long Term Evolution (LTE) 1 Lecture 13 LTE 2 Long Term Evolution (LTE) Material Related to LTE comes from 3GPP LTE: System Overview, Product Development and Test Challenges, Agilent Technologies Application Note, 2008. IEEE Communications

More information

3GPP 5G 無線インターフェース検討状況

3GPP 5G 無線インターフェース検討状況 3GPP 5G 無線インターフェース検討状況 エリクソン ジャパン ( 株 ) ノキアソリューションズ & ネットワークス ( 株 ) 2017 年 12 月 22 日 1 Disclaimers This presentation is based on the draft 3GPP specifications to be approved in RAN#78 meeting in Dec/2017.

More information

Part I Evolution. ZTE All rights reserved

Part I Evolution. ZTE All rights reserved Part I Evolution 2 ZTE All rights reserved 4G Standard Evolution, LTE-A in 3GPP LTE(R8/R9) DL: 100Mbps, UL: 50Mbps MIMO, BF,LCS, embms LTE-A (R10/R11) DL: 1Gbps, UL: 500Mbps CA, Relay, Het-Net CoMP, emimo

More information

The Blueprint of 5G A Global Standard

The Blueprint of 5G A Global Standard The Blueprint of 5G A Global Standard Dr. Wen Tong Huawei Fellow, CTO, Huawei Wireless May 23 rd, 2017 Page 1 5G: One Network Infrastructure Serving All Industry Sectors Automotive HD Video Smart Manufacturing

More information

LTE Direct Overview. Sajith Balraj Qualcomm Research

LTE Direct Overview. Sajith Balraj Qualcomm Research MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION This technical data may be subject to U.S. and international export, re-export, or transfer ( export ) laws. Diversion contrary to U.S.

More information

Test strategy towards Massive MIMO

Test strategy towards Massive MIMO Test strategy towards Massive MIMO Using LTE-Advanced Pro efd-mimo Shatrughan Singh, Technical Leader Subramaniam H, Senior Technical Leader Jaison John Puliyathu Mathew, Senior Engg. Project Manager Abstract

More information

5G NR network deployment is now let s test!

5G NR network deployment is now let s test! 5G NR network deployment is now let s test! Jibran Siddiqui Technology and Application Engineer Mobile Network Testing Shakil Ahmed Regional Director Mobile Network Testing Contents Market drivers and

More information

Top 5 Challenges for 5G New Radio Device Designers

Top 5 Challenges for 5G New Radio Device Designers WHITE PAPER Top 5 Challenges for 5G New Radio Device Designers 5G New Radio (NR) Release-15, introduced in December 2017, lays the foundation for ultra-fast download speeds, reliable low latency connections,

More information

References. What is UMTS? UMTS Architecture

References. What is UMTS? UMTS Architecture 1 References 2 Material Related to LTE comes from 3GPP LTE: System Overview, Product Development and Test Challenges, Agilent Technologies Application Note, 2008. IEEE Communications Magazine, February

More information

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) Long Term Evolution (LTE) What is LTE? LTE is the next generation of Mobile broadband technology Data Rates up to 100Mbps Next level of

More information

3GPP RAN2 5GNR 技術發展狀況. Feng-Ming Yang Institute for Information Industry

3GPP RAN2 5GNR 技術發展狀況. Feng-Ming Yang Institute for Information Industry 3GPP RAN2 5GNR 技術發展狀況 Feng-Ming Yang Institute for Information Industry 5G Vision and Requirements 5G supports efficiently three different types of traffic profiles embb ->high throughput for e.g. video

More information

The 5G Technology Ecosystem. Dr. Taro Eichler Dr. Corbett Rowell

The 5G Technology Ecosystem. Dr. Taro Eichler Dr. Corbett Rowell The 5G Technology Ecosystem Dr. Taro Eichler Dr. Corbett Rowell Application scenarios that shall be supported by 5G technology High spectral efficiency Low latency High density device deployment Improved

More information

K E Y N O T E S P E E C H. Deputy General Manager / Keysight Technologies

K E Y N O T E S P E E C H. Deputy General Manager / Keysight Technologies //08 K E Y N O T E S P E E C H Jeffrey Chen Jeffrey-cy_chen@keysight.com 08.0. Deputy General Manager / Keysight Technologies M O R E S P E E D, L E S S P O W E R, P E R F E C T A C C U R A C Y NETWORKS/CLOUD

More information

LTE Conformance & Regulatory Test Introduction

LTE Conformance & Regulatory Test Introduction LTE Conformance & Regulatory Test Introduction Updated Oct 2 nd, 2014 Daphne Hsu Mobile Broadband Operation Agenda Page 2 LTE Conformance and Regulatory Certification Introduction Regulatory Test Case

More information

Addressing Future Wireless Demand

Addressing Future Wireless Demand Addressing Future Wireless Demand Dave Wolter Assistant Vice President Radio Technology and Strategy 1 Building Blocks of Capacity Core Network & Transport # Sectors/Sites Efficiency Spectrum 2 How Do

More information

All rights reserved. Mobile Developments. Presented by Philippe Reininger, Chairman of 3GPP RAN WG3

All rights reserved.  Mobile Developments. Presented by Philippe Reininger, Chairman of 3GPP RAN WG3 http://eustandards.in/ Mobile Developments Presented by Philippe Reininger, Chairman of 3GPP RAN WG3 Introduction 3GPP RAN has started a new innovation cycle which will be shaping next generation cellular

More information

5G Massive MIMO and mmw Design and Test Solution

5G Massive MIMO and mmw Design and Test Solution 5G Massive MIMO and mmw Design and Test Solution Jan. 2017 Philip Chang Senior Project Manager 1 Agenda Communications Page 2 Overview of 5G Technologies 5G Key Radio Technologies mmwave Massive MIMO Keysight

More information

MATLAB COMMUNICATION TITLES

MATLAB COMMUNICATION TITLES MATLAB COMMUNICATION TITLES -2018 ORTHOGONAL FREQUENCY-DIVISION MULTIPLEXING(OFDM) 1 ITCM01 New PTS Schemes For PAPR Reduction Of OFDM Signals Without Side Information 2 ITCM02 Design Space-Time Trellis

More information

Vehicle-to-Everything Communication - Is there any future for DSRC?

Vehicle-to-Everything Communication - Is there any future for DSRC? Vehicle-to-Everything Communication - Is there any future for DSRC? Jérôme Härri Keynote - Net4Cars 2015, Sousse, Tunisia Acknowledgement: Thanks to Laurent Gallo for his help and contributions to this

More information

NB IoT RAN. Srđan Knežević Solution Architect. NB-IoT Commercial in confidence Uen, Rev A Page 1

NB IoT RAN. Srđan Knežević Solution Architect. NB-IoT Commercial in confidence Uen, Rev A Page 1 NB IoT RAN Srđan Knežević Solution Architect NB-IoT Commercial in confidence 20171110-1 Uen, Rev A 2017-11-10 Page 1 Massive Iot market outlook M2M (TODAY) IOT (YEAR 2017 +) 15 Billion PREDICTED IOT CONNECTED

More information

Overview of OAI Work in BUPT

Overview of OAI Work in BUPT 1 4 th OAI Workshop Overview of OAI Work in BUPT Luhan Wang Beijing Univ. of Posts & Telec. Paris, Nov. 8, 2017 Introduction of BUPT group 2 1.1 项目内容概况 BUPT Beijing University of Posts and Telecommunications

More information

Vehicular Radio Access to Unlicensed Spectrum

Vehicular Radio Access to Unlicensed Spectrum EMERGING TECHNOLOGY FOR 5G ENABLED VEHICULAR NETWORKS Vehicular Radio Access to Unlicensed Spectrum Shao-Yu Lien, Der-Jiunn Deng, Hua-Lung Tsai, Ying-Pei Lin, and Kwang-Cheng Chen Abstract Connection to/among

More information

LTE-Advanced and Release 10

LTE-Advanced and Release 10 LTE-Advanced and Release 10 1. Carrier Aggregation 2. Enhanced Downlink MIMO 3. Enhanced Uplink MIMO 4. Relays 5. Release 11 and Beyond Release 10 enhances the capabilities of LTE, to make the technology

More information

LTE Network Architecture, Interfaces and Radio Access

LTE Network Architecture, Interfaces and Radio Access LTE Network Architecture, Interfaces and Radio Access Sanne STIJVE Business Development Manager, Mobile Broadband Ericsson 1 LTE/EPC Architecture & Terminology S1 enodeb MME X2 X2 P/S GW X2 enodeb EPC

More information

IEEE Project m as an IMT-Advanced Technology

IEEE Project m as an IMT-Advanced Technology 2008-09-25 IEEE L802.16-08/057r2 IEEE Project 802.16m as an IMT-Advanced Technology IEEE 802.16 Working Group on Broadband Wireless Access 1 IEEE 802.16 A Working Group: The IEEE 802.16 Working Group on

More information

Building versatile network upon new waveforms

Building versatile network upon new waveforms Security Level: Building versatile network upon new waveforms Chan Zhou, Malte Schellmann, Egon Schulz, Alexandros Kaloxylos Huawei Technologies Duesseldorf GmbH 5G networks: A complex ecosystem 5G service

More information

LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany;

LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany; Proceedings of SDR'11-WInnComm-Europe, 22-24 Jun 2011 LTE-ADVANCED - WHAT'S NEXT? Meik Kottkamp (Rohde & Schwarz GmBH & Co. KG, Munich, Germany; meik.kottkamp@rohde-schwarz.com) ABSTRACT From 2009 onwards

More information

Evolution of 3GPP LTE-Advanced Standard toward 5G

Evolution of 3GPP LTE-Advanced Standard toward 5G Evolution of 3GPP LTE-Advanced Standard toward 5G KRNet 2013. 6. 24. LG Electronics Byoung-Hoon Kim (bh.kim@lge.com) Communication Standards Evolution Mobility We are here IMT-Advanced Standard High (~350Km/h)

More information

Future Standardization

Future Standardization TD-LTE s Requirements on Future Standardization Outline TD-LTE Deployment in China Vision for Beyond R12 Challenges and Requirements Summary 2 TD-LTE Trial in China: Overview 2011 2012H1 2012H2 2013 Large

More information

3G long-term evolution

3G long-term evolution 3G long-term evolution by Stanislav Nonchev e-mail : stanislav.nonchev@tut.fi 1 2006 Nokia Contents Radio network evolution HSPA concept OFDM adopted in 3.9G Scheduling techniques 2 2006 Nokia 3G long-term

More information

Capacity Enhancement Techniques for LTE-Advanced

Capacity Enhancement Techniques for LTE-Advanced Capacity Enhancement Techniques for LTE-Advanced LG 전자 윤영우연구위원 yw.yun@lge.com 1/28 3GPP specification releases 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 GSM/GPRS/EDGE enhancements

More information

Further Vision on TD-SCDMA Evolution

Further Vision on TD-SCDMA Evolution Further Vision on TD-SCDMA Evolution LIU Guangyi, ZHANG Jianhua, ZHANG Ping WTI Institute, Beijing University of Posts&Telecommunications, P.O. Box 92, No. 10, XiTuCheng Road, HaiDian District, Beijing,

More information

Next Generation Mobile Networks NGMN Liaison Statement to 5GAA

Next Generation Mobile Networks NGMN Liaison Statement to 5GAA Simulation assumptions and simulation results of LLS and SLS 1 THE LINK LEVEL SIMULATION 1.1 Simulation assumptions The link level simulation assumptions are applied as follows: For fast fading model in

More information

3GPP TR V9.0.0 ( )

3GPP TR V9.0.0 ( ) TR 36.815 V9.0.0 (2010-03) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Further advancements for E-UTRA; LTE-Advanced feasibility studies in

More information

5G new radio architecture and challenges

5G new radio architecture and challenges WHITE PAPER 5G new radio architecture and challenges By Dr Paul Moakes, CTO, CommAgility www.commagility.com 5G New Radio One of the key enabling technologies for 5G will be New Radio (NR). 5G NR standardization

More information

Massive MIMO a overview. Chandrasekaran CEWiT

Massive MIMO a overview. Chandrasekaran CEWiT Massive MIMO a overview Chandrasekaran CEWiT Outline Introduction Ways to Achieve higher spectral efficiency Massive MIMO basics Challenges and expectations from Massive MIMO Network MIMO features Summary

More information

5G Frame Structure. August 2017 Frank Kowalewski, Eiko Seidel Nomor Research GmbH, Munich, Germany

5G Frame Structure. August 2017 Frank Kowalewski, Eiko Seidel Nomor Research GmbH, Munich, Germany 5G Frame Structure August 2017 Frank Kowalewski, Eiko Seidel Nomor Research GmbH, Munich, Germany Summary 3GPP is currently defining physical layer technologies for 5G cellular communications. New 5G services

More information

AIS Annual Investor Day 2016 Digital Transformation at AIS. 18 November 2016

AIS Annual Investor Day 2016 Digital Transformation at AIS. 18 November 2016 AIS Annual Investor Day 2016 Digital Transformation at AIS 18 November 2016 Addressing consumer s future demand with AIS technology roadmap Kriengsak Wanichnatee Chief Technology Officer 1 Global Technology

More information

Massive MIMO for the New Radio Overview and Performance

Massive MIMO for the New Radio Overview and Performance Massive MIMO for the New Radio Overview and Performance Dr. Amitabha Ghosh Nokia Bell Labs IEEE 5G Summit June 5 th, 2017 What is Massive MIMO ANTENNA ARRAYS large number (>>8) of controllable antennas

More information

LTE Air Interface. Course Description. CPD Learning Credits. Level: 3 (Advanced) days. Very informative, instructor was engaging and knowledgeable!

LTE Air Interface. Course Description. CPD Learning Credits. Level: 3 (Advanced) days. Very informative, instructor was engaging and knowledgeable! Innovating Telecoms Training Very informative, instructor was engaging and knowledgeable! Watch our course intro video. LTE Air Interface Course Description With the introduction of LTE came the development

More information

FANTASTIC-5G: Novel, flexible air interface for enabling efficient multiservice coexistence for 5G below 6GHz

FANTASTIC-5G: Novel, flexible air interface for enabling efficient multiservice coexistence for 5G below 6GHz FANTASTIC-5G: Novel, flexible air interface for enabling efficient multiservice coexistence for 5G below 6GHz Frank Schaich with support from the whole consortium January 28. 2016 1 Agenda Introduction

More information

5G Technologies and Advances, Part I

5G Technologies and Advances, Part I 5G Technologies and Advances, Part I 5G New Radio An Overview Borching Su 1 1 Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan August 6, 2018 Graduate Institute

More information

5G deployment below 6 GHz

5G deployment below 6 GHz 5G deployment below 6 GHz Ubiquitous coverage for critical communication and massive IoT White Paper There has been much attention on the ability of new 5G radio to make use of high frequency spectrum,

More information

ETSI work on IoT connectivity: LTN, CSS, Mesh and Others. Josef BERNHARD Fraunhofer IIS

ETSI work on IoT connectivity: LTN, CSS, Mesh and Others. Josef BERNHARD Fraunhofer IIS ETSI work on IoT connectivity: LTN, CSS, Mesh and Others Josef BERNHARD Fraunhofer IIS 1 Outline ETSI produces a very large number of standards covering the entire domain of telecommunications and related

More information

5G Program Manager Roger Nichols

5G Program Manager Roger Nichols 5G Program Manager 2018.08.20 Roger Nichols M A S S I V E MIMO E X A M P L E Question #1: What is missing from this picture? The other antennas! + =? Question #2: What is the exclusion zone for 61V/m?

More information

LTE-U Forum: Alcatel-Lucent, Ericsson, LG Electronics, Qualcomm Technologies Inc., Samsung Electronics & Verizon

LTE-U Forum: Alcatel-Lucent, Ericsson, LG Electronics, Qualcomm Technologies Inc., Samsung Electronics & Verizon LTE-U Forum LTE-U Forum: Alcatel-Lucent, Ericsson, LG Electronics, Qualcomm Technologies Inc., Samsung Electronics & Verizon LTE-U SDL Coexistence Specifications V1.3 (2015-10) Disclaimer and Copyright

More information

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN Evolved UTRA and UTRAN Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA Evolved UTRA (E-UTRA) and UTRAN represent long-term evolution (LTE) of technology to maintain continuous

More information

Radio Interface and Radio Access Techniques for LTE-Advanced

Radio Interface and Radio Access Techniques for LTE-Advanced TTA IMT-Advanced Workshop Radio Interface and Radio Access Techniques for LTE-Advanced Motohiro Tanno Radio Access Network Development Department NTT DoCoMo, Inc. June 11, 2008 Targets for for IMT-Advanced

More information

Feedback Compression Schemes for Downlink Carrier Aggregation in LTE-Advanced. Nguyen, Hung Tuan; Kovac, Istvan; Wang, Yuanye; Pedersen, Klaus

Feedback Compression Schemes for Downlink Carrier Aggregation in LTE-Advanced. Nguyen, Hung Tuan; Kovac, Istvan; Wang, Yuanye; Pedersen, Klaus Downloaded from vbn.aau.dk on: marts, 19 Aalborg Universitet Feedback Compression Schemes for Downlink Carrier Aggregation in LTE-Advanced Nguyen, Hung Tuan; Kovac, Istvan; Wang, Yuanye; Pedersen, Klaus

More information

GTI Proof of Concept of 5G System White Paper

GTI Proof of Concept of 5G System White Paper GTI Proof of Concept of 5G System White Paper http://www.gtigroup.org Page 0 White Paper of Proof of Concept of 5G System V 1.0 Version V1.0 Deliverable Type Confidential Level Program Name Working Group

More information

LTE-V for Sidelink 5G V2X Vehicular Communications

LTE-V for Sidelink 5G V2X Vehicular Communications IEEE copyright. This is an author-created postprint version. The final publication is available at http://ieeexplore.ieee.org/ LTE-V for Sidelink 5G V2X Vehicular Communications Rafael Molina-Masegosa

More information

RAN and Key technologies in 5G NR

RAN and Key technologies in 5G NR RAN and Key technologies in 5G NR Zhixi Wang Huawei Technology September,2018 Agenda NR Overall Architecture and Network Interfaces Physical Layer Layer 2 and RRC Deployment Architecture and Scenarios

More information

5G: New Air Interface and Radio Access Virtualization. HUAWEI WHITE PAPER April 2015

5G: New Air Interface and Radio Access Virtualization. HUAWEI WHITE PAPER April 2015 : New Air Interface and Radio Access Virtualization HUAWEI WHITE PAPER April 2015 5 G Contents 1. Introduction... 1 2. Performance Requirements... 2 3. Spectrum... 3 4. Flexible New Air Interface... 4

More information

3G Evolution HSPA and LTE for Mobile Broadband Part II

3G Evolution HSPA and LTE for Mobile Broadband Part II 3G Evolution HSPA and LTE for Mobile Broadband Part II Dr Stefan Parkvall Principal Researcher Ericsson Research stefan.parkvall@ericsson.com Outline Series of three seminars I. Basic principles Channel

More information

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

Progress on LAA and its relationship to LTE-U and MulteFire. Qualcomm Technologies, Inc. February 22, 2016

Progress on LAA and its relationship to LTE-U and MulteFire. Qualcomm Technologies, Inc. February 22, 2016 Progress on LAA and its relationship to LTE-U and MulteFire Qualcomm Technologies, Inc. February 22, 2016 Making best use of 5 GHz unlicensed band LTE-U/LAA, LWA, MulteFire and will coexist in 5 GHz Enterprises

More information

Wiley-IEEE Press Sampler. Communications Technology Power and Energy

Wiley-IEEE Press Sampler. Communications Technology Power and Energy Wiley-IEEE Press Sampler Communications Technology Power and Energy Contents 5G STANDARD DEVELOPMENT: TECHNOLOGY AND ROADMAP By Juho Lee and Yongjun Kwak Chapter 23 of Signal Processing for 5G: Algorithms

More information

Requirements on 5G Development Device manufacturer s perspective

Requirements on 5G Development Device manufacturer s perspective Requirements on 5G Development Device manufacturer s perspective ECC 5G Mobile Communications Workshop Mainz, Nov. 2 4 2016 Quan Yu, Chief Strategy Officer, Huawei Wireless Product Line 1 Europe s 5G Action

More information

Radio Access Techniques for LTE-Advanced

Radio Access Techniques for LTE-Advanced Radio Access Techniques for LTE-Advanced Mamoru Sawahashi Musashi Institute of of Technology // NTT DOCOMO, INC. August 20, 2008 Outline of of Rel-8 LTE (Long-Term Evolution) Targets for IMT-Advanced Requirements

More information

5G Synchronization Aspects

5G Synchronization Aspects 5G Synchronization Aspects Michael Mayer Senior Staff Engineer Huawei Canada Research Centre WSTS, San Jose, June 2016 Page 1 Objective and outline Objective: To provide an overview and summarize the direction

More information

New Radio for 5G. The future of mobile broadband

New Radio for 5G. The future of mobile broadband New Radio for 5G The future of mobile broadband Table of Contents Abstract...3 1 5G Mobile Communications... 4 1.1 Capabilities and Requirements...5 1.2 IMT-2020 Requirements and Usage Scenarios...5 1.3

More information

Testing Carrier Aggregation in LTE-Advanced Network Infrastructure

Testing Carrier Aggregation in LTE-Advanced Network Infrastructure TM500 Family White Paper December 2015 Testing Carrier Aggregation in LTE-Advanced Network Infrastructure Contents Introduction... Error! Bookmark not defined. Evolution to LTE-Advanced... 3 Bandwidths...

More information

Carrier Aggregation with the Accelerated 6350-SR

Carrier Aggregation with the Accelerated 6350-SR Accelerated Concepts, Inc. 1120 E. Kennedy Blvd, Suite 227 Tampa, FL 33602 Phone: 813.699.3110 sales@accelerated.com www.accelerated.com Accelerated Concepts, Inc. 2016 Version 20161212 ACCELERATED.COM

More information

Path to 5G Radio Access Network

Path to 5G Radio Access Network Path to 5G Radio Access Network Eduardo Inzunza RF-Test Market Development Dec-2017 2016 2017 Viavi Solutions Inc. 1 Topics 5G RAN Introduction 5G Evolution 5G Revolution 2 Cellular evolution APPS 10101

More information

3GPP TR V ( )

3GPP TR V ( ) TR 36.927 V10.1.0 (2011-09) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Potential solutions

More information

M A R C H 2 6, Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies. 5G New Radio Challenges and Redefining Test

M A R C H 2 6, Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies. 5G New Radio Challenges and Redefining Test M A R C H 2 6, 2 0 1 8 Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies 1 5G Market Trends 5G New Radio Specification and Implications New Measurement Challenges and Redefining Test Summary

More information