A 2.469~2.69GHz AlGaN/GaN HEMT Power Amplifier for IEEE e WiMAX Applications

Size: px
Start display at page:

Download "A 2.469~2.69GHz AlGaN/GaN HEMT Power Amplifier for IEEE e WiMAX Applications"

Transcription

1 A 2.469~2.69GHz AlGaN/GaN HEMT Power Amplifier for IEEE 82.16e WiMAX Applications Weijia LI 1, Yan WANG 2, Giovanni GHIONE 3, Fellow, IEEE Department of Electronics, Politecnico di Torino Torino 1129, Italy 1 weijia.li@studenti.polito.it, 2 yan.wang@studenti.polito.it, 3 giovanni.ghione@polito.it Abstract This paper presents a 2.469~2.69GHz AlGaN/GaN HEMT power amplifier for IEEE 82.16e WiMAX applications operating at E mode under a single supply of +6v. At the central frequency point, the power added efficiency (PAE) can achieve 96.37%, the small signal gain is 2.81dB, and the output power is 2.39dBm. The paper describes the circuit design in detail, then shows the simulation results and discusses about the simulation results. In the end, the paper concludes the design. Index Terms- Power Amplifier; AlGaN/GaN HEMT; IEEE 82.16e; WiMAX; PAE I. INTRODUCTION WiMAX, with the whole name Worldwide Interoperability of Microwave Access, is a new broadband wireless access technique which is based on IEEE standard. The basic object of WiMAX is that, under the environment of Metropolitan Area Network it makes the wireless devices from different manufacturers connect together. The standards defined by IEEE for different scenarios are showed in Figure 1. This technique mainly provides the last kilometer high-speed broadband access for family, enterprise and mobile communication networks, even for the personal mobile communication business in the future. It uses a lot of advanced technologies which represent the direction of the development of communication in the future. The key technologies are including OFDM/OFDMA, HARQ, AMC, MIMO, QoS Mechanism, Sleep Mode, Handover, etc. WAN Cellular Network MAN IEEE WiMAX LAN IEEE Wi-Fi PAN IEEE 82.1 Bluetooth There are three frequencies for WiMAX, i.e., 2.GHz, 3.GHz and.8ghz. The frequency periods assigned to 2.GHz are: 2.3~2.32GHz, 2.3~2.4GHz, 2.34~2.36GHz and 2.469~2.69GHz. The paper focuses on the design of a 2.469~2.69GHz AlGaN/GaN HEMT power amplifier for IEEE 82.16e WiMAX applications. The power amplifier operates at E mode under a single supply of +6V. At the central frequency point, the power added efficiency (PAE) can achieve 96.37%, the small signal gain is 2.81dB, and the output power is 2.39dBm. This paper is organized as follows: Section II describes the circuit design in detail. Section III shows the simulation results and discusses about the simulation results. Section IV we conclude the design. II. CIRCUIT DESIGN A. AlGaN/GaN HEMT Technology Si created the history of semiconductor as the first generation semiconductor material. Now the silicon VLSI has entered into a practical period. As the representative of the second generation semiconductor materials GaAs has a lot of good nature in physical and chemical aspects, such as the saturation rate, cutoff frequency, and so on. GaAs has been widely used in a microwave high-power devices, especially in the RF circuit of communication that making it an ideal material for LNA, PA, etc. In recent years, with the increasing requirement of low power, high frequency, high temperature properties of electronic devices, we need to find a better semiconductor material instead of GaAs. Under this background the GaN (gallium nitride) as the representative of the wide band gap semiconductor material is generated as the third generation semiconductor material. GaN has better chemical, electrical properties comparing with the first generation semiconductor Si, Ge and second generation compound semiconductor GaAs, InP. And comparing to the current semiconductor material, GaN has the following advantages: wide band gap, high electronic saturation rate, high breakdown field, high thermal conductivity, low dielectric constant, and so on. So GaN is an ideal material to produce high-temperature, high-power, highfrequency electronic devices. Figure 1. The standards used for different scenarios /8/$2. 28 IEEE 147 ICCS 28

2 TABLE I. COMPARISION OF GAN AND OTHER SEMICONDUCTOR MATERIALS Material Width of band gap (Eg/eV) Breakdown field (V cm -1 ) Thermal conductivity (W cm - 1 K -1 ) Dielectric constant Electron mobility (cm /V 2 s) GaN 3.4 > H-SiC GaAs Si The comparison of GaN and other semiconductor materials is showed in TABLE I. With the breakthrough of the thin film growth technology and the developments of ohmic contacts, annealing, corrosion and etching technologies, a variety of GaN heterostructures have been successfully grown up, including MESFET(metal semiconductor field-effect transistor), HFET(heterojunction field Effect transistor), HEMT(high electron mobility transistors), MODFET(modulation doped field-effect transistor), MISFET(metal insulation field-effect transistor) and other microwave devices, among them HEMT is most widely used. AlGaN / GaN HEMT device has wide band gap, high breakdown field, high two-dimensional electron gas concentration, high transconductance, high cutoff frequency, low noise, fast switching speed, etc. With the comparison to GaAs devices, the power density has a substantial increase. It is ideal for PA and other high-frequency circuits. Therefore the design of AlGaN / GaN HEMT power amplifier becomes a focus in the current research. B. Switch Mode Operation for High Efficiency Comparing to the conventional linear classes operation of PA, the amplifiers with displacement of peak drain/collector voltage and current can achieve a much higher efficiency. This phenomenon only happens when the transistor behaves as an ideal switch which only allows either current or voltage peak to occur at one time. In such switching mode, power dissipation in the transistor can be totally eliminated, and hence, achieving 1% efficiency, theoretically. is a switching mode power amplifier [1]. C. Optimum and Suboptimum Operation In order to achieve a high efficiency, the peak of the current and voltage waveforms for the switch must be displaced in the time. When the switch is turned on, the current flows through it with no voltage drop across. On the opposite, there will be a voltage induced when the switch is off, blocking any current flow. Thus, the two waveforms behave like two pulse trains, both with fall and rise sections occupying % of the RF period, ideally. It is required that the rise section of one waveform occurs when the other one is in its fall to avoid peaking simultaneously. Since the voltage and current of the switch are the same as these of the transistor drain, respectively, drain voltage and drain current will be used from this point forward in the thesis. Figure 2 shows the ideal waveforms for 1% efficiency. Figure 2. Ideal Switch (or Drain) Voltage and Current Waveforms in to Achieve 1% Efficiency 1) The peak drain voltage and current do not exist simultaneously. 2) At the end of the rise section of the drain current waveform, it mustdecrease to zero before the rise section of the voltage waveform can start. In other words, the current reaches zero at the end of the ON interval right before the switch is turned off. The beginning of the rise section of the voltage waveform should be delayed until after the switch is turned off. 3) The slope of the current waveform at the end of its rise section must be zero to avoid power dissipation due to the existence of both current and voltage. The similar conditions apply to the drain voltage waveform at the end of its rise section. 4) It must return to zero at the end of the switch OFF interval (right before the switch is turned on) before the rise of the current waveform can start. The starting point of the rise section of the current waveform should be postponed until after the transistor is turned on. ) Its slope is zero at that moment to avoid power dissipation due to the simultaneous imposition of current and voltage. All the above five conditions are meant to eliminate the power dissipation of the transistor as much as possible during the class E operation so that to increase the efficiency. The realization of condition 1 reduces the majority power loss. Condition 2 & 3 and 4 & are aimed to decrease the power dissipation during the ON to OFF and OFF to ON transitions of the switching process. They prevent the energy loss from the coexistence of substantial current and voltage during the transitions. Even though the power dissipation during the transition intervals is small compared to that from the 1476

3 coexistence of peak voltage and current, it still can decrease the efficiency dramatically, thus, degrade the class E performance. The condition 2 and 3 are known as Zero Current Switching (ZCS) and Zero Slope Current Switching (ZsCS), respectively, from the concepts of switching regulator. Similarly, condition 4 and are called Zero Voltage Switching (ZVS) and Zero Slope Voltage Switching (ZsVS). Practically, ZCS and ZsCS are very difficult to implement for frequencies greater than a few decades of MHz. Therefore, switching condition set ZCS & ZsCS and that for ZVS & ZsVS can not be achieved at the same time for high frequencies. On the contrary, the latter set is much easier to design and implement [1,2]. D. Basic Circuit Schematic In this paper, the prototype of the RF class E power amplifier proposed consists of the circuit elements synthesized in the design block diagram below [3]. E. Driver What drives the MOSFET used in class E is the voltage across the input capacitance of the transistor, which is also the gate voltage. Due to the fact that the gate DC current is always zero, the gate voltage does not dissipate power, thus, no power loss. The ideal driver for class E PAs is a pulse train with rectangular waveform shape because it has the shortest transition interval between fall and rise sections among all the waveforms; hence, it has the lowest power loss during transitions. However, it is not realizable in practice. Thus, a trapezoidal waveform is the best choice for frequencies below MHz. For higher frequencies, a sine wave can be used as a usable approximation to the trapezoids [4]. F. Gate Bias Since the gate voltage variations will drive the switch on and off, the gate bias is important in supplying this swing. For a BJT acting as the switch in class E, the transistor operates in cutoff and active region for OFF and ON interval, respectively, each for a half RF switching period. The gate bias should be the DC offset of the voltage waveform, which swings among the values needed for cutoff and active, each for half time. For a FET switch, the transistor operates in cutoff and saturation regions when the switch is in the OFF and ON stage, respectively. Similarly, the gate bias should be the DC level of the swing which makes the transistor to go cutoff or deep saturation []. _SQR P=1 Z= Ohm AMP=2.8 V TR=.2 ns TF= ns TD= ns WINDOW=DEFAULT BIASTEE ID=X1 2 RF RF & DC DC f = _FREQ 3 DCVS ID=VGS1 V=-2.36 V 1 Figure 3. Basic Circuit Schematic CURTICE ID=CF1 AFAC=1.2 NFING= IND ID=L1 L=1e6 nh ID=AMP1 CAP ID=C2 C=.31 pf DCVS ID=VGS2 V=6 V ID=AMP4 V_PROBE ID=VP1 ID=AMP2 ID=AMP3 CAP ID=C1 C=.823 pf IND ID=L2 L=13.21 nh SUBCKT ID=S2 NET="output matching cct" 1 2 P=2 Z=49.27 Ohm G. Drain Shunt Capacitance The drain shunt capacitance, Cshunt, delays the starting point of the voltage rise section while the current is at the end of its fall section during the ON to OFF transition. It ensures that at the moment when the switch is turned OFF, the voltage across the switch still remains relatively small as it was still at the end of the fall section of the drain voltage, until after the drain current has reached zero. Thus, its purpose is to shape the drain voltage and current waveforms during the ON to OFF transition to make certain that there is as little power dissipation by the switch as possible. TLSC ID=TL2 Z= Ohm EL= Deg F=1 GHz TLIN ID=TL1 Z= Ohm P=1 EL= Deg Z= j*1.2 Ohm F=1 GHz P=2 Z= Ohm Figure 4. Circuit Schematic of Power Amplifier Figure. Major Current Flows in a PA when Switch is ON When the switch is ON, there is no current flowing through Cshunt, or the voltage drop across it. The relation among the currents going through the RF chock on the drain DC supply 1477

4 path ( idc ), the switch ( is ) and the rest of the load network ( io ) is 8 Vds Vs Id 2 is = idc + io (1) Figure 6. Major Current Flows in a PA when Switch is OFF Time (ns) - III. SIMULATION RESULTS Vds (R, V) Itime(.AMP1,1)[11] (L, ma) 1 Characteristic Curve Vs Dynamic Load Line : Freq = 2.69 GHz : Freq = GHz 8 6 p6 p Figure 8. Vds Vs Id 4 p4 8 Vds Intrinsic Vs Id Intrinsic 2 2 p3 p8 p Voltage (V) IVCurve() (ma) Chara IVDLL(V_PROBE.VP1,.AMP1)[6] (ma) IVDLL(CURTICE.CF1@ds,CURTICE.CF1@ds)[11] (ma) : Vstep = -1 V : Vstep = -.8 V p3: Vstep = -.6 V p4: Vstep = -.4 V p: Vstep = -.2 V p6: Vstep = V p7: Freq = 2.69 GHz p8: Freq = GHz Figure 7. Characteristic Curve Vs Dynamic load line s Time (ns) Itime(CURTICE.CF1@ds,1)[11] (L, ma) Vtime(CURTICE.CF1@ds,1)[11] (R, V) : Freq = 2.69 GHz : Freq = 2.69 GHz Figure 9. Vds Intrinsic Vs Id Intrinsic The dynamic load line measurement is used to plot the dynamic I-V trajectory on a rectangular graph. Typically, the load line measurement is used in conjunction with the IVCurve measurement as shown above in Figure

5 96.4 PAE and Eff -1 S GHz PAE(_1,_2) DCRF(_2) Figure 1. PAE and Eff Here, The power-added efficiency is defined as Pout Pin PAE = 1% Pdc DCRF computes the DC to RF conversion efficiency of a circuit. The DC power is computed from the total DC power of all sources in the circuit. The RF power is computed using the specified measurement element. The DC to RF efficiency is defined as -1-3 P out DCRF = 1% Pdc S11 (2) (3) DB( S(2,2) ) output matching cct Figure 12. S22 S22 shows the match of output as is showed in Figure 12. IV. CONCLUSIONS This paper presented the 2.469~2.69GHz AlGaN/GaN HEMT power amplifier for IEEE 82.16e WiMAX application. The simulation showed that the power amplifier can achieve 2.81dB small signal gain with a PAE of 96.37% at the center frequency point. The output power is 2.39dBm at this point with 6v supply voltage, as showed in TABLE II. With these simulation results, it could be fit for IEEE 82.16e WiMAX applications. TABLE II. POWER AMPLIFIER SIMULATION DATA Parameter Simulation Data Frequency 2.469~2.69GHz Supply Voltage 6 V Small signal gain at central frequency point 2.81dB PAE at central frequency point 96.37% Output Power at central frequency point 2.39dBm ACKNOWLEDGMENT The design is built on lots of study in the fields of power amplifier which has been done by the researchers all over the world. Thank them for the already working! DB( S(1,1) ) output matching cct Figure 11. S11 S11shows the match of input as is showed in Figure 11. REFERENCES [1] N. O. Sokal and A. D. Sokal, Class-E A New Class of High- Efficiency Tuned Single-Ended Switching Power Amplifiers, IEEE Journal of Solid-State Circuits, Vol. SC-1, No. 3 pp , June 197. [2] F. H. Raab, Class-E, Class-C, and Class-F Power Amplifiers Based upon a Finite Number of Harmonics, IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 8 pp , August 21. [3] B. Razavi, RF Microelectronics, Chapter 9, Prentice,1998. [4] Peter B. Kenington, High-linearity RF Amplifier Design, Artech House. [] Alireza Shirvani, et al., A CMOS RF power amplifier with parallel amplification for efficient power control, IEEE Journal of Solid-State Circuits, Vol. 37, pp , June

High Power Two- Stage Class-AB/J Power Amplifier with High Gain and

High Power Two- Stage Class-AB/J Power Amplifier with High Gain and MPRA Munich Personal RePEc Archive High Power Two- Stage Class-AB/J Power Amplifier with High Gain and Efficiency Fatemeh Rahmani and Farhad Razaghian and Alireza Kashaninia Department of Electronics,

More information

High Power Wideband AlGaN/GaN HEMT Feedback. Amplifier Module with Drain and Feedback Loop. Inductances

High Power Wideband AlGaN/GaN HEMT Feedback. Amplifier Module with Drain and Feedback Loop. Inductances High Power Wideband AlGaN/GaN HEMT Feedback Amplifier Module with Drain and Feedback Loop Inductances Y. Chung, S. Cai, W. Lee, Y. Lin, C. P. Wen, Fellow, IEEE, K. L. Wang, Fellow, IEEE, and T. Itoh, Fellow,

More information

Development of Gallium Nitride High Electron Mobility Transistors for Cellular Base Stations

Development of Gallium Nitride High Electron Mobility Transistors for Cellular Base Stations ELECTRONICS Development of Gallium Nitride High Electron Mobility Transistors for Cellular Base Stations Kazutaka INOUE*, Seigo SANO, Yasunori TATENO, Fumikazu YAMAKI, Kaname EBIHARA, Norihiko UI, Akihiro

More information

Customized probe card for on-wafer testing of AlGaN/GaN power transistors

Customized probe card for on-wafer testing of AlGaN/GaN power transistors Customized probe card for on-wafer testing of AlGaN/GaN power transistors R. Venegas 1, K. Armendariz 2, N. Ronchi 1 1 imec, 2 Celadon Systems Inc. Outline Introduction GaN for power switching applications

More information

Design and simulation of Parallel circuit class E Power amplifier

Design and simulation of Parallel circuit class E Power amplifier International Journal of scientific research and management (IJSRM) Volume 3 Issue 7 Pages 3270-3274 2015 \ Website: www.ijsrm.in ISSN (e): 2321-3418 Design and simulation of Parallel circuit class E Power

More information

Silicon-Carbide High Efficiency 145 MHz Amplifier for Space Applications

Silicon-Carbide High Efficiency 145 MHz Amplifier for Space Applications Silicon-Carbide High Efficiency 145 MHz Amplifier for Space Applications By Marc Franco, N2UO 1 Introduction This paper describes a W high efficiency 145 MHz amplifier to be used in a spacecraft like AMSAT

More information

Customized probe card for on wafer testing of AlGaN/GaN power transistors

Customized probe card for on wafer testing of AlGaN/GaN power transistors Customized probe card for on wafer testing of AlGaN/GaN power transistors R. Venegas 1, K. Armendariz 2, N. Ronchi 1 1 imec, 2 Celadon Systems Inc. Presented by Bryan Root 2 Outline Introduction GaN for

More information

A 1-W GaAs Class-E Power Amplifier with an FBAR Filter Embedded in the Output Network

A 1-W GaAs Class-E Power Amplifier with an FBAR Filter Embedded in the Output Network A 1-W GaAs Class-E Power Amplifier with an FBAR Filter Embedded in the Output Network Kyle Holzer and Jeffrey S. Walling University of Utah PERFIC Lab, Salt Lake City, UT 84112, USA Abstract Integration

More information

Gallium nitride (GaN)

Gallium nitride (GaN) 80 Technology focus: GaN power electronics Vertical, CMOS and dual-gate approaches to gallium nitride power electronics US research company HRL Laboratories has published a number of papers concerning

More information

ANALYSIS OF BROADBAND GAN SWITCH MODE CLASS-E POWER AMPLIFIER

ANALYSIS OF BROADBAND GAN SWITCH MODE CLASS-E POWER AMPLIFIER Progress In Electromagnetics Research Letters, Vol. 38, 151 16, 213 ANALYSIS OF BROADBAND GAN SWITCH MODE CLASS-E POWER AMPLIFIER Ahmed Tanany, Ahmed Sayed *, and Georg Boeck Berlin Institute of Technology,

More information

III-Nitride microwave switches Grigory Simin

III-Nitride microwave switches Grigory Simin Microwave Microelectronics Laboratory Department of Electrical Engineering, USC Research Focus: - Wide Bandgap Microwave Power Devices and Integrated Circuits - Physics, Simulation, Design and Characterization

More information

Gallium Nitride (GaN) Technology & Product Development

Gallium Nitride (GaN) Technology & Product Development Gallium Nitride (GaN) Technology & Product Development IEEE IMS / MTT-S 2012 Montreal, Canada GaN A New Enabling Technology Five times faster, higher frequency, faster on-chip logic Five times more power,

More information

High-Efficiency L-Band 200-W GaN HEMT for Space Applications

High-Efficiency L-Band 200-W GaN HEMT for Space Applications INFOCOMMUNICATIONS High-Efficiency L-Band 200-W GaN HEMT for Space Applications Ken OSAWA*, Hiroyuki YOSHIKOSHI, Atsushi NITTA, Tsuneyuki TANAKA, Eizo MITANI, and Tomio SATOH ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

More information

= 25 C) Parameter 1.0 GHz 2.0 GHz 3.0 GHz 4.0 GHz 5.0 GHz 6.0 GHz Units. Gain db. 32 dbm W

= 25 C) Parameter 1.0 GHz 2.0 GHz 3.0 GHz 4.0 GHz 5.0 GHz 6.0 GHz Units. Gain db. 32 dbm W CMPA006005D 5 W, 0 MHz - 6.0 GHz, GaN MMIC, Power Amplifier Cree s CMPA006005D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC).

More information

Simulations of High Linearity and High Efficiency of Class B Power Amplifiers in GaN HEMT Technology

Simulations of High Linearity and High Efficiency of Class B Power Amplifiers in GaN HEMT Technology Simulations of High Linearity and High Efficiency of Class B Power Amplifiers in GaN HEMT Technology Vamsi Paidi, Shouxuan Xie, Robert Coffie, Umesh K Mishra, Stephen Long, M J W Rodwell Department of

More information

A New Topology of Load Network for Class F RF Power Amplifiers

A New Topology of Load Network for Class F RF Power Amplifiers A New Topology of Load Network for Class F RF Firas Mohammed Ali Al-Raie Electrical Engineering Department, University of Technology/Baghdad. Email: 30204@uotechnology.edu.iq Received on:12/1/2016 & Accepted

More information

= 25 C) Parameter 6.0 GHz 7.5 GHz 9.0 GHz 10.5 GHz 12.0 GHz Units Small Signal Gain db P OUT

= 25 C) Parameter 6.0 GHz 7.5 GHz 9.0 GHz 10.5 GHz 12.0 GHz Units Small Signal Gain db P OUT CMPA601C025F 25 W, 6.0-12.0 GHz, GaN MMIC, Power Amplifier The CMPA601C025F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC) on a

More information

& ) > 35W, 33-37% PAE

& ) > 35W, 33-37% PAE Outline Status of Linear and Nonlinear Modeling for GaN MMICs Presented at IMS11 June, 11 Walter R. Curtice, Ph. D. Consulting www.curtice.org State of the Art Modeling considerations, types of models,

More information

LINEARIZED CMOS HIGH EFFECIENCY CLASS-E RF POWER AMPLIFIER

LINEARIZED CMOS HIGH EFFECIENCY CLASS-E RF POWER AMPLIFIER Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 5-7, 006 (pp09-3) LINEARIZED CMOS HIGH EFFECIENCY CLASS-E RF POWER AMPLIFIER

More information

Unit III FET and its Applications. 2 Marks Questions and Answers

Unit III FET and its Applications. 2 Marks Questions and Answers Unit III FET and its Applications 2 Marks Questions and Answers 1. Why do you call FET as field effect transistor? The name field effect is derived from the fact that the current is controlled by an electric

More information

1. INTRODUCTION. Gabriele Formicone Integra Technologies, Inc. 321 Coral Circle El Segundo, CA

1. INTRODUCTION. Gabriele Formicone Integra Technologies, Inc. 321 Coral Circle El Segundo, CA High Efficiency Switch Mode GaN-based Power Amplifiers for P-Band Aerospace Applications James Custer Integra Technologies, Inc. 5072 Hillsdale Circle #120 El Dorado Hills, CA 95762 916-432-3343 jcuster@integratech.com

More information

Design of an Efficient Single-Stage and 2-Stages Class-E Power Amplifier (2.4GHz) for Internet-of-Things

Design of an Efficient Single-Stage and 2-Stages Class-E Power Amplifier (2.4GHz) for Internet-of-Things Design of an Efficient Single-Stage and 2-Stages Class-E Power Amplifier (2.4GHz) for Internet-of-Things Ayyaz Ali, Syed Waqas Haider Shah, Khalid Iqbal Department of Electrical Engineering, Army Public

More information

Absolute Maximum Ratings Parameter Rating Unit Drain Voltage (V D ) 150 V Gate Voltage (V G ) -8 to +2 V Gate Current (I G ) 39 ma Operational Voltage

Absolute Maximum Ratings Parameter Rating Unit Drain Voltage (V D ) 150 V Gate Voltage (V G ) -8 to +2 V Gate Current (I G ) 39 ma Operational Voltage 60W GaN WIDEBAND POWER AMPLIFIER Package: Hermetic 2-Pin Flanged Ceramic Features Broadband Operation DC to 3.5GHz Advanced GaN HEMT Technology Advanced Heat-Sink Technology Small Signal Gain = db at 2GHz

More information

Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios

Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios The University Of Cincinnati College of Engineering Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios Seth W. Waldstein The University of Cincinnati-Main Campus Miguel A. Barbosa

More information

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s. UNIT-I FIELD EFFECT TRANSISTOR 1. Explain about the Field Effect Transistor and also mention types of FET s. The Field Effect Transistor, or simply FET however, uses the voltage that is applied to their

More information

Uneven Doherty Amplifier Based on GaN HEMTs Characteristic

Uneven Doherty Amplifier Based on GaN HEMTs Characteristic 11 International Conference on Circuits, System and Simulation IPCSIT vol.7 (11) (11) IACSIT Press, Singapore Uneven Doherty Amplifier Based on GaN HEMTs Characteristic K. Pushyaputra, T. Pongthavornkamol,

More information

= 25 C) Parameter 0.5 GHz 1.0 GHz 2.5 GHz 4.0 GHz 6.0 GHz Units. Gain db. 23 dbm W

= 25 C) Parameter 0.5 GHz 1.0 GHz 2.5 GHz 4.0 GHz 6.0 GHz Units. Gain db. 23 dbm W CMPA6D Watt, MHz - 6 MHz GaN HEMT MMIC Power Amplifier Cree s CMPA6D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior

More information

Design of Class F Power Amplifiers Using Cree GaN HEMTs and Microwave Office Software to Optimize Gain, Efficiency, and Stability

Design of Class F Power Amplifiers Using Cree GaN HEMTs and Microwave Office Software to Optimize Gain, Efficiency, and Stability White Paper Design of Class F Power Amplifiers Using Cree GaN HEMTs and Microwave Office Software to Optimize Gain, Efficiency, and Stability Overview This white paper explores the design of power amplifiers

More information

Energy Efficient Transmitters for Future Wireless Applications

Energy Efficient Transmitters for Future Wireless Applications Energy Efficient Transmitters for Future Wireless Applications Christian Fager christian.fager@chalmers.se C E N T R E Microwave Electronics Laboratory Department of Microtechnology and Nanoscience Chalmers

More information

Designing a 960 MHz CMOS LNA and Mixer using ADS. EE 5390 RFIC Design Michelle Montoya Alfredo Perez. April 15, 2004

Designing a 960 MHz CMOS LNA and Mixer using ADS. EE 5390 RFIC Design Michelle Montoya Alfredo Perez. April 15, 2004 Designing a 960 MHz CMOS LNA and Mixer using ADS EE 5390 RFIC Design Michelle Montoya Alfredo Perez April 15, 2004 The University of Texas at El Paso Dr Tim S. Yao ABSTRACT Two circuits satisfying the

More information

Advance Datasheet Revision: May 2013

Advance Datasheet Revision: May 2013 Applications Military SatCom Phased-Array Radar Applications Point-to-Point Radio Point-to-Multipoint Communications Terminal Amplifiers X = 4.4mm Y = 2.28mm Product Features RF frequency: 18 to 23 GHz

More information

CMPA F. 30 W, GHz, GaN MMIC, Power Amplifier. Typical Performance Over GHz (T C. Features. Applications

CMPA F. 30 W, GHz, GaN MMIC, Power Amplifier. Typical Performance Over GHz (T C. Features. Applications CMPA83F 3 W,. - 8. GHz, GaN MMIC, Power Amplifier Cree s CMPA83F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior

More information

MwT-1789SB GHz Packaged FET

MwT-1789SB GHz Packaged FET Features: Designed for single voltage operations Ideal for 0.5 4.0 GHz High Linearity / High Dynamic Range Applications Excellent RF Performance: o 44 dbm IP3 o 65 dbc ACPR o 28 dbm P1dB o 18 db SSG @

More information

8. Characteristics of Field Effect Transistor (MOSFET)

8. Characteristics of Field Effect Transistor (MOSFET) 1 8. Characteristics of Field Effect Transistor (MOSFET) 8.1. Objectives The purpose of this experiment is to measure input and output characteristics of n-channel and p- channel field effect transistors

More information

S-band 600 W and X-band 200 W High-Power GaN HEMTs for Radar Transmitters

S-band 600 W and X-band 200 W High-Power GaN HEMTs for Radar Transmitters INFOCOMMUNICATIONS S-band 600 W and X-band 200 W High-Power GaN HEMTs for Radar Transmitters Naoyuki MIYAZAWA*, Makoto NISHIHARA, Kunihiro USAMI, Makoto AOJIMA and Takashi YAMAMOTO ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

More information

GaN: Applications: Optoelectronics

GaN: Applications: Optoelectronics GaN: Applications: Optoelectronics GaN: Applications: Optoelectronics - The GaN LED industry is >10 billion $ today. - Other optoelectronic applications of GaN include blue lasers and UV emitters and detectors.

More information

PRELIMINARY. Cree s CGHV59070 is an internally matched gallium nitride (GaN) high electron mobility transistor

PRELIMINARY. Cree s CGHV59070 is an internally matched gallium nitride (GaN) high electron mobility transistor PRELIMINARY CGHV597 7 W, 4.4-5.9 GHz, 5 V, RF Power GaN HEMT Cree s CGHV597 is an internally matched gallium nitride (GaN) high electron mobility transistor (HEMT). The CGHV597, operating from a 5 volt

More information

Development of High-Efficiency GaN-HEMT Amplifier for Mobile WiMAX

Development of High-Efficiency GaN-HEMT Amplifier for Mobile WiMAX Development of High-Efficiency GaN-HEMT Amplifier for Mobile WiMAX V Toshihide Kikkawa V Taisuke Iwai V Toshihiro Ohki (Manuscript received April 14, 28) Base stations for Mobile Worldwide Interoperability

More information

= 25 C) Parameter 0.5 GHz 1.0 GHz 2.5 GHz 4.0 GHz 6.0 GHz Units. Gain db. 23 dbm W

= 25 C) Parameter 0.5 GHz 1.0 GHz 2.5 GHz 4.0 GHz 6.0 GHz Units. Gain db. 23 dbm W CMPA0060002D 2 Watt, MHz - 6000 MHz GaN HEMT MMIC Power Amplifier Cree s CMPA0060002D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC).

More information

Microwave Office Application Note

Microwave Office Application Note Microwave Office Application Note INTRODUCTION Wireless system components, including gallium arsenide (GaAs) pseudomorphic high-electron-mobility transistor (phemt) frequency doublers, quadruplers, and

More information

10W Ultra-Broadband Power Amplifier

10W Ultra-Broadband Power Amplifier (TH1B-01 ) 10W Ultra-Broadband Power Amplifier Amin K. Ezzeddine and Ho. C. Huang AMCOM Communications, Inc 401 Professional Drive, Gaithersburg, MD 20879, USA Tel: 301-353-8400 Email: amin@amcomusa.com

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

More information

Leveraging High-Accuracy Models to Achieve First Pass Success in Power Amplifier Design

Leveraging High-Accuracy Models to Achieve First Pass Success in Power Amplifier Design Application Note Leveraging High-Accuracy Models to Achieve First Pass Success in Power Amplifier Design Overview Nonlinear transistor models enable designers to concurrently optimize gain, power, efficiency,

More information

High Efficiency Classes of RF Amplifiers

High Efficiency Classes of RF Amplifiers Rok / Year: Svazek / Volume: Číslo / Number: Jazyk / Language 2018 20 1 EN High Efficiency Classes of RF Amplifiers - Erik Herceg, Tomáš Urbanec urbanec@feec.vutbr.cz, herceg@feec.vutbr.cz Faculty of Electrical

More information

Absolute Maximum Ratings Parameter Rating Unit Drain Voltage (V D ) 150 V Gate Voltage (V G ) -8 to +2 V Gate Current (I G ) 8 ma Operational Voltage

Absolute Maximum Ratings Parameter Rating Unit Drain Voltage (V D ) 150 V Gate Voltage (V G ) -8 to +2 V Gate Current (I G ) 8 ma Operational Voltage 10W GaN ON SIC POWER AMPLIFIER DIE Package: Die Features Broadband Operation DC to 4GHz Advanced GaN HEMT Technology Packaged Small Signal Gain=19dB at 2GHz 48V Typical Performance Output Power: 16W at

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1 Introduction of Device Technology Digital wireless communication system has become more and more popular in recent years due to its capability for both voice and data communication.

More information

A Simulation-Based Flow for Broadband GaN Power Amplifier Design

A Simulation-Based Flow for Broadband GaN Power Amplifier Design Rubriken Application A Simulation-Based Flow for Broadband GaN Power Amplifier Design This application note demonstrates a simulation-based methodology for broadband power amplifier (PA) design using load-line,

More information

Utilization of GaN HEMT in Power Amplifiers for Green Communication systems

Utilization of GaN HEMT in Power Amplifiers for Green Communication systems Utilization of GaN HEMT in Power Amplifiers for Green Communication systems Abdelaziz M. A.Abdelbar Nahda University, Benu Swief, Egypt, Ayman M. El-Tager MTC, Electronics Dpt., Cairo, Egypt, Hadia S.

More information

Microwave Office Application Note

Microwave Office Application Note Microwave Office Application Note INTRODUCTION Wireless system components, including gallium arsenide (GaAs) pseudomorphic high-electron-mobility transistor (phemt) frequency doublers, quadruplers, and

More information

NI AWR Design Environment Load-Pull Simulation Supports the Design of Wideband High-Efficiency Power Amplifiers

NI AWR Design Environment Load-Pull Simulation Supports the Design of Wideband High-Efficiency Power Amplifiers Design NI AWR Design Environment Load-Pull Simulation Supports the Design of Wideband High-Efficiency Power Amplifiers The design of power amplifiers (PAs) for present and future wireless systems requires

More information

High Gain Low Noise Amplifier Design Using Active Feedback

High Gain Low Noise Amplifier Design Using Active Feedback Chapter 6 High Gain Low Noise Amplifier Design Using Active Feedback In the previous two chapters, we have used passive feedback such as capacitor and inductor as feedback. This chapter deals with the

More information

Advance Datasheet Revision: April 2015

Advance Datasheet Revision: April 2015 APN 1-1 GHz Advance Datasheet Revision: April Applications Point-to-Point Digital Radios Point-to-Multipoint Digital Radios VSAT Test Instrumentation X = 3 um Y = 3 um Product Features RF frequency: 1

More information

High Efficiency Class-F MMIC Power Amplifiers at Ku-Band

High Efficiency Class-F MMIC Power Amplifiers at Ku-Band High Efficiency Class-F MMIC Power Amplifiers at Ku-Band Matthew T. Ozalas The MITRE Corporation 2 Burlington Road, Bedford, MA 173 mozalas@mitre.org Abstract Two high efficiency Ku-band phemt power amplifier

More information

Ultra Wideband Amplifier Senior Project Proposal

Ultra Wideband Amplifier Senior Project Proposal Ultra Wideband Amplifier Senior Project Proposal Saif Anwar Sarah Kief Senior Project Fall 2007 December 4, 2007 Advisor: Dr. Prasad Shastry Department of Electrical & Computer Engineering Bradley University

More information

= 25 C) Note: Measured at -30 dbc, 1.6 MHz from carrier, in the CGHV96050F1-AMP (838176) under OQPSK modulation, 1.6 Msps, PN23, Alpha Filter = 0.

= 25 C) Note: Measured at -30 dbc, 1.6 MHz from carrier, in the CGHV96050F1-AMP (838176) under OQPSK modulation, 1.6 Msps, PN23, Alpha Filter = 0. CGHV965F1 5 W, 7.9-9.6 GHz, 5-ohm, Input/Output Matched GaN HEMT Cree s CGHV965F1 is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) on Silicon Carbide (SiC) substrates. This GaN Internally

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

= 25 C), CW. Parameter 1.7 GHz 1.8 GHz 1.9 GHz Units Small Signal Gain db P in. = 38 dbm

= 25 C), CW. Parameter 1.7 GHz 1.8 GHz 1.9 GHz Units Small Signal Gain db P in. = 38 dbm CGHV4PP W, 5 V, GaN HEMT Cree s CGHV4PP is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGHV4PP, operating from a 5 volt rail, offers a general purpose, broadband solution

More information

Design and Layout of a X-Band MMIC Power Amplifier in a Phemt Technology

Design and Layout of a X-Band MMIC Power Amplifier in a Phemt Technology Design and Layout of a X-Band MMIC Power Amplifier in a Phemt Technology Renbin Dai, and Rana Arslan Ali Khan Abstract The design of Class A and Class AB 2-stage X band Power Amplifier is described in

More information

Digital Electronics. By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology

Digital Electronics. By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology K. N. Toosi University of Technology Chapter 7. Field-Effect Transistors By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology http://wp.kntu.ac.ir/faradji/digitalelectronics.htm

More information

GaN power electronics

GaN power electronics GaN power electronics The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Lu, Bin, Daniel Piedra, and

More information

GaN MMIC PAs for MMW Applicaitons

GaN MMIC PAs for MMW Applicaitons GaN MMIC PAs for MMW Applicaitons Miroslav Micovic HRL Laboratories LLC, 311 Malibu Canyon Road, Malibu, CA 9265, U. S. A. mmicovic@hrl.com Motivation for High Frequency Power sources 6 GHz 11 GHz Frequency

More information

CMPA F. 25 W, GHz, GaN MMIC, Power Amplifier. Typical Performance Over GHz (T C. Applications. Features

CMPA F. 25 W, GHz, GaN MMIC, Power Amplifier. Typical Performance Over GHz (T C. Applications. Features CMPA558525F 25 W, 5.5-8.5 GHz, GaN MMIC, Power Amplifier Cree s CMPA558525F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN

More information

= 25 C), CW. Parameter 1.7 GHz 1.8 GHz 1.9 GHz Units Small Signal Gain db P in. = 38 dbm

= 25 C), CW. Parameter 1.7 GHz 1.8 GHz 1.9 GHz Units Small Signal Gain db P in. = 38 dbm CGHV42PP 2 W, 5 V, GaN HEMT Cree s CGHV42PP is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGHV42PP, operating from a 5 volt rail, offers a general purpose, broadband

More information

40W Power Packaged Transistor. GaN HEMT on SiC

40W Power Packaged Transistor. GaN HEMT on SiC Gain (db), Pout (dbm) & PAE (%) Id (A) Description 40W Power Packaged Transistor The is an unmatched packaged Gallium Nitride High Electron Mobility Transistor. It offers general purpose and broadband

More information

Load Pull Validation of Large Signal Cree GaN Field Effect Transistor (FET) Model

Load Pull Validation of Large Signal Cree GaN Field Effect Transistor (FET) Model APPLICATION NOTE Load Pull Validation of Large Signal Cree GaN Field Effect Transistor (FET) Model Introduction Large signal models for RF power transistors, if matched well with measured performance,

More information

transistor is available in a flange and pill package. Package Types: & PN s: CGH40045F & CGH40045P

transistor is available in a flange and pill package. Package Types: & PN s: CGH40045F & CGH40045P Rev 4.0 - May 2015 CGH40045 45 W, DC - 4 GHz RF Power GaN HEMT Cree s CGH40045 is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGH40045, operating from a 28 volt rail,

More information

Switching Behavior of Class-E Power Amplifier and Its Operation Above Maximum Frequency

Switching Behavior of Class-E Power Amplifier and Its Operation Above Maximum Frequency Switching Behavior of Class-E Power Amplifier and Its Operation Above Maximum Frequency Seunghoon Jee, Junghwan Moon, Student Member, IEEE, Jungjoon Kim, Junghwan Son, and Bumman Kim, Fellow, IEEE Abstract

More information

25W Power Packaged Transistor. GaN HEMT on SiC

25W Power Packaged Transistor. GaN HEMT on SiC 25W Power Packaged Transistor GaN HEMT on SiC Description The is an unmatched packaged Gallium Nitride High Electron Mobility Transistor. It offers general purpose and broadband solutions for a variety

More information

transistor is available in a flange and pill package. Package Types: & PN s: CG2H40045F & CG2H40045P

transistor is available in a flange and pill package. Package Types: & PN s: CG2H40045F & CG2H40045P Rev 0.0 - May 2017 CG2H40045 45 W, DC - 4 GHz RF Power GaN HEMT Cree s CG2H40045 is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CG2H40045, operating from a 28 volt

More information

CGH40120P. 120 W, RF Power GaN HEMT FEATURES APPLICATIONS

CGH40120P. 120 W, RF Power GaN HEMT FEATURES APPLICATIONS Rev 3.1 - November 2017 CGH40120P 120 W, RF Power GaN HEMT Cree s CGH40120P is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGH40120P, operating from a 28 volt rail,

More information

DESIGN OF HIGH POWER AND EFFICIENT RF LDMOS PA FOR ISM APPLICATIONS

DESIGN OF HIGH POWER AND EFFICIENT RF LDMOS PA FOR ISM APPLICATIONS DESIGN OF HIGH POWER AND EFFICIENT RF LDMOS PA FOR ISM APPLICATIONS Farhat Abbas and John Gajadharsing NXP Semiconductors Nijmegen, The Netherlands Farhat.abbas@nxp.com Very high performance in power and

More information

AH102. Product Description. Functional Diagram. Product Features. Typical Parameters. Specifications. Absolute Maximum Ratings. Ordering Information

AH102. Product Description. Functional Diagram. Product Features. Typical Parameters. Specifications. Absolute Maximum Ratings. Ordering Information Medium Power, High Linearity Amplifier The Communications Edge Product Features - MHz Bandwidth +45 dbm Output IP3 13 db Gain +27 dbm P1dB MTBF > 7 Hours Internally Matched Multiple Bias Voltages (+7.

More information

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

RF W GaN WIDEBAND PULSED POWER AMPLIFIER

RF W GaN WIDEBAND PULSED POWER AMPLIFIER 280W GaN WIDE- BAND PULSED POWER AMPLI- FIER 280W GaN WIDEBAND PULSED POWER AMPLIFIER Package: Hermetic 2-Pin, Flanged Ceramic Features Wideband Operation 2.8GHz to 3.4GHz Advanced GaN HEMT Technology

More information

RF CMOS Power Amplifiers: Theory, Design and Implementation

RF CMOS Power Amplifiers: Theory, Design and Implementation RF CMOS Power Amplifiers: Theory, Design and Implementation THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE ANALOG CIRCUITS AND SIGNAL PROCESSING Consulting Editor: Mohammed Ismail.

More information

RF2334. Typical Applications. Final PA for Low Power Applications Broadband Test Equipment

RF2334. Typical Applications. Final PA for Low Power Applications Broadband Test Equipment RF233 AMPLIFIER Typical Applications Broadband, Low Noise Gain Blocks IF or RF Buffer Amplifiers Driver Stage for Power Amplifiers Final PA for Low Power Applications Broadband Test Equipment Product Description

More information

CMPA801B W, GHz, GaN MMIC, Power Amplifier. Typical Performance Over GHz (T C. Features. Applications

CMPA801B W, GHz, GaN MMIC, Power Amplifier. Typical Performance Over GHz (T C. Features. Applications CMPA801B025 25 W, 8.5-11.0 GHz, GaN MMIC, Power Amplifier Cree s CMPA801B025 is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN

More information

California Eastern Laboratories

California Eastern Laboratories California Eastern Laboratories AN143 Design of Power Amplifier Using the UPG2118K APPLICATION NOTE I. Introduction Renesas' UPG2118K is a 3-stage 1.5W GaAs MMIC power amplifier that is usable from approximately

More information

RF V LOW NOISE AMPLIFIER/ 3V DRIVER AMPLIFIER

RF V LOW NOISE AMPLIFIER/ 3V DRIVER AMPLIFIER 3.3V LOW NOISE AMPLIFIER/ 3V DRIVER AMPLIFIER Package Style: SOT 5-Lead Features Low Noise and High Intercept Point Adjustable Bias Current Power Down Control Single 2.7V to 5.0V Power Supply 0.4GHz to

More information

Relevant Projects. RF-Thermal characterization of MEMS devices. High power GaN arrays for power beaming

Relevant Projects. RF-Thermal characterization of MEMS devices. High power GaN arrays for power beaming Relevant Projects Non-Linear RF device characterization from external EMI/EM excitations!haracterization is necessary for our EMI/EM MURI! Pulsed-RF is of most importance/ RF-Thermal characterization of

More information

Gallium Nitride MMIC Power Amplifier

Gallium Nitride MMIC Power Amplifier Gallium Nitride MMIC Power Amplifier August 2015 Rev 4 DESCRIPTION AMCOM s is an ultra-broadband GaN MMIC power amplifier. It has 21dB gain, and >41dBm output power over the 0.03 to 6GHz band. This MMIC

More information

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET) FIELD EFFECT TRANSISTOR (FET) The field-effect transistor (FET) is a three-terminal device used for a variety of applications that match, to a large extent, those of the BJT transistor. Although there

More information

A 2.4GHz Fully Integrated CMOS Power Amplifier Using Capacitive Cross-Coupling

A 2.4GHz Fully Integrated CMOS Power Amplifier Using Capacitive Cross-Coupling A 2.4GHz Fully Integrated CMOS Power Amplifier Using Capacitive Cross-Coupling JeeYoung Hong, Daisuke Imanishi, Kenichi Okada, and Akira Tokyo Institute of Technology, Japan Contents 1 Introduction PA

More information

RF/Microwave Amplifier Design Using Harmonic Balance Simulation With Only S-parameter Data

RF/Microwave Amplifier Design Using Harmonic Balance Simulation With Only S-parameter Data Application Note RF/Microwave Amplifier Design Using Harmonic Balance Simulation With Only S-parameter Data Overview It is widely held that S-parameters combined with harmonic balance (HB) alone cannot

More information

Digital Step Attenuators offer Precision and Linearity

Digital Step Attenuators offer Precision and Linearity Digital Step Attenuators offer Precision and Linearity (AN-70-004) DAT Attenuator (Surface Mount) Connectorized DAT attenuator (ZX76 Series) Connectorized DAT attenuator ZX76-31R5-PN attenuator with parallel

More information

Product Datasheet Revision: January 2015

Product Datasheet Revision: January 2015 Applications Short Haul / High Capacity Links Sensors X=23 mm Y=16 mm Product Features RF Frequency: 92 to 96 GHz Linear Gain: 7.5 db typ. Psat: 25 dbm typ. Die Size: 3.7 sq. mm. 2 mil substrate DC Power:

More information

Cardiff, CF24 3AA, Wales, UK

Cardiff, CF24 3AA, Wales, UK The Application of the Cardiff Look-Up Table Model to the Design of MMIC Power Amplifiers D. M. FitzPatrick (1), S. Woodington (2), J. Lees (2), J. Benedikt (2), S.C. Cripps (2), P. J. Tasker (2) (1) PoweRFul

More information

DESCRIPTION. APPLICATIONS Microwave Radios Military Radios VSAT Telecom Infrastructure Test Equipment

DESCRIPTION. APPLICATIONS Microwave Radios Military Radios VSAT Telecom Infrastructure Test Equipment KX105 15 W, 6.0 GHz, GaN HEMT Transistor DESCRIPTION The KX105 is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) transistor in a Surface-Mount Technology (SMT) package for high reliability

More information

Preliminary Datasheet Revision: January 2016

Preliminary Datasheet Revision: January 2016 Preliminary Datasheet Revision: January 216 Applications Point-to-Point Digital Radios Point-to-Multipoint Digital Radios SATCOM Terminals X = 3.65mm Y = 2.3mm Product Features RF frequency: 27 to 31 GHz

More information

Pulsed IV analysis. Performing and Analyzing Pulsed Current-Voltage Measurements PULSED MEASUREMENTS. methods used for pulsed

Pulsed IV analysis. Performing and Analyzing Pulsed Current-Voltage Measurements PULSED MEASUREMENTS. methods used for pulsed From May 2004 High Frequency Electronics Copyright 2004 Summit Technical Media, LLC Performing and Analyzing Pulsed Current-Voltage Measurements By Charles P. Baylis II, Lawrence P. Dunleavy University

More information

= 25 C), 50 V. Parameter 800 MHz 850 MHz 900 MHz 950 MHz 1000 MHz Units. Small Signal Gain db

= 25 C), 50 V. Parameter 800 MHz 850 MHz 900 MHz 950 MHz 1000 MHz Units. Small Signal Gain db CGHV40180F 180 W, DC - 2000 MHz, 50 V, GaN HEMT Cree s CGHV40180F is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGHV40180F, operating from a 50 volt rail, offers

More information

CG2H W, DC - 6 GHz, RF Power GaN HEMT APPLICATIONS FEATURES

CG2H W, DC - 6 GHz, RF Power GaN HEMT APPLICATIONS FEATURES Rev 0.0 May 2017 CG2H40010 10 W, DC - 6 GHz, RF Power GaN HEMT Cree s CG2H40010 is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CG2H40010, operating from a 28 volt

More information

RF3375 GENERAL PURPOSE AMPLIFIER

RF3375 GENERAL PURPOSE AMPLIFIER Basestation Applications Broadband, Low-Noise Gain Blocks IF or RF Buffer Amplifiers Driver Stage for Power Amplifiers Final PA for Low-Power Applications High Reliability Applications RF3375General Purpose

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

3-7 Nano-Gate Transistor World s Fastest InP-HEMT

3-7 Nano-Gate Transistor World s Fastest InP-HEMT 3-7 Nano-Gate Transistor World s Fastest InP-HEMT SHINOHARA Keisuke and MATSUI Toshiaki InP-based InGaAs/InAlAs high electron mobility transistors (HEMTs) which can operate in the sub-millimeter-wave frequency

More information

GaN is Crushing Silicon. EPC - The Leader in GaN Technology IEEE PELS

GaN is Crushing Silicon. EPC - The Leader in GaN Technology IEEE PELS GaN is Crushing Silicon EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 1 Agenda How egan FETs work Hard Switched DC-DC converters High Efficiency point-of-load converter Envelope Tracking

More information

Preliminary Datasheet Revision: July 2014

Preliminary Datasheet Revision: July 2014 Applications FCC E-band Communication Systems @ Frequency Band Short Haul / High Capacity Links Enterprise Wireless LAN Wireless Fiber Replacement X=3790 mm Y=2920 mm Product Features RF Frequency: 81

More information

Parameter 5.2 GHz 5.5 GHz 5.9 GHz Units. Small Signal Gain db. Output Power W. Efficiency

Parameter 5.2 GHz 5.5 GHz 5.9 GHz Units. Small Signal Gain db. Output Power W. Efficiency CMPA5259025F 25 W, 5200-5900 MHz, 28 V, GaN MMIC for Radar Power Amplifiers Cree s CMPA5259025F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated

More information

High-efficiency class E/F 3 power amplifiers with extended maximum operating frequency

High-efficiency class E/F 3 power amplifiers with extended maximum operating frequency LETTER IEICE Electronics Express, Vol.15, No.12, 1 10 High-efficiency class E/F 3 power amplifiers with extended maximum operating frequency Chang Liu 1, Xiang-Dong Huang 2a), and Qian-Fu Cheng 1 1 School

More information

RFIN 2 GND. Product Description. Ordering Information. GaAs HBT GaAs MESFET. InGaP HBT

RFIN 2 GND. Product Description. Ordering Information. GaAs HBT GaAs MESFET. InGaP HBT InGaP HBT Low Power Linear Amplifier RFGA212 InGaP HBT LOW POWER LINEAR AMPLIFIER Package: DFN, -Pin, 2mmx2mm Features High OIP3=35dBm at 196MHz 1 VBIAS Low DC Power: 3.3V, 23mA Low NF = 1.6dB at 196MHz

More information