EEE 201 CIRCUIT THEORY I EXPERIMENT 3

Size: px
Start display at page:

Download "EEE 201 CIRCUIT THEORY I EXPERIMENT 3"

Transcription

1 EEE 0 CIRCUIT THEORY I OLTAGE DIIDER 3. Objectives: oltage Divider in No-load Operation: Measurement of the voltage ratios on a voltage divider in no-load operation. oltage divider Formula. oltage Divider Under Load: Measurement of voltage ratios on a voltage divider under load.. 3. Equipment and Materials The list of equipment and materials used in this experiment is shown in Table 3.. Please record any damage, if exists any while performing the experiment, and its way of occurrence in the allocated space of this table in detail. You can also write the difficulties you are confronted with when using the equipment, and your suggestions and critics related with the equipment you used. Table 3. Equipment and material list used in Experiment 3. No: Equipment Model Serial No: Office Stock No: Plug in Board, DIN A4 47 Ω Resistor (W), (5%) 3 00 Ω Resistor (W), (5%) 4 50 Ω Resistor (W), (5%) 5 kω Resistor (W), (5%) 6 Potentiometer 00 Ω, (3W) 7 Multimeters GMBH 8 Stabilized mains power supply unit 0 to +/- 5 9 Connecting Probes and Cables Record of damage or other comments: 3.3 Preliminary Work

2 EEE 0 CIRCUIT THEORY I 3.4 Experimental Procedure and Records 3.4. oltage Divider in No-load Operation i) Assemble the circuit as shown in Fig. 3. R =50 Ω, R =47 Ω.Make sure that the polarities of the voltage source and the measurement instruments are correct, and that the correct measurement ranges have been selected. ii) Set the input voltage E to 0. Measure the component voltages and and record these in Table 3.. iii) Repeat the measurements with R =00 Ω and R =00 Ω. iv) Repeat the measurements with R =47 Ω and R =50 Ω. v) Now assemble the circuit as in Fig. 3.. Measure the component voltages and for 7 different potentiometer settings and record these in Table 3.3. Figure 3. Measurement of the component voltages on a voltage divider. Table 3. Data for Experiment 3.4. R (Ω) R (Ω) (Ω) (Ω) R / R /

3 EEE 0 CIRCUIT THEORY I Figure 3. Measurement of component voltages on a voltage divider consisting of a potentiometer. Potentiometer alues (Settings) a (0) b () c () d (3) e (4) f (5) g (6) Table 3.3 ( ) ( ) vi) Plot the measured results listed in Table 3. on Figure 3.3. vii) Plot the measured results listed in Table 3.3 on Figure

4 EEE 0 CIRCUIT THEORY I Figure 3.3 oltage / resistance graph of a divider consisting of two resistors for various resistance combinations. Figure 3.4 oltage / resistance graph of a voltage divider consisting of a potentiometer, for various potentiometer settings oltage Divider Under Load i) Assemble circuit as shown in Figure 3.5. But, without load resistor R L Take care that the polarity of the power supply and multimeters is correct, and that the correct measurement range has been selected. ii) Set the input voltage E to 0. Measure the component voltages and for 7 different potentiometer settings and record these measurements in Table 3.4. Each time adjust the input voltage to 0. iii) Repeat the measurements with a load resistor R L = kω. iv) Repeat the measurements with a load resistor R L =50 Ω. v) Repeat the measurements with a load resistor R L =47 Ω.. vi) Plot the relationship between the voltage as measured at the potentiometer and the potentiometer setting P for the constant load resistor R L to Figure

5 EEE 0 CIRCUIT THEORY I Figure 3.5 Measurement of component voltage ratios on a voltage divider under load. Table 3.4 Data for the Experiment 3.4. R L = R L = kω () () () () a (0) a (0) b () b () c () c () d (3) d (3) e (4) e (4) f (5) f (5) g (6) g (6) R L = 50 Ω R L = 47 Ω () () () () a (0) a (0) b () b () c () c () d (3) d (3) e (4) e (4) f (5) f (5) g (6) g (6) 5

6 EEE 0 CIRCUIT THEORY I Figure 3.6 Setting characteristics of a voltage divider under load at various load resistance values vii) A potentiometer consists of a fixed resistor, on which any intermediate value may be chosen using a sliding contact. In Fig. 3.7, A and B represents its fixed terminals, C represents the sliding contact terminal. Set the potentiometer as follows: Resistance between A and B : 00 Ω Resistance between A and C : 0 Ω Resistance between C and B : 80 Ω These are nominal values, experimentally choose the values near to these. Then place a load resistor of 47 Ω between C and B, creating the resistor combination shown in Figure

7 EEE 0 CIRCUIT THEORY I viii) How high is the voltage between C and B if a voltage of 0 is applied between A and B? =... BA Figure 3.7 Example for calculating oltage Divider Under Load 3.5 Results and Discussions ) Answer the following questions by using the data of Experiment i) Add voltages and and enter the result in Table 3.. ii) What is the relationship between the total voltage E and the component voltages and? iii) Determine the quotients R R and and enter them in Table 3.. iv) How do the resistance values relate to the corresponding voltages? 7

8 EEE 0 CIRCUIT THEORY I Deduction of the voltage divider formula: R E = + and = using these formulas together with the input voltage E and R = R R + the known resistance ratio, it is possible to calculate the resulting voltage as follows; E (This so-called voltage divider formula is only valid for voltage dividers in no-load operation.) Deductions: = + () E R = () R Thus it follows from () that: = E (3) Applying (3) in () results in: R E E E = = = R Solutions for results in: R + R E = = R R E + R = E R R + 8

Experiment #5 Series and Parallel Resistor Circuits

Experiment #5 Series and Parallel Resistor Circuits Experiment #5 Series and Parallel Resistor Circuits Objective: You will become familiar with the MB Board and learn how to build simple DC circuits. This will introduce you to series and parallel circuits

More information

Experiment 2 Electric Circuit Fundamentals

Experiment 2 Electric Circuit Fundamentals Experiment 2 Electric Circuit Fundamentals Introduction This experiment has two parts. Each part will have to be carried out using the Multisim Electronics Workbench software. The experiment will then

More information

EXPERIMENT 6 REPORT Bipolar Junction Transistor (BJT) Characteristics

EXPERIMENT 6 REPORT Bipolar Junction Transistor (BJT) Characteristics Name & Surname: ID: Date: EXPERIMENT 6 REPORT Bipolar Junction Transistor (BJT) Characteristics Objectives: 1. To determine transistor type (npn, pnp),terminals, and material using a DMM 2. To graph the

More information

EE 210: CIRCUITS AND DEVICES

EE 210: CIRCUITS AND DEVICES EE 210: CIRCUITS AND DEVICES LAB #3: VOLTAGE AND CURRENT MEASUREMENTS This lab features a tutorial on the instrumentation that you will be using throughout the semester. More specifically, you will see

More information

EXPERIMENT 1 INTRODUCTION TO LABORATORY INSTRUMENTS

EXPERIMENT 1 INTRODUCTION TO LABORATORY INSTRUMENTS EXPERIMENT 1 INTRODUCTION TO LABORATORY INSTRUMENTS 1.1 Objective: In this experiment, multimeters and some circuit components are introduced. You will learn the following things: i. Reading the color

More information

PHYS 1402 General Physics II Experiment 5: Ohm s Law

PHYS 1402 General Physics II Experiment 5: Ohm s Law PHYS 1402 General Physics II Experiment 5: Ohm s Law Student Name Objective: To investigate the relationship between current and resistance for ordinary conductors known as ohmic conductors. Theory: For

More information

Fig [5]

Fig [5] 1 (a) Fig. 4.1 shows the I-V characteristic of a light-emitting diode (LED). 40 I / 10 3 A 30 20 10 0 1.0 1.5 2.0 V / V Fig. 4.1 (i) In Describe the significant features of the graph in terms of current,

More information

II. Experimental Procedure

II. Experimental Procedure Ph 122 July 27, 2006 Ohm's Law http://www.physics.sfsu.edu/~manuals/ph122/ I. Theory In this lab we will make detailed measurements on one resistor to see if it obeys Ohm's law. We will also verify the

More information

LABORATORY 3 v3 CIRCUIT ELEMENTS

LABORATORY 3 v3 CIRCUIT ELEMENTS University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Leon Chua LABORATORY 3 v3 CIRCUIT ELEMENTS The purpose of this laboratory is to familiarize

More information

Laboratory No. 01: Small & Large Signal Diode Circuits. Electrical Enginnering Departement. By: Dr. Awad Al-Zaben. Instructor: Eng.

Laboratory No. 01: Small & Large Signal Diode Circuits. Electrical Enginnering Departement. By: Dr. Awad Al-Zaben. Instructor: Eng. Laboratory No. 01: Small & Large Signal Diode Circuits Electrical Enginnering Departement By: Dr. Awad Al-Zaben Instructor: Eng. Tamer Shahta Electronics Laboratory EE 3191 February 23, 2014 I. OBJECTIVES

More information

DC Circuits, Ohm's Law and Multimeters Physics 246

DC Circuits, Ohm's Law and Multimeters Physics 246 DC Circuits, Ohm's Law and Multimeters Physics 246 Theory: In this lab we will learn the use of multimeters, verify Ohm s law, and study series and parallel combinations of resistors and capacitors. For

More information

Physics 1051 Laboratory #4 DC Circuits and Ohm s Law. DC Circuits and Ohm s Law

Physics 1051 Laboratory #4 DC Circuits and Ohm s Law. DC Circuits and Ohm s Law DC Circuits and Ohm s Law Contents Part I: Objective Part II: Introduction Part III: Apparatus and Setup Part IV: Measurements Part V: Analysis Part VI: Summary and Conclusions Part I: Objective In this

More information

Resistance and Ohm s Law

Resistance and Ohm s Law esistance and Ohm s Law Name D TA Partners Date Section Please be careful about the modes of the multimeter. When you measure a voltage, you are not allowed to use current mode (A), and vice versa. Otherwise,

More information

Basic DC Power Supply

Basic DC Power Supply Basic DC Power Supply Equipment: 1. Analog Oscilloscope 2. Digital multimeter 3. Experimental board and connectors. Objectives: 1. To understand the basic DC power supply both half wave and full wave rectifier.

More information

Exercise 2: Current in a Series Resistive Circuit

Exercise 2: Current in a Series Resistive Circuit DC Fundamentals Series Resistive Circuits Exercise 2: Current in a Series Resistive Circuit EXERCISE OBJECTIVE circuit by using a formula. You will verify your results with a multimeter. DISCUSSION Electric

More information

WHEATSTONE BRIDGE. Objectives

WHEATSTONE BRIDGE. Objectives WHEATSTONE BRIDGE Objectives The Wheatstone bridge is a circuit designed to measure an unknown resistance by comparison with other known resistances. A slide-wire form of the Wheatstone bridge will be

More information

Electronics & Control

Electronics & Control Electronics & Control Analogue Electronics Introduction By the end of this unit you should be able to: Know the difference between a series and parallel circuit Measure voltage in a series circuit Measure

More information

EEE 2101 Circuit Theory I - Laboratory 1 Kirchoff s Laws, Series-Parallel Circuits

EEE 2101 Circuit Theory I - Laboratory 1 Kirchoff s Laws, Series-Parallel Circuits ame & Surname: D: Date: EEE 20 Circuit Theory - Laboratory Kirchoff s Laws, Series-Parallel Circuits List of topics for this laboratory: Ohm s Law Kirchoff s Current Law(KCL) Kirchoff s Voltage Law(KVL)

More information

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS EXPERIMENT : 5 TITLE : ACTIVE FILTERS OUTCOME : Upon completion of this unit, the student should be able to: 1. gain experience with

More information

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I ECE285 Electric Circuit Analysis I Spring 2014 Nathalia Peixoto Rev.2.0: 140124. Rev 2.1. 140813 1 Lab reports Background: these 9 experiments are designed as simple building blocks (like Legos) and students

More information

LABORATORY 3 v1 CIRCUIT ELEMENTS

LABORATORY 3 v1 CIRCUIT ELEMENTS University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Bernhard Boser LABORATORY 3 v1 CIRCUIT ELEMENTS The purpose of this laboratory is to familiarize

More information

ENGR 120 LAB #2 Electronic Tools and Ohm s Law

ENGR 120 LAB #2 Electronic Tools and Ohm s Law ENGR 120 LAB #2 Electronic Tools and Ohm s Law Objectives Understand how to use a digital multi-meter, power supply and proto board and apply that knowledge to constructing circuits to demonstrate ohm

More information

Integrators, differentiators, and simple filters

Integrators, differentiators, and simple filters BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

More information

INC 253 Digital and electronics laboratory I

INC 253 Digital and electronics laboratory I INC 253 Digital and electronics laboratory I Laboratory 4 Wave Shaping Diode Circuits Author: ID CoAuthors: 1. ID 2. ID 3. ID Experiment Date: Report received Date: Comments For Instructor Full Marks Pre

More information

BME 3511 Laboratory 2 Digital Multimeter (DMM)

BME 3511 Laboratory 2 Digital Multimeter (DMM) BME 3511 Laboratory 2 Digital Multimeter (DMM) Objective: The objective of this exercise is to further explore the usage of digital multimeters (DMM). Upon the completion of this lab, the student will:

More information

UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT AMPLIFIER FREQUENCY RESPONSE

UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT AMPLIFIER FREQUENCY RESPONSE UNISITY OF UTAH LTIAL AND OMPUT NGINING DPATMNT 30 LABOATOY XPIMNT NO. AMPLIFI FQUNY SPONS Objecties This experiment will demonstrate the frequency and time domain response of a single-stage common emitter

More information

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Experiment 3 Ohm s Law 3.1 Objectives Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Construct a circuit using resistors, wires and a breadboard

More information

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Experiment 2 Ohm s Law 2.1 Objectives Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Construct a circuit using resistors, wires and a breadboard

More information

I. Objectives Upon completion of this experiment, the student should be able to: Ohm s Law

I. Objectives Upon completion of this experiment, the student should be able to: Ohm s Law EENG-201 Experiment # 1 Series Circuit and Parallel Circuits I. Objectives Upon completion of this experiment, the student should be able to: 1. ead and use the resistor color code. 2. Use the digital

More information

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - I

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - I CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - I OBJECTIVE The purpose of the experiment is to examine non-ideal characteristics of an operational amplifier. The characteristics that are investigated include

More information

Experiment 8: An AC Circuit

Experiment 8: An AC Circuit Experiment 8: An AC Circuit PART ONE: AC Voltages. Set up this circuit. Use R = 500 Ω, L = 5.0 mh and C =.01 μf. A signal generator built into the interface provides the emf to run the circuit from Output

More information

V (in volts) = voltage applied to the circuit, I (in amperes) = current flowing in the circuit, R (in ohms) = resistance of the circuit.

V (in volts) = voltage applied to the circuit, I (in amperes) = current flowing in the circuit, R (in ohms) = resistance of the circuit. OHM S LW OBJECTIES: PRT : 1) Become familiar with the use of ammeters and voltmeters to measure DC voltage and current. 2) Learn to use wires and a breadboard to build circuits from a circuit diagram.

More information

EE Laboratory 4 - First Order Circuits *** Due in recitation on the week of June 2-6, 2008 ***

EE Laboratory 4 - First Order Circuits *** Due in recitation on the week of June 2-6, 2008 *** Page 1 EE 15 - - First Order Circuits *** Due in recitation on the week of June -6, 008 *** Authors R.D. Christie Objectives At the end of this lab, you will be able to: Confirm the steady state model

More information

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope EET 150 Introduction to EET Lab Activity 8 Function Generator Introduction Required Parts, Software and Equipment Parts Figure 1 Component /Value Quantity Resistor 10 kω, ¼ Watt, 5% Tolerance 1 Resistor

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Objecties Boise State Uniersity Department of Electrical and Computer Engineering ECE 22L Circuit Analysis and Design Lab Experiment #2: Sinusoidal Steady State and Resonant Circuits The objecties of this

More information

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT 1. OBJECTIVES 1.1 To practice how to test NPN and PNP transistors using multimeter. 1.2 To demonstrate the relationship between collector current

More information

ECE 2274 Pre-Lab for Experiment # 4 Diode Basics and a Rectifier Completed Prior to Coming to Lab

ECE 2274 Pre-Lab for Experiment # 4 Diode Basics and a Rectifier Completed Prior to Coming to Lab Part I I-V Characteristic Curve ECE 2274 Pre-Lab for Experiment # 4 Diode Basics and a Rectifier Completed Prior to Coming to Lab 1. Construct the circuit shown in figure 4-1. Using a DC Sweep, simulate

More information

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope EET 150 Introduction to EET Lab Activity 5 Oscilloscope Introduction Required Parts, Software and Equipment Parts Figure 1, Figure 2, Figure 3 Component /Value Quantity Resistor 10 kω, ¼ Watt, 5% Tolerance

More information

Unit 4: Principles of Electrical and Electronic Engineering. LO1: Understand fundamental electrical principles Maximum power transfer

Unit 4: Principles of Electrical and Electronic Engineering. LO1: Understand fundamental electrical principles Maximum power transfer Unit 4: Principles of Electrical and Electronic Engineering LO1: Understand fundamental electrical principles Maximum power transfer Instructions and answers for teachers These instructions should accompany

More information

EK 307 Lab: Light-Emitting Diodes. In-lab Assignment (Complete Level 1 and additionally level 2 if you choose to):

EK 307 Lab: Light-Emitting Diodes. In-lab Assignment (Complete Level 1 and additionally level 2 if you choose to): EK 307 Lab: Light-Emitting Diodes Laboratory Goal: To explore the characteristics of the light emitting diode. Learning Objectives: Voltage, Current, Power, and Instrumentation. Suggested Tools: Voltage

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 1 MAXIMUM POWER TRANSFER OBJECTIVES In this experiment the student will investigate the circuit requirements

More information

Laboratory Project 1: Design of a Myogram Circuit

Laboratory Project 1: Design of a Myogram Circuit 1270 Laboratory Project 1: Design of a Myogram Circuit Abstract-You will design and build a circuit to measure the small voltages generated by your biceps muscle. Using your circuit and an oscilloscope,

More information

LABORATORY MODULE. ENT 163 Fundamental of Electrical Engineering Semester 1 (2006/2007) EXPERIMENT 4: Thevenin s and Norton s Theorem

LABORATORY MODULE. ENT 163 Fundamental of Electrical Engineering Semester 1 (2006/2007) EXPERIMENT 4: Thevenin s and Norton s Theorem LABORATORY MODULE ENT 163 Fundamental of Electrical Engineering Semester 1 (2006/2007) EXPERIMENT 4: Thevenin s and Norton s Theorem Name Matrix No. : : School of Mechatronic Engineering Northern Malaysia

More information

Module 1, Lesson 2 Introduction to electricity. Student. 45 minutes

Module 1, Lesson 2 Introduction to electricity. Student. 45 minutes Module 1, Lesson 2 Introduction to electricity 45 minutes Student Purpose of this lesson Explanations of fundamental quantities of electrical circuits, including voltage, current and resistance. Use a

More information

DC Circuits. Date: Introduction

DC Circuits. Date: Introduction Group # Date: Names: DC Circuits Introduction In this experiment you will examine how to make simple DC measurements that involve current, voltage, and resistance. The current I through a resistor R with

More information

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING Objectives: To familiarize the student with the concepts of signal conditioning. At the end of the lab, the student should be able to: Understand the

More information

Oregon State University Lab Session #1 (Week 3)

Oregon State University Lab Session #1 (Week 3) Oregon State University Lab Session #1 (Week 3) ENGR 201 Electrical Fundamentals I Equipment and Resistance Winter 2016 EXPERIMENTAL LAB #1 INTRO TO EQUIPMENT & OHM S LAW This set of laboratory experiments

More information

Lab 2.4 Arduinos, Resistors, and Circuits

Lab 2.4 Arduinos, Resistors, and Circuits Lab 2.4 Arduinos, Resistors, and Circuits Objectives: Investigate resistors in series and parallel and Kirchoff s Law through hands-on learning Get experience using an Arduino hat you need: Arduino Kit:

More information

Experiment 1 Basic Resistive Circuit Parameters

Experiment 1 Basic Resistive Circuit Parameters Experiment 1 Basic Resistive Circuit Parameters Report Due In-class on Wed., Mar. 14, 2018 Note: (1) The Prelab section must be completed prior to the lab period. (2) All submitted lab reports should have

More information

EET 150 Introduction to EET Lab Activity 12 Temperature Sensor Amplifier Project

EET 150 Introduction to EET Lab Activity 12 Temperature Sensor Amplifier Project Required Parts, Software and Equipment Parts EET 150 Introduction to EET Lab Activity 12 Temperature Sensor Amplifier Project Figure 1 Flasher Circuit Component /alue Quantity LM741 OP AMP Integrated Circuit

More information

Lab 2: Linear and Nonlinear Circuit Elements and Networks

Lab 2: Linear and Nonlinear Circuit Elements and Networks OPTI 380B Intermediate Optics Laboratory Lab 2: Linear and Nonlinear Circuit Elements and Networks Objectives: Lean how to use: Function of an oscilloscope probe. Characterization of capacitors and inductors

More information

Experiment 6: Biasing Circuitry

Experiment 6: Biasing Circuitry 1 Objective UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE105 Lab Experiments Experiment 6: Biasing Circuitry Setting up a biasing

More information

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 9

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 9 Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 9 COMMON-COLLECTOR (EMITTER FOLLOWER) AMPLIFIER Aim: 1. To measure the open-circuit voltage gain,

More information

RF Power Meter. where V is the peak power across the load, R is the resistance of the load and P is the r.m.s. power.

RF Power Meter. where V is the peak power across the load, R is the resistance of the load and P is the r.m.s. power. RF Power Meter The requirement was for a 50Ω, 5W dummy load with a linear power meter. The meter should have power ranges of 1W, 3W, 10W, 30W and 100W. (Use on the 100W range was to be with caution to

More information

Ohm s and Kirchhoff s Circuit Laws. Abstract. Introduction and Theory. EE 101 Spring 2006 Date: Lab Section #: Lab #2

Ohm s and Kirchhoff s Circuit Laws. Abstract. Introduction and Theory. EE 101 Spring 2006 Date: Lab Section #: Lab #2 EE 101 Spring 2006 Date: Lab Section #: Lab #2 Name: Ohm s and Kirchhoff s Circuit Laws Abstract Rev. 20051222JPB Partner: Electrical circuits can be described with mathematical expressions. In fact, it

More information

ELECTROTECHNICH LAB. PART 1 EXPERIMENTS

ELECTROTECHNICH LAB. PART 1 EXPERIMENTS ELECTROTECHNICH LAB. PART 1 EXPERIMENTS Yrd. Doç. Dr. Taha İMECİ Arş. Gör. Ezgi YAMAÇ Arş. Gör. Ufuk ŞANVER İSTANBUL COMMERCE UNIVERSITY Contents EXPERIMENT: 1.1... 2 COLOUR CODES OF RESISTORS... 2 EXPERIMENT:

More information

NI PXI-4110 Calibration Procedure Addendum

NI PXI-4110 Calibration Procedure Addendum NOTE TO USERS N PX-4110 Calibration Procedure Addendum Test Equipment Required Equipment This document is an addendum to the N PX-4110 Calibration Procedure, part number 371701F-01, available at ni.com/manuals.

More information

2. SINGLE STAGE BIPOLAR JUNCTION TRANSISTOR (BJT) AMPLIFIERS

2. SINGLE STAGE BIPOLAR JUNCTION TRANSISTOR (BJT) AMPLIFIERS 2. SINGLE STAGE BIPOLAR JUNCTION TRANSISTOR (BJT) AMPLIFIERS I. Objectives and Contents The goal of this experiment is to become familiar with BJT as an amplifier and to evaluate the basic configurations

More information

Electronics I. laboratory measurement guide

Electronics I. laboratory measurement guide Electronics I. laboratory measurement guide Andras Meszaros, Mark Horvath 2015.02.01. 5. Measurement Basic circuits with operational amplifiers 2015.02.01. In this measurement you will need both controllable

More information

RC Circuit Activity. Retrieve a power cord and a voltage sensor from the wire rack hanging on the wall in the lab room.

RC Circuit Activity. Retrieve a power cord and a voltage sensor from the wire rack hanging on the wall in the lab room. Purpose RC Circuit Activity Using an RC circuit, students will determine time constants by varying the resistance of the circuit and analyzing the exponential decay. After determining several time constants,

More information

Basis for Thevenin and Norton Equivalent Circuits

Basis for Thevenin and Norton Equivalent Circuits Basis for Thevenin and Norton Equivalent Circuits Objective of ecture Describe the differences between ideal and real voltage and current sources Chapter 8.1 and 8.2 rinciples of Electric Circuits Demonstrate

More information

Series + accesories DLA

Series + accesories DLA DLA Series + accesories Series + accesories DLA Stroke: 25-300mm 150-1000N Transmotec sell a broad range of linear actuators in standard and customized configurations. Transmotec is the ideal supplier

More information

OCR Electronics for A2 MOSFETs Variable resistors

OCR Electronics for A2 MOSFETs Variable resistors Resistance characteristic You are going to find out how the drain-source resistance R d of a MOSFET depends on its gate-source voltage V gs when the drain-source voltage V ds is very small. 1 Assemble

More information

Data Acquisition. NHMFL Summer School 2016 William Coniglio. with many slides from Scott Hannahs

Data Acquisition. NHMFL Summer School 2016 William Coniglio. with many slides from Scott Hannahs Data Acquisition NHMFL Summer School 2016 William Coniglio with many slides from Scott Hannahs Generic Data Acquisition Experiment Analysis Publication Physical Measurement Digital Representation Raw Data

More information

The Series RLC Circuit and Resonance

The Series RLC Circuit and Resonance Purpose Theory The Series RLC Circuit and Resonance a. To study the behavior of a series RLC circuit in an AC current. b. To measure the values of the L and C using the impedance method. c. To study the

More information

Product overview. Features. Product specifications. Order codes. 1kΩ Resistance Output Module

Product overview. Features. Product specifications. Order codes. 1kΩ Resistance Output Module Product overview The AX-ROM135 and the AX-ROM1000 Modules enable an Analogue, Pulse or Floating point signal and convert to either a 0-135Ω or a 1KΩ Proportional Resistive output signal. The output resistance

More information

Give one or two examples of electrical devices that you have personally noticed getting warm when they are turned on.

Give one or two examples of electrical devices that you have personally noticed getting warm when they are turned on. Resistors We begin by learning how to read the values of resistors and to measure the values using a digital multimeter (DMM). Resistors are the most common and simplest electrical component. In an electrical

More information

INTRODUCTION TO AC FILTERS AND RESONANCE

INTRODUCTION TO AC FILTERS AND RESONANCE AC Filters & Resonance 167 Name Date Partners INTRODUCTION TO AC FILTERS AND RESONANCE OBJECTIVES To understand the design of capacitive and inductive filters To understand resonance in circuits driven

More information

FREQUENCY RESPONSE OF R, L AND C ELEMENTS

FREQUENCY RESPONSE OF R, L AND C ELEMENTS FREQUENCY RESPONSE OF R, L AND C ELEMENTS Marking scheme : Methods & diagrams : 3 Graph plotting : - Tables & analysis : 2 Questions & discussion : 3 Performance : 2 Aim: This experiment will investigate

More information

Wheatstone bridge (Item No.: P )

Wheatstone bridge (Item No.: P ) Wheatstone bridge (Item No.: P2410200) Curricular Relevance Area of Expertise: Physics Education Level: University Topic: Electricity and Magnetism Subtopic: Electric Current and Resistance Experiment:

More information

TEP. RLC Circuit with Cobra3

TEP. RLC Circuit with Cobra3 RLC Circuit with Cobra3 TEP Related topics Tuned circuit, series-tuned circuit, parallel-tuned circuit, resistance, capacitance, inductance, capacitor, coil, phase displacement, Q-factor, band-width,impedance,

More information

LABORATORY Experiment 1

LABORATORY Experiment 1 LABORATORY Experiment 1 Resistivity Measurement, Resistors and Ohm s Law 1. Objectives To measure the resistance of conductors, insulators and semiconductor and calculate the resistivity of a copper wire.

More information

DEPARTMENT OF ELECTRONIC ENGINEERING ELECTRONIC WORKSHOP # 03. Resistors

DEPARTMENT OF ELECTRONIC ENGINEERING ELECTRONIC WORKSHOP # 03. Resistors MEHRAN UNIVERSITY OF ENGINEERING AND TECHNOLOGY, JAMSHORO DEPARTMENT OF ELECTRONIC ENGINEERING ELECTRONIC WORKSHOP # 03 Resistors Roll. No: Checked by: Date: Grade: Object: To become familiar with resistors,

More information

Resistance Measurements (Measure all of your resistors, since even those that are labeled the same can be at least a little different)

Resistance Measurements (Measure all of your resistors, since even those that are labeled the same can be at least a little different) Resistors We begin by learning how to read the values of resistors and to measure the values using a digital multimeter (DMM). Resistors are the most common and simplest electrical component. In an electrical

More information

Inductive Standard Displacement Transducers

Inductive Standard Displacement Transducers WA Inductive Standard Displacement Transducers Special features - Available as displacement probe or with detachable plunger - Good thermal stability in the event of temperature gradients - Space saving,

More information

SYLLABUS. osmania university CHAPTER - 1 : CONTROL SYSTEMS CLASSIFICATION

SYLLABUS. osmania university CHAPTER - 1 : CONTROL SYSTEMS CLASSIFICATION i SYLLABUS osmania university UNIT - I CHAPTER - 1 : CONTROL SYSTEMS CLASSIFICATION Open Loop and Closed Loop Systems, Mathematical Models and Transfer Functions from Governing Equations of Mechanical,

More information

Introduction to MS150

Introduction to MS150 Introduction to MS150 Objective: To become familiar with the modules and how they operate. Equipment Required: Following equipment is required to perform above task. Quantity Apparatus 1 OU150A Operation

More information

Turbine Temperature Test Set

Turbine Temperature Test Set TT1200 Turbine Temperature Test Set USER INSTRUCTION MANUAL BARFIELD M/N TT1200 56-101-00920 Revision D November 7, 2014 BARFIELD, INC. Corporate Headquarters 4101 Northwest 29th Street Miami, Florida

More information

Electronics I. laboratory measurement guide

Electronics I. laboratory measurement guide Electronics I. laboratory measurement guide Andras Meszaros, Mark Horvath 2017.02.27. 4. Measurement: Bipolar transistor current generator and amplifiers These measurements will use a single (asymmetric)

More information

EE 3CL4: Introduction to Control Systems Lab 1: Introduction

EE 3CL4: Introduction to Control Systems Lab 1: Introduction EE 3CL4: Introduction to Control Systems Lab 1: Introduction Tim Davidson Ext. 27352 davidson@mcmaster.ca Objective To establish safety protocols and to introduce the laboratory equipment. Assessment The

More information

FREQUENCY RESPONSE OF COMMON COLLECTOR AMPLIFIER

FREQUENCY RESPONSE OF COMMON COLLECTOR AMPLIFIER Exp. No #5 FREQUENCY RESPONSE OF COMMON COLLECTOR AMPLIFIER Date: OBJECTIVE The purpose of the experiment is to analyze and plot the frequency response of a common collector amplifier. EQUIPMENT AND COMPONENTS

More information

METRAHIT WORLD. International TRMS Multimeter /2.16. Features

METRAHIT WORLD. International TRMS Multimeter /2.16. Features 3-349-527-03 8/2.16 Resolution: 100 μ, 100 mω, 10 μ, 10 pf, 0.1 Hz Precision temperature measurement ( 50... +800 C) Frequency and duty cycle measurement at 2 to 14 signals up to 1 MHz Capacitance measurement

More information

Linear DC-DC Conversion Topology and Component Selection

Linear DC-DC Conversion Topology and Component Selection ECE 480 Application Note Team 7 November 14, 2014 Linear DC-DC Conversion Topology and Component Selection Jacob Brettrager Compact DC-AC Inverter ABSTRACT It is often necessary to convert direct current

More information

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II OBJECTIVE The purpose of the experiment is to examine non-ideal characteristics of an operational amplifier. The characteristics that are investigated include

More information

RA / /6. Replaces: Table of contents RA /06.98

RA / /6. Replaces: Table of contents RA /06.98 Electronic amplifier for the control of proportional directional ales with electrical position feedback Models VT 5024 and VT 5025, Series 1X RA 29 958/06.98 Replaces: 11.97 The amplifiers VT 5024 and

More information

Resistivity and Potential Difference Questions

Resistivity and Potential Difference Questions Resistivity and Potential Difference Questions 1. The diagram below shows the results of a resistivity survey carried out in a field at Abinger, Surrey in December 1995. (H) Define resistivity. Resistance

More information

1-1. Kirchoff s Laws A. Construct the circuit shown below. R 1 =1 kω. = 2.7 kω R 3 R 2 5 V

1-1. Kirchoff s Laws A. Construct the circuit shown below. R 1 =1 kω. = 2.7 kω R 3 R 2 5 V Physics 310 Lab 1: DC Circuits Equipment: Digital Multimeter, 5V Supply, Breadboard, two 1 kω, 2.7 kω, 5.1 kω, 10 kω, two, Decade Resistor Box, potentiometer, 10 kω Thermistor, Multimeter Owner s Manual

More information

Electronic Amplifier Model VT 3017 and VT 3018 (Series 3X) for the control of proportional directional valves, without positional feedback

Electronic Amplifier Model VT 3017 and VT 3018 (Series 3X) for the control of proportional directional valves, without positional feedback RA 29 939/06.98 Electronic Amplifier Model T 301 and T 3018 (Series 3X) for the control of proportional directional valves, without positional feedback RA 29 939/06.98 Replaces: 09.94 Electronic amplifier

More information

RLC Circuit with Cobra3

RLC Circuit with Cobra3 RLC Circuit with Cobra3 LEP Related topics Tuned circuit, series-tuned circuit, parallel-tuned circuit, resistance, capacitance, inductance, capacitor, coil, phase displacement, Q-factor, band-width,impedance,

More information

Fundamentals of semiconductors

Fundamentals of semiconductors Fundamentals of semiconductors Workbook With CD-ROM R 1 R C U B = 12 V I C R m I B K C 2 C 1 G US (Sinus) f = 1 khz U E = 0.1 V R 2 R E C 3 U A R 3 Y 1 Y 2 0 (Y 1) UE 0 (Y 2) UA Festo Didactic 567283 en

More information

Design Lab 6: Divide et impera

Design Lab 6: Divide et impera Design Lab 6: Divide et impera You will need to use a computer capable of running python. Athena machine: Do athrun 6.01 update and add -f 6.01. Lab laptop: Do athrun 6.01 update. Personal laptop: Download

More information

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME GTA S SIGNATURE LAB MEETING TIME Objectives: To correctly operate the

More information

These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1.

These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1. Contents These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1 Introduction 2 Ohm s law relationships 3 The Ohm s law equation 4

More information

Thermo Electric Cooling Temperature Controller TEC Controller / Peltier Driver ±16 A / ±22 V or 31 V

Thermo Electric Cooling Temperature Controller TEC Controller / Peltier Driver ±16 A / ±22 V or 31 V Thermo Electric Cooling Temperature Controller TEC Controller / Peltier Driver ±16 A / ±22 V or 31 V OEM TEC Controller Features The is a specialized TEC controller / power supply able to precision-drive

More information

Lab #7: Transient Response of a 1 st Order RC Circuit

Lab #7: Transient Response of a 1 st Order RC Circuit Lab #7: Transient Response of a 1 st Order RC Circuit Theory & Introduction Goals for Lab #7 The goal of this lab is to explore the transient response of a 1 st Order circuit. In order to explore the 1

More information

Nokeval. Operators manual. Signal converter 641. No P

Nokeval. Operators manual. Signal converter 641. No P Nokeval No 00702P Operators manual Signal converter 61 1 Manufacturer recomendations: Use always shielded signal cables Install equipment to metall housing If plastic housings are used, it must be installed

More information

Laboratory Tutorial#1

Laboratory Tutorial#1 Laboratory Tutorial#1 1.1. Objective: To become familiar with the modules and how they operate. 1.2. Equipment Required: Following equipment is required to perform above task. Quantity Apparatus 1 OU150A

More information

Multimeter operating guidelines

Multimeter operating guidelines A multimeter, also called a volt-ohm meter or VOM, is a device that measures resistance, voltage and current in electronic circuits. Some also test diodes and continuity. Multimeters are small, lightweight

More information

Experiment A3 Electronics I Procedure

Experiment A3 Electronics I Procedure Experiment A3 Electronics I Procedure Deliverables: Checked lab notebook, Brief technical memo Overview Most of the transducers used in modern engineering applications are electronic, meaning they convert

More information

Lab 1: DC Measurements (R, V, I)

Lab 1: DC Measurements (R, V, I) Lab 1: DC Measurements (R, V, I) Introduction Resistors are the most common component found in all electrical and electronic circuits. Resistors are found in many shapes, sizes, and values. The most common

More information