Contents for this Presentation. Multi-Service Transport

Size: px
Start display at page:

Download "Contents for this Presentation. Multi-Service Transport"

Transcription

1 Contents for this Presentation SDH/DWDM based Multi-Service Transport Platform by Khurram Shahzad ad

2 Brief Contents Description for this of Presentation the Project Development of a Unified Transport Platform facilitating multiple services like POTS, PDH, SDH, ATM, IP, CATV, HDTV, B-ISDN, Ethernet and Giga-bit Ethernet to Residential Areas, Business Groups, Enterprise Groups and Internet Services Centers etc.

3 Contents for for this this Presentation Lecture Optical Communications and DWDM Systems Why Move to DWDM? Optical Transmission System a. Advantages and Limits a. b. Overview Fiber Characteristics b. c. Application Fiber Propagation Modes Modes c. d. Laser Optical Modulation Transmitters Modes (LEDs, Lasers) d. e. DWDM Optical Components Receivers (Photodiodes, d Phototransistors) t t e. f. Network Optical Devices Elements (Amplifiers, (OTM, OADM, Splitters, OLA, REG) Couplers, f. System Engineering Filters and Switches) DWDM Multi-Service Transport Platform

4 Contents Why for Move this to Presentation DWDM The optical fiber is the best medium to be deployed at backbones of very high data rates. In order to increase the bandwidth, SDM is used by laying more and more fibers but mean while an enormous amount of bandwidth of fiber is being wasted. In order to utilize the maximum bandwidth, DWDM is the only solution.

5 Contents Optical Transmission for this Presentation System Optical Communication System Basic principle of light transmission on Optical Fiber

6 Contents Advantages for this of Optical Presentation System Weight and size less than copper cable Material cost is almost same Huge information capacity No Electrical connection No Electromagnetic Interference More distance between Regenerators Better security due to immediate failure detection

7 Contents Limitations for this Presentation Loss due to cable joining i (1 db/joint) Bending of fiber should not exceed the limit Optics for transmission only due to unavailability of optical amplifiers Gamma radiation can cause interference and also it cause to discolor glass that cause attenuation

8 Contents Fiber Propagation for this Presentation Modes Illustration of different propagation modes Typical fiber infrared absorption spectrum

9 Hard Contents Polymer for (plastic) this Clad Presentation (silica) Fiber

10 Contents Optical for this Devices Presentation Optical Transmitters Optical Detectors Optical Amplifiers Optical Couplers Optical Isolators Optical Cross Connects Optical Switches

11 Contents Optical Transmitters for this Presentation (Sources) Light Emitting Diodes (LEDs) LASERs (Light Amplification by Stimulated Emission i of Radiations) 10G Transmitter 40G Transmitter

12 Contents Characteristics for this Presentation of LEDs Low Cost compared to Lasers Low Power (recently 75mW) Relatively wider spectrum produced typically nm Incoherent Light hence not directly coupled to fiber Digital Modulation can operate at speed of up to 300 Mbps Analogue Modulation response is linear with current flow

13 Contents Characteristics for this Presentation of Lasers Ideally have single wavelength Can be modulated very precisely pulse length of 0.5 femto seconds Can produce relatively high power (up to kws) High %age can be transferred into fiber (50% to 80%) Disadvantages Much expensive than LEDs The wavelength produced depends on characteristics of material used Amplitude modulation is difficult

14 Technical Contents for Parameters this Presentation of Lasers Spectral Width (typically (yp y 6 to 8 nm) Line Width (discrete wavelengths in Spectral Width) Coherence Length and Coherence Time (typically 15 cm) Length c = c x Time c Power (with increase in bit rate power must be increased) Operating Wavelength (Laser is chosen according to design) Wavelength Stability Tuning range and Speeds Switching time and Modulation

15 Contents Fabry-Perot for this Presentation Laser Conceptually an LED with a pair of end mirrors. Mirrors create right conditions to lasing to occur. Wavelengths produced are related to the distance between mirrors. Cl = X/2n Cl Cavity Length - Wavelength required X - an arbitrary number N - Refractive index Principle of Fabry-Perot Laser

16 Contents Optical Receivers for this Presentation (Detectors) Parameters of Optical Detectors Detector Responsivity (Ratio of Output current to Input Optical Power) Spectral Response Range Response time Noise Characteristics 40G Optical Receiver

17 Contents Types of for Optical this Presentation Detector Photoconductors Photodiodes a. Schottky-Barrier Photodiodes b. Avalanche Photodiodes Practical Photoconductor Detector Phototransistors Sh Schottky-Barrier Photodiode d Bipolar Junction Transistor as Phototansistor Avalanche Photodiode

18 Contents Optical for this Amplifiers Presentation Advantages More reliable (no need of electrical regeneration) Flexibility (Independence of code format, Speed increment permissible) For WDM, electrical regenerators are not suitable (indeed Optical Amplifiers made WDM implementation possible) Cost factor (due to simplicity cost is lesser)

19 Contents Optical for this Amplifiers Presentation EDFA (Erbium-doped Optical Fiber Amplifier) Praseodymium (Pr) Doped Fiber Amplifier Neodymium (Nd) Doped Fiber Amplifier Plastic Fiber Amplifier Semiconductor Optical/Laser Amplifier (SOA/SLA) Raman Effect Amplifier

20 Erbium-Doped Contents for Fiber this Amplifier Presentation (EDFA) Typical Internal Light path of EDFA

21 Contents Advantages for this of Presentation EDFA High Gain Large Output Power Wide Operating Optical Bandwidth Polarization Independence Low Noise Factor Gain Independence to System Bit Rate and Format

22 Contents Characteristics for this Presentation of EDFA Gain (ratio of output t power over input power) Gain Coefficient (small signal gain/pump power) Bandwidth (over which h Amplifier will operate) Gain Saturation (point where an increase in input power ceases to result in increase in output power) Very little sensitivity to Polarization states (polarization sensitivity is difference in gain of an input signal in one polarization to the orthogonal polarization) Adds Noise to signal Noise = SNR (i) /SNR (o) db

23 Contents Gain Characteristics for this Presentation of EDFA Gain curve of Typical EDFA Response of cascade EDFA

24 Contents Optical for this Couplers Presentation Y Coupler Planar Star Coupler Fused Fiber Star Coupler

25 Contents Optical for this Isolators Presentation A Simple Isolator Operation

26 Contents Optical Cross for this Connect Presentation (OXC) Optical Cross Connect OXC using tunable laser technology OXC Outline Architecture t

27 Contents Optical for this Switches Presentation MEMS Optical Switch Technology A Typical Optical Switch being Implemented

28 Contents Optical for this Filters Presentation Peak wavelength (wavelength at which the filter attenuation is least ) Nominal Wavelength (Intended by manufacturer) Bandwidth (Distances between edges db) Center Wavelength (Mean wavelength between two edges)

29 Contents Coupling for of this Light Presentation to a Fiber

30 Wavelength Contents for Division this Presentation Multiplexing Multiplexing with larger channel spacing (even in different windows of optical fibers) typically around 50nm WDM functions schematics

31 DWDM Contents Dense for Wavelength this Presentation Division Multiplexing Network Termin nals Wavelength Division Multiplexing in the same window with smaller channel Spacing (typically less than 1nm) NT NT NT NT 1 2 n-1 n Mult tiplexer Monitor Points ultiplexe er Dem 1 2 n-1 n NT NT NT NT Wavelength Converter Wavelength Converter

32 Contents Advantages for this of Presentation DWDM Ultra Large Capacity Data rate transparency Protection of existing investment during system upgrade Flexibility, economy and reliability of networking Compatibility with all optical switching

33 Optical Contents Spectrum for this of Presentation DWDM Signal

34 Contents Application for Modes this Presentation of DWDM Open DWDM No special requirements for multiplex terminal optical interfaces (ITU-T G.957) Adopts wavelength conversion technology Integrated t DWDM Requires optical signal wavelengths to meet DWDM System specifications

35 Contents Fiber for Modes this for Presentation DWDM DWDM Systems only utilize single mode fiber as transmission media ITU-T Standard fibers for DWDM System G.652 (1310nm property optimal, dispersion un-shifted) G.653 (1550nm property optimal, dispersion shifted) G.654 (cut-off wavelength shifted, reduced attenuation at 1550nm) G.655 (non-zero dispersion shifted, preserves dispersion near 1550nm)

36 Contents Laser Modulation for this Modes Presentation for DWDM Direct Modulation (Internal Modulation) Light wave intensity is changed by controlling the injection current using Laser Diodes Indirect Modulation (External Modulation) Laser is modulated indirectly by adding an external modulator in its output path to modulate the light wave

37 Contents External for this Modulators Presentation Constant Light Source Optical Modulator Optical Signal Output Electric Modulation Signal Input

38 Direct Contents Modulation for this vs. Indirect Presentation Modulation Simple Structure Low Loss Low Cost High Modulation Chirp Complex Structure High Loss High Cost Low Modulation Chirp Transmission i Distance Transmission i Distance < 100Km > 100Km Data Rate < 2.5G Data Rate > 2.5G

39 Network Contents Element for this Types Presentation of DWDM Optical Terminal Multiplexer (OTM) Optical Add/Drop Multiplexer (OADM) Optical Line Amplifier (OLA) Regenerators (REG)

40 Network Contents Element for this Types Presentation of DWDM Source: Bookham Technologies, 2002

41 Contents for this Presentation OTM Signal Flow W W A A RI S P A W C R D 1 6 RO M M RI S C A SDH System S C 1 A M RM TM A W B M 1 6 W C T A RO M TO A T RO M TO

42 Contents OADM for Signal this Presentation Flow WCR WCT RI TO S C A A RO M W P A RM1 TM1 W B A A MR 4 M S C 2 MR 4 A M W B A TM2 RM2 W P A M A RO S C A TO RI WCT WCR

43 Contents Remotely for Configurable this Presentation OADMs Marconi Communications PMA32 R-OADM Photonic R-OADM Architecture

44 DWDM Contents Component for this Presentation Requirements Enough multiplexing channels Low insertion loss Large crosstalk attenuation Wide pass band

45 Contents OLA for Signal this Presentation Flow RI TO S C A RO A M W P A RM1 TM1 W B A A M S C 2 A M W B A TM2 RM2 W P A RO M A S C A TO RI

46 Contents Optical System for this Engineering Presentation Determining the width and spacing of wavebands Stabilizing the wavelength of wavelength sensitive components Filter alignment in cascades of filters Control of non-linear effects Control of dispersion Control of cross-talk Dynamics of optical amplifiers Control of system noise (especially ASE)

47 DWDM Contents Networking for this Presentation Parameters Dispersion i Limited it Distance Power Signal to Noise Ratio

48 Contents DWDM Protection for this Presentation Mechanism No protection available to the network at DWDM Layer Reasons for unavailability of protection Cost Optical Switches Conflict between protocols of underlying networks

49 Contents 4 x 2.5G/DWDM for this Presentation Ring

50 Multi-Service Contents for Transport this Presentation Platform Multi-rate multi-service open interfaces Flexible bandwidth allocation for PCM (Pulse Coded Modulation) digital channels ATM (Asynchronous Transfer Mode) IP (Internet Protocol)

51 Contents Available for Interfaces this Presentation for MSTP 10M Ethernett Gigabit Ethernet STM-1 STM-16 E1 100M Ethernet ATM STM-4 STM-64 E3 POS (Packets over SDH) PDH

52 Contents SDH and for IP this over Presentation DWDM Simplified Diagram Showing SDH and IP Traffic over DWDM System

53 Simplified Contents for Transport this Presentation Hierarchy

54 Technology Contents Layers for this of Transport Presentation Network

55 An Contents Illustration for this of Metro Presentation Networks

56 Contents for Conclusions this Presentation Foreseeing the ever increasing bandwidth demands of the world it is inevitable to use the fiber and specifically move up to DWDM System To have a unified platform supporting all the current available services it is unavoidable to utilize the metro solution In the near future we are aiming to have the bandwidth of 100Tbps using this DWDM technology

57 Contents for this Presentation

Elements of Optical Networking

Elements of Optical Networking Bruckner Elements of Optical Networking Basics and practice of optical data communication With 217 Figures, 13 Tables and 93 Exercises Translated by Patricia Joliet VIEWEG+ TEUBNER VII Content Preface

More information

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian m.karbassian@arizona.edu Contents Optical Communications: Review Optical Communications and Photonics Why Photonics?

More information

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian m.karbassian@arizona.edu Contents Optical Communications: Review Optical Communications and Photonics Why Photonics?

More information

Optical Fibre Amplifiers Continued

Optical Fibre Amplifiers Continued 1 Optical Fibre Amplifiers Continued Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus ECE 445 Lecture 09 Fall Semester 2016 2 ERBIUM-DOPED FIBRE AMPLIFIERS BASIC

More information

Thursday, April 17, 2008, 6:28:40

Thursday, April 17, 2008, 6:28:40 Wavelength Division Multiplexing By: Gurudatha Pai K gurudatha@gmail.com Thursday, April 17, 2008, 6:28:40 Overview Introduction Popular Multiplexing Techniques Optical Networking WDM An Analogy of Multiplexing

More information

OPTICAL NETWORKS. Building Blocks. A. Gençata İTÜ, Dept. Computer Engineering 2005

OPTICAL NETWORKS. Building Blocks. A. Gençata İTÜ, Dept. Computer Engineering 2005 OPTICAL NETWORKS Building Blocks A. Gençata İTÜ, Dept. Computer Engineering 2005 Introduction An introduction to WDM devices. optical fiber optical couplers optical receivers optical filters optical amplifiers

More information

Module 19 : WDM Components

Module 19 : WDM Components Module 19 : WDM Components Lecture : WDM Components - I Part - I Objectives In this lecture you will learn the following WDM Components Optical Couplers Optical Amplifiers Multiplexers (MUX) Insertion

More information

DWDM Theory. ZTE Corporation Transmission Course Team. ZTE University

DWDM Theory. ZTE Corporation Transmission Course Team. ZTE University DWDM Theory ZTE Corporation Transmission Course Team DWDM Overview Multiplexing Technology WDM TDM SDM What is DWDM? Gas Station High Way Prowl Car Definition l 1 l 2 l N l 1 l 2 l 1 l 2 l N OA l N OMU

More information

Ph.D. Course Spring Wireless Communications. Wirebound Communications

Ph.D. Course Spring Wireless Communications. Wirebound Communications Ph.D. Course Spring 2005 Danyo Danev associate professor Div. Data Transmission, Dept. Electrical Engineering Linköping University SWEDEN Wireless Communications Radio transmissions Mobile telephony Satellite

More information

Optical networking. Emilie CAMISARD GIP RENATER Optical technologies engineer Advanced IP Services

Optical networking. Emilie CAMISARD GIP RENATER Optical technologies engineer Advanced IP Services Optical networking Emilie CAMISARD GIP RENATER Optical technologies engineer Advanced IP Services Agenda Optical fibre principle Time Division Multiplexing (TDM) Wavelength Division Multiplexing (WDM)

More information

Wavelength Multiplexing. The Target

Wavelength Multiplexing. The Target The Target Design a MAN* like fiber network for high data transmission rates. The network is partial below sea level and difficult to install and to maintain. Such a fiber network demands an optimized

More information

Introduction Fundamental of optical amplifiers Types of optical amplifiers

Introduction Fundamental of optical amplifiers Types of optical amplifiers ECE 6323 Introduction Fundamental of optical amplifiers Types of optical amplifiers Erbium-doped fiber amplifiers Semiconductor optical amplifier Others: stimulated Raman, optical parametric Advanced application:

More information

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. Preface p. xiii Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. 6 Plastic Optical Fibers p. 9 Microstructure Optical

More information

Photonics and Optical Communication Spring 2005

Photonics and Optical Communication Spring 2005 Photonics and Optical Communication Spring 2005 Final Exam Instructor: Dr. Dietmar Knipp, Assistant Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Final Exam: 2 hour You

More information

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University Photonics Group Department of Micro- and Nanosciences Aalto University Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Last Lecture Topics Course introduction Ray optics & optical

More information

Fiber-Optic Communication Systems

Fiber-Optic Communication Systems Fiber-Optic Communication Systems Second Edition GOVIND P. AGRAWAL The Institute of Optics University of Rochester Rochester, NY A WILEY-iNTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 26

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 26 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 26 Wavelength Division Multiplexed (WDM) Systems Fiber Optics, Prof. R.K. Shevgaonkar,

More information

LW Technology. Passive Components. LW Technology (Passive Components).PPT - 1 Copyright 1999, Agilent Technologies

LW Technology. Passive Components. LW Technology (Passive Components).PPT - 1 Copyright 1999, Agilent Technologies LW Technology Passive Components LW Technology (Passive Components).PPT - 1 Patchcords Jumper cables to connect devices and instruments Adapter cables to connect interfaces using different connector styles

More information

OPTICAL COMMUNICATIONS S

OPTICAL COMMUNICATIONS S OPTICAL COMMUNICATIONS S-108.3110 1 Course program 1. Introduction and Optical Fibers 2. Nonlinear Effects in Optical Fibers 3. Fiber-Optic Components 4. Transmitters and Receivers 5. Fiber-Optic Measurements

More information

EDFA Applications in Test & Measurement

EDFA Applications in Test & Measurement EDFA Applications in Test & Measurement White Paper PN 200-0600-00 Revision 1.1 September 2003 Calmar Optcom, Inc www.calamropt.com Overview Erbium doped fiber amplifiers (EDFAs) amplify optical pulses

More information

S Optical Networks Course Lecture 2: Essential Building Blocks

S Optical Networks Course Lecture 2: Essential Building Blocks S-72.3340 Optical Networks Course Lecture 2: Essential Building Blocks Edward Mutafungwa Communications Laboratory, Helsinki University of Technology, P. O. Box 2300, FIN-02015 TKK, Finland Tel: +358 9

More information

is a method of transmitting information from one place to another by sending light through an optical fiber. The light forms an electromagnetic

is a method of transmitting information from one place to another by sending light through an optical fiber. The light forms an electromagnetic is a method of transmitting information from one place to another by sending light through an optical fiber. The light forms an electromagnetic carrier wave that is modulated to carry information. The

More information

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs)

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs) Prof. Dr. Yaocheng SHI ( 时尧成 ) yaocheng@zju.edu.cn http://mypage.zju.edu.cn/yaocheng 1 Traditional Optical Communication System Loss

More information

Optical Transmission Fundamentals

Optical Transmission Fundamentals Optical Transmission Fundamentals F. Vasey, CERN-EP-ESE Context Technology HEP Specifics 12 Nov 2018 0 Context: Bandwidth Demand Internet traffic is growing at ~Moore s law Global interconnection bandwidth

More information

UNIT - 7 WDM CONCEPTS AND COMPONENTS

UNIT - 7 WDM CONCEPTS AND COMPONENTS UNIT - 7 WDM CONCEPTS AND COMPONENTS WDM concepts, overview of WDM operation principles, WDM standards, Mach-Zehender interferometer, multiplexer, Isolators and circulators, direct thin film filters, active

More information

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers Chapter 8 Wavelength-Division Multiplexing (WDM) Part II: Amplifiers Introduction Traditionally, when setting up an optical link, one formulates a power budget and adds repeaters when the path loss exceeds

More information

Chapter 9 GUIDED WAVE OPTICS

Chapter 9 GUIDED WAVE OPTICS [Reading Assignment, Hecht 5.6] Chapter 9 GUIDED WAVE OPTICS Optical fibers The step index circular waveguide is the most common fiber design for optical communications plastic coating (sheath) core cladding

More information

Optical communications

Optical communications Optical communications Components and enabling technologies Optical networking Evolution of optical networking: road map SDH = Synchronous Digital Hierarchy SONET = Synchronous Optical Network SDH SONET

More information

Dr. Monir Hossen ECE, KUET

Dr. Monir Hossen ECE, KUET Dr. Monir Hossen ECE, KUET 1 Outlines of the Class Principles of WDM DWDM, CWDM, Bidirectional WDM Components of WDM AWG, filter Problems with WDM Four-wave mixing Stimulated Brillouin scattering WDM Network

More information

SYLLABUS Optical Fiber Communication

SYLLABUS Optical Fiber Communication SYLLABUS Optical Fiber Communication Subject Code : IA Marks : 25 No. of Lecture Hrs/Week : 04 Exam Hours : 03 Total no. of Lecture Hrs. : 52 Exam Marks : 100 UNIT - 1 PART - A OVERVIEW OF OPTICAL FIBER

More information

Introduction and concepts Types of devices

Introduction and concepts Types of devices ECE 6323 Introduction and concepts Types of devices Passive splitters, combiners, couplers Wavelength-based devices for DWDM Modulator/demodulator (amplitude and phase), compensator (dispersion) Others:

More information

Trends in Optical Transceivers:

Trends in Optical Transceivers: Trends in Optical Transceivers: Light sources for premises networks Peter Ronco Corning Optical Fiber Asst. Product Line Manager Premises Fibers January 24, 2006 Outline: Introduction: Transceivers and

More information

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber H. Ahmad 1, S. Shahi 1 and S. W. Harun 1,2* 1 Photonics Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia 2 Department

More information

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source JOURNAL OF L A TEX CLASS FILES, VOL. X, NO. XX, XXXX XXX 1 Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source Jérôme Vasseur, Jianjun Yu Senior Member,

More information

21. (i) Briefly explain the evolution of fiber optic system (ii) Compare the configuration of different types of fibers. or 22. (b)(i) Derive modal eq

21. (i) Briefly explain the evolution of fiber optic system (ii) Compare the configuration of different types of fibers. or 22. (b)(i) Derive modal eq Unit-1 Part-A FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai - 625 020. [An ISO 9001:2008 Certified Institution] DEPARTMENT OF ELECTRONICS AND

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI - 621213 DEPARTMENT : ECE SUBJECT NAME : OPTICAL COMMUNICATION & NETWORKS SUBJECT CODE : EC 2402 1. Define SONET/SDH. [AUC NOV 2007] UNIT V: OPTICAL NETWORKS

More information

Optical Amplifiers (Chapter 6)

Optical Amplifiers (Chapter 6) Optical Amplifiers (Chapter 6) General optical amplifier theory Semiconductor Optical Amplifier (SOA) Raman Amplifiers Erbium-doped Fiber Amplifiers (EDFA) Read Chapter 6, pp. 226-266 Loss & dispersion

More information

! Couplers. ! Isolators/Circulators. ! Multiplexers/Filters. ! Optical Amplifiers. ! Transmitters (lasers,leds) ! Detectors (receivers) !

! Couplers. ! Isolators/Circulators. ! Multiplexers/Filters. ! Optical Amplifiers. ! Transmitters (lasers,leds) ! Detectors (receivers) ! Components of Optical Networks Based on: Rajiv Ramaswami, Kumar N. Sivarajan, Optical Networks A Practical Perspective 2 nd Edition, 2001 October, Morgan Kaufman Publishers Optical Components! Couplers!

More information

Lecture 15 Semiconductor Optical Amplifiers and OTDR

Lecture 15 Semiconductor Optical Amplifiers and OTDR Lecture 15 Semiconductor Optical Amplifiers and OTDR Introduction Where are we? Using semiconductors as amplifiers. Amplifier geometry Cross talk Polarisation dependence Gain clamping Real amplifier performance

More information

Transmitting Light: Fiber-optic and Free-space Communications Holography

Transmitting Light: Fiber-optic and Free-space Communications Holography 1 Lecture 9 Transmitting Light: Fiber-optic and Free-space Communications Holography 2 Wireless Phone Calls http://havilandtelconews.com/2011/10/the-reality-behind-wireless-networks/ 3 Undersea Cable and

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW #5 is assigned (due April 9) April 9 th class will be in

More information

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber I. H. M. Nadzar 1 and N. A.Awang 1* 1 Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, Johor,

More information

Lecture 1: Introduction

Lecture 1: Introduction Optical Fibre Communication Systems Lecture 1: Introduction Professor Z Ghassemlooy Electronics & It Division School of Engineering Sheffield Hallam University U.K. www.shu.ac.uk/ocr 1 Contents Reading

More information

Absorption: in an OF, the loss of Optical power, resulting from conversion of that power into heat.

Absorption: in an OF, the loss of Optical power, resulting from conversion of that power into heat. Absorption: in an OF, the loss of Optical power, resulting from conversion of that power into heat. Scattering: The changes in direction of light confined within an OF, occurring due to imperfection in

More information

Computer Networks

Computer Networks 15-441 Computer Networks Physical Layer Professor Hui Zhang hzhang@cs.cmu.edu 1 Communication & Physical Medium There were communications before computers There were communication networks before computer

More information

Optical Communications and Networking 朱祖勍. Oct. 9, 2017

Optical Communications and Networking 朱祖勍. Oct. 9, 2017 Optical Communications and Networking Oct. 9, 2017 1 Optical Amplifiers In optical communication systems, the optical signal from the transmitter are attenuated by the fiber and other passive components

More information

UNIT I INTRODUCTION TO OPTICAL FIBERS

UNIT I INTRODUCTION TO OPTICAL FIBERS UNIT I INTRODUCTION TO OPTICAL FIBERS 9 Evolution of fiber optic system Element of an Optical Fiber Transmission link Total internal reflection Acceptance angle Numerical aperture Skew rays Ray Optics

More information

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Optical fiber-fault surveillance for passive optical networks in S-band operation window Optical fiber-fault surveillance for passive optical networks in S-band operation window Chien-Hung Yeh 1 and Sien Chi 2,3 1 Transmission System Department, Computer and Communications Research Laboratories,

More information

Optical DWDM Networks

Optical DWDM Networks Optical DWDM Networks ain The Oh Columbus, OH 43210 Jain@CIS.Ohio-State.Edu These slides are available at http://www.cis.ohio-state.edu/~jain/cis788-99/ 1 Overview Sparse and Dense WDM Recent WDM Records

More information

Optical Transport Tutorial

Optical Transport Tutorial Optical Transport Tutorial 4 February 2015 2015 OpticalCloudInfra Proprietary 1 Content Optical Transport Basics Assessment of Optical Communication Quality Bit Error Rate and Q Factor Wavelength Division

More information

Fiberoptic Communication Systems By Dr. M H Zaidi. Optical Amplifiers

Fiberoptic Communication Systems By Dr. M H Zaidi. Optical Amplifiers Optical Amplifiers Optical Amplifiers Optical signal propagating in fiber suffers attenuation Optical power level of a signal must be periodically conditioned Optical amplifiers are a key component in

More information

WDM. Coarse WDM. Nortel's WDM System

WDM. Coarse WDM. Nortel's WDM System WDM wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths (i.e. colors) of laser light.

More information

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture No. # 27 EDFA In the last lecture, we talked about wavelength

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade: Examination Optoelectronic Communication Technology April, 26 Name: Student ID number: OCT : OCT 2: OCT 3: OCT 4: Total: Grade: Declaration of Consent I hereby agree to have my exam results published on

More information

WDM Concept and Components. EE 8114 Course Notes

WDM Concept and Components. EE 8114 Course Notes WDM Concept and Components EE 8114 Course Notes Part 1: WDM Concept Evolution of the Technology Why WDM? Capacity upgrade of existing fiber networks (without adding fibers) Transparency:Each optical channel

More information

Highly Reliable 40-mW 25-GHz 20-ch Thermally Tunable DFB Laser Module, Integrated with Wavelength Monitor

Highly Reliable 40-mW 25-GHz 20-ch Thermally Tunable DFB Laser Module, Integrated with Wavelength Monitor Highly Reliable 4-mW 2-GHz 2-ch Thermally Tunable DFB Laser Module, Integrated with Wavelength Monitor by Tatsuya Kimoto *, Tatsushi Shinagawa *, Toshikazu Mukaihara *, Hideyuki Nasu *, Shuichi Tamura

More information

Optical Communication and Networks M.N. Bandyopadhyay

Optical Communication and Networks M.N. Bandyopadhyay Optical Communication and Networks M.N. Bandyopadhyay Director National Institute of Technology (NIT) Calicut Delhi-110092 2014 OPTICAL COMMUNICATION AND NETWORKS M.N. Bandyopadhyay 2014 by PHI Learning

More information

Fundamentals of DWDM Technology

Fundamentals of DWDM Technology CHAPTER 2 The emergence of DWDM is one of the most recent and important phenomena in the development of fiber optic transmission technology. In the following discussion we briefly trace the stages of fiber

More information

Cisco s CLEC Networkers Power Session

Cisco s CLEC Networkers Power Session Course Number Presentation_ID 1 Cisco s CLEC Networkers Power Session Session 2 The Business Case for ONS 15800 3 What s Driving the Demand? Data Voice 4 What s Driving the Demand? Internet 36,700,000

More information

HFTA-08.0: Receivers and Transmitters in DWDM Systems

HFTA-08.0: Receivers and Transmitters in DWDM Systems HFTA-08.0: Receivers and Transmitters in DWDM Systems The rapidly growing internet traffic demands a near-continuous expansion of data-transmission capacity. To avoid traffic jams on the data highways,

More information

Gain Flattening Improvements With Two Cascade Erbium Doped Fiber Amplifier In WDM Systems

Gain Flattening Improvements With Two Cascade Erbium Doped Fiber Amplifier In WDM Systems International Academic Institute for Science and Technology International Academic Journal of Science and Engineering Vol. 3, No. 1, 2016, pp. 36-42. ISSN 2454-3896 International Academic Journal of Science

More information

Design of an Optical Submarine Network With Longer Range And Higher Bandwidth

Design of an Optical Submarine Network With Longer Range And Higher Bandwidth Design of an Optical Submarine Network With Longer Range And Higher Bandwidth Yashas Joshi 1, Smridh Malhotra 2 1,2School of Electronics Engineering (SENSE) Vellore Institute of Technology Vellore, India

More information

VePAL UX400 Universal Test Platform

VePAL UX400 Universal Test Platform CWDM and DWDM Testing VePAL UX400 Universal Test Platform Optical Spectrum/Channel Analyzer for CWDM and DWDM Networks Using superior micro-optic design and MEMS tuning technology, the UX400 OSA module

More information

Erbium-Doper Fiber Amplifiers

Erbium-Doper Fiber Amplifiers Seminar presentation Erbium-Doper Fiber Amplifiers 27.11.2009 Ville Pale Presentation Outline History of EDFA EDFA operating principle Stimulated Emission Stark Splitting Gain Gain flatness Gain Saturation

More information

Wavelength-Enhanced Passive Optical Networks with Extended Reach

Wavelength-Enhanced Passive Optical Networks with Extended Reach Wavelength-Enhanced Passive Optical Networks with Extended Reach Ken Reichmann and Pat Iannone Optical Systems Research AT&T Labs, Middletown NJ Thanks to Han Hyub Lee, Xiang Zhou, and Pete Magill Wavelength-Enhanced

More information

Functional Materials. Optoelectronic devices

Functional Materials. Optoelectronic devices Functional Materials Lecture 2: Optoelectronic materials and devices (inorganic). Photonic materials Optoelectronic devices Light-emitting diode (LED) displays Photodiode and Solar cell Photoconductive

More information

Chapter 3 OPTICAL SOURCES AND DETECTORS

Chapter 3 OPTICAL SOURCES AND DETECTORS Chapter 3 OPTICAL SOURCES AND DETECTORS 3. Optical sources and Detectors 3.1 Introduction: The success of light wave communications and optical fiber sensors is due to the result of two technological breakthroughs.

More information

Progress In Electromagnetics Research C, Vol. 15, 37 48, 2010 TEMPERATURE INSENSITIVE BROAD AND FLAT GAIN C-BAND EDFA BASED ON MACRO-BENDING

Progress In Electromagnetics Research C, Vol. 15, 37 48, 2010 TEMPERATURE INSENSITIVE BROAD AND FLAT GAIN C-BAND EDFA BASED ON MACRO-BENDING Progress In Electromagnetics Research C, Vol. 15, 37 48, 2010 TEMPERATURE INSENSITIVE BROAD AND FLAT GAIN C-BAND EDFA BASED ON MACRO-BENDING P. Hajireza Optical Fiber Devices Group Multimedia University

More information

UNIT - 7 WDM CONCEPTS AND COMPONENTS

UNIT - 7 WDM CONCEPTS AND COMPONENTS UNIT - 7 LECTURE-1 WDM CONCEPTS AND COMPONENTS WDM concepts, overview of WDM operation principles, WDM standards, Mach-Zehender interferometer, multiplexer, Isolators and circulators, direct thin film

More information

The Report of Gain Performance Characteristics of the Erbium Doped Fiber Amplifier (EDFA)

The Report of Gain Performance Characteristics of the Erbium Doped Fiber Amplifier (EDFA) The Report of Gain Performance Characteristics of the Erbium Doped Fiber Amplifier (EDFA) Masruri Masruri (186520) 22/05/2008 1 Laboratory Setup The laboratory setup using in this laboratory experiment

More information

2 in the multipath dispersion of the optical fibre. (b) Discuss the merits and drawbacks of cut bouls method of measurement of alternation.

2 in the multipath dispersion of the optical fibre. (b) Discuss the merits and drawbacks of cut bouls method of measurement of alternation. B.TECH IV Year I Semester (R09) Regular Examinations, November 2012 1 (a) Derive an expression for multiple time difference tt 2 in the multipath dispersion of the optical fibre. (b) Discuss the merits

More information

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier Aied K. Mohammed, PhD Department of Electrical Engineering, University

More information

Physics 464/564. Research Project: AWG Technology in DWDM System. By: Andre Y. Ma Date:

Physics 464/564. Research Project: AWG Technology in DWDM System. By: Andre Y. Ma Date: Physics 464/564 Research Project: AWG Technology in DWDM System By: Andre Y. Ma Date: 2-28-03 Abstract: The ever-increasing demand for bandwidth poses a serious limitation for the existing telecommunication

More information

CONTENTS. Chapter 1 Wave Nature of Light 19

CONTENTS. Chapter 1 Wave Nature of Light 19 CONTENTS Chapter 1 Wave Nature of Light 19 1.1 Light Waves in a Homogeneous Medium 19 A. Plane Electromagnetic Wave 19 B. Maxwell's Wave Equation and Diverging Waves 22 Example 1.1.1 A diverging laser

More information

Multiplexing. Timeline. Multiplexing. Types. Optically

Multiplexing. Timeline. Multiplexing. Types. Optically Multiplexing Multiplexing a process where multiple analog message signals or digital data streams are combined into one signal over a shared medium Types Time division multiplexing Frequency division multiplexing

More information

Agilent 83430A Lightwave Digital Source Product Overview

Agilent 83430A Lightwave Digital Source Product Overview Agilent Lightwave Digital Source Product Overview SDH/SONET Compliant DFB laser source for digital, WDM, and analog test up to 2.5 Gb/s 52 Mb/s STM-0/OC-1 155 Mb/s STM-1/OC-3 622 Mb/s STM-4/OC-12 2488

More information

Microwave and Optical Technology Letters. Minhui Yan, Qing-Yang Xu 1, Chih-Hung Chen, Wei-Ping Huang, and Xiaobin Hong

Microwave and Optical Technology Letters. Minhui Yan, Qing-Yang Xu 1, Chih-Hung Chen, Wei-Ping Huang, and Xiaobin Hong Page of 0 0 0 0 0 0 Schemes of Optical Power Splitter Nodes for Direct ONU-ONU Intercommunication Minhui Yan, Qing-Yang Xu, Chih-Hung Chen, Wei-Ping Huang, and Xiaobin Hong Department of Electrical and

More information

Optical Fiber Communication

Optical Fiber Communication A Seminar report On Optical Fiber Communication Submitted in partial fulfillment of the requirement for the award of degree Of Mechanical SUBMITTED TO: www.studymafia.org SUBMITTED BY: www.studymafia.org

More information

Pass Cisco Exam

Pass Cisco Exam Pass Cisco 642-321 Exam Number: 642-321 Passing Score: 800 Time Limit: 120 min File Version: 38.8 http://www.gratisexam.com/ Pass Cisco 642-321 Exam Exam Name : Cisco Optical SDH Exam (SDH) Braindumps

More information

OBSERVATION AND MITIGATION OF POWER TRANSIENTS IN 160Gbps OPTICAL BACKHAUL NETWORKS

OBSERVATION AND MITIGATION OF POWER TRANSIENTS IN 160Gbps OPTICAL BACKHAUL NETWORKS OBSERVATION AND MITIGATION OF POWER TRANSIENTS IN 160Gbps OPTICAL BACKHAUL NETWORKS Vikrant Sharma Anurag Sharma Electronics and Communication Engineering, CT Group of Institutions, Jalandhar Dalveer Kaur

More information

Performance Analysis of 48 Channels DWDM System using EDFA for Long Distance Communication

Performance Analysis of 48 Channels DWDM System using EDFA for Long Distance Communication GRD Journals- Global Research and Development Journal for Engineering Volume 2 Issue 3 February 2017 ISSN: 2455-5703 Performance Analysis of 48 Channels DWDM System using EDFA for Long Distance Communication

More information

CWDM Cisco CWDM wavelengths (nm)

CWDM Cisco CWDM wavelengths (nm) Cisco Enhanced Wavelength Division Multiplexing Product Line The Cisco enhanced wavelength-division multiplexing (EWDM) product line allows users to scale the speed and capacity of the services offered

More information

1.2 Approach to DWDM Confronted by the need for more capacity, carriers have three possible solutions: 2014, IJARCSSE All Rights Reserved Page 1000

1.2 Approach to DWDM Confronted by the need for more capacity, carriers have three possible solutions: 2014, IJARCSSE All Rights Reserved Page 1000 Volume 4, Issue 6, June 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Next Gen. Dense

More information

Practical Aspects of Raman Amplifier

Practical Aspects of Raman Amplifier Practical Aspects of Raman Amplifier Contents Introduction Background Information Common Types of Raman Amplifiers Principle Theory of Raman Gain Noise Sources Related Information Introduction This document

More information

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity Shinji Yamashita (1)(2) and Kevin Hsu (3) (1) Dept. of Frontier Informatics, Graduate School of Frontier Sciences The University

More information

RXT-1200 Modular Test Platform

RXT-1200 Modular Test Platform CWDM and DWDM Testing RXT-1200 Modular Test Platform Optical Spectrum/Channel Analyzer for CWDM and DWDM Networks Using superior micro-optic design and MEMS tuning technology, the RXT-4500 OSA module measures

More information

Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing

Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing Viyoma Sarup* and Amit Gupta Chandigarh University Punjab, India *viyoma123@gmail.com Abstract A RoF

More information

EDFA WDM Optical Network using GFF

EDFA WDM Optical Network using GFF EDFA WDM Optical Network using GFF Shweta Bharti M. Tech, Digital Communication, (Govt. Women Engg. College, Ajmer), Rajasthan, India ABSTRACT This paper describes the model and simulation of EDFA WDM

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 37

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 37 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 37 Introduction to Raman Amplifiers Fiber Optics, Prof. R.K. Shevgaonkar, Dept.

More information

Testing with Femtosecond Pulses

Testing with Femtosecond Pulses Testing with Femtosecond Pulses White Paper PN 200-0200-00 Revision 1.3 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

Advanced Test Equipment Rentals ATEC (2832)

Advanced Test Equipment Rentals ATEC (2832) Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) BN 8000 May 2000 Profile Optische Systeme GmbH Gauss Str. 11 D - 85757 Karlsfeld / Germany Tel + 49 8131 5956-0 Fax

More information

Suppression of Stimulated Brillouin Scattering

Suppression of Stimulated Brillouin Scattering Suppression of Stimulated Brillouin Scattering 42 2 5 W i de l y T u n a b l e L a s e r T ra n s m i t te r www.lumentum.com Technical Note Introduction This technical note discusses the phenomenon and

More information

Network Challenges for Coherent Systems. Mike Harrop Technical Sales Engineering, EXFO

Network Challenges for Coherent Systems. Mike Harrop Technical Sales Engineering, EXFO Network Challenges for Coherent Systems Mike Harrop Technical Sales Engineering, EXFO Agenda 1. 100G Transmission Technology 2. Non Linear effects 3. RAMAN Amplification 1. Optimsing gain 2. Keeping It

More information

Bragg and fiber gratings. Mikko Saarinen

Bragg and fiber gratings. Mikko Saarinen Bragg and fiber gratings Mikko Saarinen 27.10.2009 Bragg grating - Bragg gratings are periodic perturbations in the propagating medium, usually periodic variation of the refractive index - like diffraction

More information

A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF

A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF Research Manuscript Title A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF Dr.Punal M.Arabi, Nija.P.S PG Scholar, Professor, Department of ECE, SNS College of Technology,

More information

Lecture 5 Transmission. Physical and Datalink Layers: 3 Lectures

Lecture 5 Transmission. Physical and Datalink Layers: 3 Lectures Lecture 5 Transmission Peter Steenkiste School of Computer Science Department of Electrical and Computer Engineering Carnegie Mellon University 15-441 Networking, Spring 2004 http://www.cs.cmu.edu/~prs/15-441

More information

Lecture 5 Transmission

Lecture 5 Transmission Lecture 5 Transmission David Andersen Department of Computer Science Carnegie Mellon University 15-441 Networking, Spring 2005 http://www.cs.cmu.edu/~srini/15-441/s05 1 Physical and Datalink Layers: 3

More information

Photonics and Optical Communication

Photonics and Optical Communication Photonics and Optical Communication (Course Number 300352) Spring 2007 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering http://www.faculty.iu-bremen.de/dknipp/ 1 Photonics and Optical Communication

More information

Optical Fiber Amplifiers. Scott Freese. Physics May 2008

Optical Fiber Amplifiers. Scott Freese. Physics May 2008 Optical Fiber Amplifiers Scott Freese Physics 262 2 May 2008 Partner: Jared Maxson Abstract The primary goal of this experiment was to gain an understanding of the basic components of an Erbium doped fiber

More information