Solid-state 488-nm laser based on external-cavity frequency doubling of a multi-longitudinal mode semiconductor laser

Size: px
Start display at page:

Download "Solid-state 488-nm laser based on external-cavity frequency doubling of a multi-longitudinal mode semiconductor laser"

Transcription

1 Solid-state 488-nm laser based on external-cavity frequency doubling of a multi-longitudinal mode semiconductor laser Vincent Issier a, Boris Kharlamov *a, Thomas Kraft a, Andy Miller a, David Simons a, James Wong a, Simon Wong a, Andre Wong b, Kuochou Tai c, Nicolas Guerin b, Daniel Zou, Victor Rossin d, Marc von Gunten a, William Minford e, Andy Hulse a, Colette Paillet-Allison a, Krishnan Parameswaran f, Evgeny Churin g, Rob Waarts a JDSU Corp., 2789 Northpoint Parkway, Santa Rosa, CA, USA 9547 b JDSU Corp., 43 N. McCarthy Blvd. Milpitas, CA, USA 9535 c JDSU Corp., 1768 Automation Parkway, San Jose, CA, USA d JDSU Corp., 8 Rose Orchard Way, San Jose, CA, USA e JDSU Corp. 45 Griffin Road South, Bloomfield, CT, USA 62 f Physical Science Inc., 2 New England Business Center, Andower, MA, USA 181 g Institue Of Automation and Electrometry SO RAS, Novosibirsk, 639, Russia ABSTRACT Results for a new compact 488 nm solid-state laser for biomedical applications are presented. The architecture is based on a multi-longitudinal mode external cavity semiconductor laser with frequency doubling in a ridge waveguide fabricated in periodically poled MgO:LiNbO 3. The diode and the waveguide packaging have been leveraged from telecom packaging technologies. This design enables built-in control electronics, low power consumption ( 2.5 W) and a footprint as small as 12.5 x 7 cm. Due to its fiber-based architecture, the laser has excellent beam quality, M 2 <1.1. The laser is designed to enable two light delivery options: free-space and true fiber delivered output. Multi-longitudinal mode operation and external doubling provide several advantages like low noise, internal modulation over a broad frequency range and variable output power. Current designs provide an output power of 2 mw, but laser has potential for higher power output. Keywords: semiconductor laser, frequency doubling, waveguide, multiple longitudinal modes, optical fiber, external cavity laser 1. INTRODUCTION Compact and reliable sources of visible light are needed in many applications, including flow cytometry, DNA sequencing, confocal microscopy, reprographics, etc. Gas lasers, used for decades for these applications, have wellknown limitations: high energy consumption, bulkiness, and periodic replacement of gas-discharge tubes. Progress in semiconductor lasers and nonlinear optics has enabled the development of solid state lasers based on frequency conversion with similar or better performance compared to gas lasers with much lower power consumption, improved reliability, and smaller size. Currently several commercial semiconductor-based blue and green lasers for biotechnology applications are available. Several design approaches for visible CW solid-state lasers have been reported in the literature. In most cases these designs are based on an external-cavity single-longitudinal-mode semiconductor laser. Frequency doubling in single pass periodically poled nonlinear crystals (KTP or MgO:LiNbO 3 ) is attractive due to simple optical scheme, but with currently available pump power levels and conversion efficiency it is difficult to expect output power for such devices higher than several tens of milliwatts. Resonant-cavity frequency doubling has very good potential for high output power[1] but the optical design is more complicated and very sensitive to external perturbations. Recent progress in the fabrication of nonlinear waveguides [2] has enabled a third approach: frequency doubling in a periodically poled ridge waveguide [3-7]. The use of a waveguide for frequency doubling simplifies dramatically the optical design and provides, * boris.kharlamov@jdsu.com; phone ; fax Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications VII, edited by Peter E. Powers, Proc. of SPIE Vol. 6875, , (28) X/8/$18 doi: / Proc. of SPIE Vol

2 due to the high quality of the latest generation of waveguides, a way for higher power output without laser architecture changes. Very few approaches are based on a multiple longitudinal mode design. Though, multimode system has distinctive advantages. In general single-longitudinal-mode designs are more complex than multimode ones. They have other disadvantages such as limited power variation capability, high sensitivity to optical feedback etc. Multimode systems are more simple, stable, and less sensitive to external perturbation and optical feedback. It provides flexible output power and internal modulation capability. Finally multimode frequency conversion has higher efficiency. The goal of the present work was to develop an efficient, compact, reliable and commercially attractive 488-nm CW semiconductor based laser for biotechnology applications. Our multimode design has many important distinctions from other reported and/or commercially available lasers. 2. DESIGN AND PRINCIPLE OF OPERATION The optical layout of the laser is shown in Figure 1. The gain chip, with a high reflective mirror on the back and an AR coating on the front facet, is mounted on a TEC in the first butterfly package. Radiation is coupled into a PM fiber via a fiber lens. The fiber has a Fiber Bragg Grating (FBG) as the output coupler. The FBG has a reflection of about 1% at 976 nm. These elements create a multi-longitudinal mode cavity with a mode spacing in the 1 MHz range. The width of the lasing envelope depends on the diode current and typically corresponds to a few hundreds longitudinal modes. The large number of modes ensures a stable low noise operation, variable output power and modulation capability. Figure 2 shows the spectral profiles of typical pump module at various currents. Controller I DL, TEC Power loop Laser Diode FBG WG TEC Power loop Collimation, Power Figure 1. Optical layout of the laser. See details in the text. The IR radiation is coupled into a periodically poled MgO:LiNbO 3 ridge waveguide mounted on a TEC in the second butterfly package. The resulting blue radiation is coupled into the single mode PM fiber; residual IR radiation is filtered out by this fiber. The fiber serves as a perfect spatial filter for the blue. The single spatial mode is collimated by a lens. The field distribution is close to Gaussian, and M 2 is better than 1.1 with negligible ellipticity and astigmatism. A small part of the output radiation is sampled by a beamsplitter and used in the power control loop. The built-in electronics controls the function of all the elements, including laser diode and waveguide temperature, laser diode current. The laser with controller has a footprint of only 12.5 x 7 cm. The length of the waveguide is about 8 mm with a FWHM of the phase-matching curve that is well matched to the excitation envelope to avoid conversion efficiency losses. Figure 3 gives examples of phase matching curves in frequency and temperature domains. FWHM of phase matching curve in spectral dimension is λ 17 pm and T 2 C in temperature dimension. Dependence of SHG power on fundamental IR power is shown in figure 4. Slight signs of saturation can be recognized on the top of the curve. They may be caused by waveguide heating by radiation. Precise evaluation of conversion efficiency is difficult, since many parameters can only be estimated. Our estimate of the efficiency for typical waveguides is 4%/W. Proc. of SPIE Vol

3 Multimode lasers and multimode frequency converters specifically have additional sources of noise as compared with single mode lasers. In particular, noise is very sensitive to waveguide temperature and the minimum in noise does not always coincide with the maximum in power. It can be clearly seen from example in figure 3a, where noise dependence on waveguide temperature is plotted together with power. Therefore, our controller has a build-in RMS noise meter and a control loop to optimize the waveguide temperature for minimum noise. Since the noise optimum does not exactly coincide with the power maximum, this mode of operation slightly decreases conversion efficiency but provides a considerable improvement of noise..6 I=2 ma I=4 ma I=6 ma I=8 ma intensity [a.u.].4.2 wavelength [nm] wavelength [nm] current [ma] Figure 2. Generation spectra of the pump module at different currents. Left graph shows single spectral profiles at currents I=2, 4, 6 and 8 ma, right graph shows 3D color map of the generation spectrum dependence on the current. Proc. of SPIE Vol

4 power [a.u.] Power [a.u] noise [%] wavelength [nm] Temperature [C] Figure 3. Phase matching curves of typical waveguide. Left graph: spectral dependence. - are the experimental points, solid line is a fit with sinc-function. FWHM 17 pm. Right graph: temperature dependence. Solid curve power, FWHM 2 C. Dashed curve noise P P IR Figure 4. Dependence of SHG power on fundamental mode IR power. Dash curve is the data fit with equation P 488 =η*p 976 *tanh(k*p 976 *L 2 ), where η is coupling efficiency, K is a combination of constants, and L is the length of waveguide. Proc. of SPIE Vol

5 3. RESULTS Standard versions of laser now have output power up to 2 mw with a typical noise of.2-.35%. Multiple lasers are on lifetest with operating hours currently in the range of 6-12 hours. However, the output power is not limited by technical parameters of the laser. Samples with 3, 5 and 6 mw output power are now in test, and the design has demonstrated a maximum output power in single-spatial-mode operation with a PER > 2 db of about 1-12 mw (see, for example figure 4). Figure 5 shows example of performance test of laser at 6 mw power noise 62.4 power [mw] 6.3 noise [%] time [hours] Figure 5. Example of laser performance at 6 mw, measured continuously during 2 weeks. Laser shows a stable performance, power is easy to control, average level of noise is about.25 %. At high power, waveguide heating is observed, due to both IR and blue radiation absorption. Heating creates a nonuniform temperature profile along waveguide. Non-uniform waveguide heating may lead to decrease of conversion efficiency. The influence of the light-induced waveguide heating on conversion efficiency was modeled. It was found that unless the temperature difference along waveguide exceeds the width of phase matching curve, the degradation of conversion efficiency can be neglected. Another effect, caused by the waveguide heating with converted power, is a distortion of phase matching curves and potential to generation instability due to positive feedback between waveguide local temperature and second harmonic power. Both effects were found not critical issues at SHG power up to 1 mw. At high powers the heating effect may potentially be the limiting factor for efficient frequency conversion and stable operation. It was found that some waveguides show a more or less pronounced aging effect, which manifests itself in the increase of absorption and moderate decrease of efficiency. We have demonstrated that this effect saturates over time and did not cause any laser failures. The nature of the effect is not clear yet, but it definitely should be addressed not to bulk material but to waveguide structure or waveguide production process. Only small part of the total data set is shown. The total performance time of this laser is now more than 12 hours. Proc. of SPIE Vol

6 Power [mw] Power [mw] mw range x1 3 2x1 3 3x1 3 4x1 3 time [min] Noise %] Noise %] time [min] Figure 6. Demonstration of power tunability. Laser operated in constant power mode was tuned from P= to P=2 mw in steps of.2 mw. The solid curve is power, the dotted one is noise. The insert shows details in the low power range. One of the advantages of lasing in multiple longitudinal modes is flexible power tuning. Our laser shows very stable output from the lasing threshold at several tens of milliamps up to a maximum current of 8 ma (limited by controller) with continuous power tuning. Figure 6 shows the power tunability of the standard laser with maximum power 2 mw. The laser was operated in constant power mode, and the power was tuned from to 2 mw in steps of.2 mw. The noise spectrum has a peak at a power between 1 and 2 mw; in other regions, it is below.4%. The peak is the result of a coincidence of several factors and is not inherent in the architecture. If we exclude this region, there are no unstable areas with enhanced noise, practically unavoidable in the case of single mode semiconductor laser. The long-time power stability in constant power mode is better than ±2% across a broad range of ambient temperatures, 1-45 C. Figure 7 gives an example of external temperature scan in this range when laser operated in constant power mode. Proc. of SPIE Vol

7 power noise power [mw] noise [%] temperature [C].2 Figure 7. Sensitivity of output power and noise to external temperature. Steps in power are artifacts caused by digital noise in the output data format. Another benefit of the design is the capability of direct internal modulation. The laser shows stable operation with current modulation at variable frequencies in the range from several Hz to hundreds of KHz at variable modulation depth and modulation profile. Figure 8 shows two examples of internal modulation in low and high frequency ranges with rectangular and sinusoidal profiles. Modulation at frequencies in MHz range is also possible, but modulation frequency can not be tuned continuously in high frequency range, since it becomes comparable with the cavity round trip frequency (a) period T=1 ms, f=1 Hz modulation depth=1% (b) period T=5 µs, f=2 khz modulation depth=5 % power [a.u.] time [s] time [ms] Figure 8. Examples of modulation profiles: (a) low frequency rectangular modulation with 1 %depth; (b) high frequency sinusoidal modulation with 5% modulation depth. Proc. of SPIE Vol

8 Since the laser has a fiber as an output spatial filter, the mode characteristics, such as ellipticity, M 2, astigmatism are very good. The next graph illustrates this statement W X /W Y =1.1 M2 X =1.6; M2 Y =1.8; W [µm] z-shift [mm] Figure 9. Results of output beam profile measurements. The graph shows dependence of beam size on the distance from the focusing lens in x and y directions, calculated ellipticity and M 2 values. 4. CONCLUSION We have developed a compact commercial laser for biotechnology applications based on CW external cavity semiconductor laser with frequency doubling in a ridge MgO:LiNbO 3 waveguide, operating at 488 nm with nominal power of up to 2 mw. The potential for high power options is explored and demonstrated. The laser operates in multiple longitudinal modes with noise typically in the range % and has power stability better than ± 2 % in temperature range 1-45 C. Multimode operation enables power tunability on the whole range of operation power and internal modulation on a broad range of modulation frequencies and modulation signal profiles. Laser output beam has negligible astigmatism and ellipticity, and M 2 < 1.1. Telecom standard based packaging technology provides compactness, low power consumption, robustness. REFERENCES 1. Knippels, G.M.H., et al., "Moving solid-state cyan lasers beyond 2 mw", Proceedings of SPIEE, 5332(1), (24). 2. KAWAGUCHI, T., et al. "Optical Waveguide SHG Devices Using LiNbO3 Epitaxial Grown and Ultraprecision Machining Technique", in Topical Papers on Laser Technology for Next-Generation Optical Disk Systems. The Laser Society of Japan, 2: 3. Kachanov, A.A., et al., "Novel external CW frequency doubling of semiconductor lasers to generate 488 nm", Proceedings of SPIE, 577, (25). 4. Jechow, A., D. Skoczowsky, and R. Menzel, "1 mw high efficient single pass SHG at 488 nm of a single broad area laser diode with external cavity using a PPLN waveguide crystal", OPTICS EXPRESS, 15(11) (27). Proc. of SPIE Vol

9 5. KAWAGUCHI, T., et al., "High power blue/violet QPM-SHG laser using a new ridge-type waveguide", Technical Digest of CLEO Conference, 6-11 May 21 Baltimore, 21. CTul6: p. 141 (21). 6. Iwai, M., et al., "High power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser", Applied Physics Letters, 83, (23). 7. Sakai, K., Y. Koyata, and Y. Hirano, "Blue light generation in a ridge waveguide MgO:LiNbO3 crystal pumped by a fiber Bragg grating stabilized laser diode", OPTICS LETTERS, 32(16), (27). Proc. of SPIE Vol

A novel tunable diode laser using volume holographic gratings

A novel tunable diode laser using volume holographic gratings A novel tunable diode laser using volume holographic gratings Christophe Moser *, Lawrence Ho and Frank Havermeyer Ondax, Inc. 85 E. Duarte Road, Monrovia, CA 9116, USA ABSTRACT We have developed a self-aligned

More information

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E.

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E. QPC Lasers, Inc. 2007 SPIE Photonics West Paper: Mon Jan 22, 2007, 1:20 pm, LASE Conference 6456, Session 3 High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh,

More information

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Introduction Fundamentals of laser Types of lasers Semiconductor lasers ECE 5368 Introduction Fundamentals of laser Types of lasers Semiconductor lasers Introduction Fundamentals of laser Types of lasers Semiconductor lasers How many types of lasers? Many many depending on

More information

IST IP NOBEL "Next generation Optical network for Broadband European Leadership"

IST IP NOBEL Next generation Optical network for Broadband European Leadership DBR Tunable Lasers A variation of the DFB laser is the distributed Bragg reflector (DBR) laser. It operates in a similar manner except that the grating, instead of being etched into the gain medium, is

More information

High Power and Energy Femtosecond Lasers

High Power and Energy Femtosecond Lasers High Power and Energy Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average powers. PHAROS features a mechanical and optical

More information

Vixar High Power Array Technology

Vixar High Power Array Technology Vixar High Power Array Technology I. Introduction VCSELs arrays emitting power ranging from 50mW to 10W have emerged as an important technology for applications within the consumer, industrial, automotive

More information

Operating longitudinal mode Several Polarization ratio > 100:1. Power. Warranty. 30 <1.5 <5% Near TEM ~4.0 one year

Operating longitudinal mode Several Polarization ratio > 100:1. Power. Warranty. 30 <1.5 <5% Near TEM ~4.0 one year DL CW Blue Violet Laser, 405nm 405 nm Operating longitudinal mode Several Applications: DNA Sequencing Spectrum analysis Optical Instrument Flow Cytometry Interference Measurements Laser lighting show

More information

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS Diode Laser Characteristics I. BACKGROUND Beginning in the mid 1960 s, before the development of semiconductor diode lasers, physicists mostly

More information

High-Power Femtosecond Lasers

High-Power Femtosecond Lasers High-Power Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average power. PHAROS features a mechanical and optical design optimized

More information

High power VCSEL array pumped Q-switched Nd:YAG lasers

High power VCSEL array pumped Q-switched Nd:YAG lasers High power array pumped Q-switched Nd:YAG lasers Yihan Xiong, Robert Van Leeuwen, Laurence S. Watkins, Jean-Francois Seurin, Guoyang Xu, Alexander Miglo, Qing Wang, and Chuni Ghosh Princeton Optronics,

More information

High-power semiconductor lasers for applications requiring GHz linewidth source

High-power semiconductor lasers for applications requiring GHz linewidth source High-power semiconductor lasers for applications requiring GHz linewidth source Ivan Divliansky* a, Vadim Smirnov b, George Venus a, Alex Gourevitch a, Leonid Glebov a a CREOL/The College of Optics and

More information

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT In this chapter, the experimental results for fine-tuning of the laser wavelength with an intracavity liquid crystal element

More information

Single Frequency DPSS Lasers

Single Frequency DPSS Lasers Single Frequency DPSS Lasers Any wavelength from NIR to UV using a single engineering platform based on our proprietary patented BRaMMS DPSS Laser technology. We develop and produce Single Frequency DPSS

More information

Isolator-Free 840-nm Broadband SLEDs for High-Resolution OCT

Isolator-Free 840-nm Broadband SLEDs for High-Resolution OCT Isolator-Free 840-nm Broadband SLEDs for High-Resolution OCT M. Duelk *, V. Laino, P. Navaretti, R. Rezzonico, C. Armistead, C. Vélez EXALOS AG, Wagistrasse 21, CH-8952 Schlieren, Switzerland ABSTRACT

More information

532nm laser sources based on intracavity frequency doubling of extended cavity surface-emitting diode lasers

532nm laser sources based on intracavity frequency doubling of extended cavity surface-emitting diode lasers 532nm laser sources based on intracavity frequency doubling of extended cavity surface-emitting diode lasers A. V. Shchegrov, A. Umbrasas, J. P. Watson, D. Lee, C. A. Amsden, W. Ha, G. P. Carey, V. V.

More information

Application Instruction 002. Superluminescent Light Emitting Diodes: Device Fundamentals and Reliability

Application Instruction 002. Superluminescent Light Emitting Diodes: Device Fundamentals and Reliability I. Introduction II. III. IV. SLED Fundamentals SLED Temperature Performance SLED and Optical Feedback V. Operation Stability, Reliability and Life VI. Summary InPhenix, Inc., 25 N. Mines Road, Livermore,

More information

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION Beam Combination of Multiple Vertical External Cavity Surface Emitting Lasers via Volume Bragg Gratings Chunte A. Lu* a, William P. Roach a, Genesh Balakrishnan b, Alexander R. Albrecht b, Jerome V. Moloney

More information

R. J. Jones Optical Sciences OPTI 511L Fall 2017

R. J. Jones Optical Sciences OPTI 511L Fall 2017 R. J. Jones Optical Sciences OPTI 511L Fall 2017 Semiconductor Lasers (2 weeks) Semiconductor (diode) lasers are by far the most widely used lasers today. Their small size and properties of the light output

More information

High Energy Non - Collinear OPA

High Energy Non - Collinear OPA High Energy Non - Collinear OPA Basics of Operation FEATURES Pulse Duration less than 10 fs possible High Energy (> 80 microjoule) Visible Output Wavelength Tuning Computer Controlled Tuning Range 250-375,

More information

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Ring cavity tunable fiber laser with external transversely chirped Bragg grating Ring cavity tunable fiber laser with external transversely chirped Bragg grating A. Ryasnyanskiy, V. Smirnov, L. Glebova, O. Mokhun, E. Rotari, A. Glebov and L. Glebov 2 OptiGrate, 562 South Econ Circle,

More information

High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser

High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser V. Khitrov*, B. Samson, D. Machewirth, D. Yan, K. Tankala, A. Held Nufern, 7 Airport Park Road, East Granby,

More information

A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator

A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator Utah State University DigitalCommons@USU Space Dynamics Lab Publications Space Dynamics Lab 1-1-2011 A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator Robert J. Foltynowicz

More information

Power. Warranty. 30 <1.5 <3% Near TEM ~4.0 one year. 50 <1.5 <5% Near TEM ~4.0 one year

Power. Warranty. 30 <1.5 <3% Near TEM ~4.0 one year. 50 <1.5 <5% Near TEM ~4.0 one year DL CW Blue Violet Laser, 405nm 405 nm Operating longitudinal mode Several Applications: DNA Sequencing Spectrum analysis Optical Instrument Flow Cytometry Interference Measurements Laser lighting show

More information

High-Power, Passively Q-switched Microlaser - Power Amplifier System

High-Power, Passively Q-switched Microlaser - Power Amplifier System High-Power, Passively Q-switched Microlaser - Power Amplifier System Yelena Isyanova Q-Peak, Inc.,135 South Road, Bedford, MA 01730 isyanova@qpeak.com Jeff G. Manni JGM Associates, 6 New England Executive

More information

Laser Diode. Photonic Network By Dr. M H Zaidi

Laser Diode. Photonic Network By Dr. M H Zaidi Laser Diode Light emitters are a key element in any fiber optic system. This component converts the electrical signal into a corresponding light signal that can be injected into the fiber. The light emitter

More information

Highly Reliable 40-mW 25-GHz 20-ch Thermally Tunable DFB Laser Module, Integrated with Wavelength Monitor

Highly Reliable 40-mW 25-GHz 20-ch Thermally Tunable DFB Laser Module, Integrated with Wavelength Monitor Highly Reliable 4-mW 2-GHz 2-ch Thermally Tunable DFB Laser Module, Integrated with Wavelength Monitor by Tatsuya Kimoto *, Tatsushi Shinagawa *, Toshikazu Mukaihara *, Hideyuki Nasu *, Shuichi Tamura

More information

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback Song, B.; Kojima, K.; Pina, S.; Koike-Akino, T.; Wang, B.;

More information

1. INTRODUCTION 2. LASER ABSTRACT

1. INTRODUCTION 2. LASER ABSTRACT Compact solid-state laser to generate 5 mj at 532 nm Bhabana Pati*, James Burgess, Michael Rayno and Kenneth Stebbins Q-Peak, Inc., 135 South Road, Bedford, Massachusetts 01730 ABSTRACT A compact and simple

More information

Designing for Femtosecond Pulses

Designing for Femtosecond Pulses Designing for Femtosecond Pulses White Paper PN 200-1100-00 Revision 1.1 July 2013 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W Joachim Sacher, Richard Knispel, Sandra Stry Sacher Lasertechnik GmbH, Hannah Arendt Str. 3-7, D-3537 Marburg,

More information

High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals

High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals R. J. Thompson, M. Tu, D. C. Aveline, N. Lundblad, L. Maleki Jet

More information

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual 2012 858 West Park Street, Eugene, OR 97401 www.mtinstruments.com Table of Contents Specifications and Overview... 1 General Layout...

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Student Name Date MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.161 Modern Optics Project Laboratory Laboratory Exercise No. 6 Fall 2010 Solid-State

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

UNMATCHED OUTPUT POWER AND TUNING RANGE

UNMATCHED OUTPUT POWER AND TUNING RANGE ARGOS MODEL 2400 SF SERIES TUNABLE SINGLE-FREQUENCY MID-INFRARED SPECTROSCOPIC SOURCE UNMATCHED OUTPUT POWER AND TUNING RANGE One of Lockheed Martin s innovative laser solutions, Argos TM Model 2400 is

More information

Vertical External Cavity Surface Emitting Laser

Vertical External Cavity Surface Emitting Laser Chapter 4 Optical-pumped Vertical External Cavity Surface Emitting Laser The booming laser techniques named VECSEL combine the flexibility of semiconductor band structure and advantages of solid-state

More information

Efficient second-harmonic generation of CW radiation in an external optical cavity using non-linear crystal BIBO

Efficient second-harmonic generation of CW radiation in an external optical cavity using non-linear crystal BIBO fficient second-harmonic generation of CW radiation in an external optical cavity using non-linear crystal BIBO Sergey KOBTSV*, Alexander ZAVYALOV Novosibirsk State University, Laser Systems Laboratory,

More information

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG C. Schnitzler a, S. Hambuecker a, O. Ruebenach a, V. Sinhoff a, G. Steckman b, L. West b, C. Wessling c, D. Hoffmann

More information

Generation of tunable visible picosecond pulses by frequency-doubling of a quantum-dot laser in a PPKTP waveguide

Generation of tunable visible picosecond pulses by frequency-doubling of a quantum-dot laser in a PPKTP waveguide Generation of tunable visible picosecond pulses by frequency-doubling of a quantum-dot laser in a PPKTP waveguide Ksenia A. Fedorova* a, Grigorii S. Sokolovskii a,b, Daniil I. Nikitichev a, Philip R. Battle

More information

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature Donghui Zhao.a, Xuewen Shu b, Wei Zhang b, Yicheng Lai a, Lin Zhang a, Ian Bennion a a Photonics Research Group,

More information

An Optical Characteristic Testing System for the Infrared Fiber in a Transmission Bandwidth 9-11μm

An Optical Characteristic Testing System for the Infrared Fiber in a Transmission Bandwidth 9-11μm An Optical Characteristic Testing System for the Infrared Fiber in a Transmission Bandwidth 9-11μm Ma Yangwu *, Liang Di ** Center for Optical and Electromagnetic Research, State Key Lab of Modern Optical

More information

Variable Pulse Duration Laser for Material Processing

Variable Pulse Duration Laser for Material Processing JLMN-Journal of Laser Micro/Nanoengineering Vol., No. 1, 7 Variable Pulse Duration Laser for Material Processing Werner Wiechmann, Loren Eyres, James Morehead, Jeffrey Gregg, Derek Richard, Will Grossman

More information

Differential interrogation of FBG sensors using conventional optical time domain reflectometry

Differential interrogation of FBG sensors using conventional optical time domain reflectometry Differential interrogation of FBG sensors using conventional optical time domain reflectometry Yuri N. Kulchin, Anatoly M. Shalagin, Oleg B. Vitrik, Sergey A. Babin, Anton V. Dyshlyuk, Alexander A. Vlasov

More information

Graduate University of Chinese Academy of Sciences (GUCAS), Beijing , China 3

Graduate University of Chinese Academy of Sciences (GUCAS), Beijing , China 3 OptoElectronics Volume 28, Article ID 151487, 4 pages doi:1.1155/28/151487 Research Article High-Efficiency Intracavity Continuous-Wave Green-Light Generation by Quasiphase Matching in a Bulk Periodically

More information

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models PGx1 PGx3 PGx11 PT2 Transform Limited Broadly Tunable Picosecond OPA optical parametric devices employ advanced design concepts in order to produce broadly tunable picosecond pulses with nearly Fourier-transform

More information

Low threshold continuous wave Raman silicon laser

Low threshold continuous wave Raman silicon laser NATURE PHOTONICS, VOL. 1, APRIL, 2007 Low threshold continuous wave Raman silicon laser HAISHENG RONG 1 *, SHENGBO XU 1, YING-HAO KUO 1, VANESSA SIH 1, ODED COHEN 2, OMRI RADAY 2 AND MARIO PANICCIA 1 1:

More information

External cavities for controling spatial and spectral properties of SC lasers. J.P. Huignard TH-TRT

External cavities for controling spatial and spectral properties of SC lasers. J.P. Huignard TH-TRT External cavities for controling spatial and spectral properties of SC lasers. J.P. Huignard TH-TRT Bright Er - Partners. WP 3 : External cavities approaches for high brightness. - RISOE TUD Dk - Institut

More information

THE TUNABLE LASER LIGHT SOURCE C-WAVE. HÜBNER Photonics Coherence Matters.

THE TUNABLE LASER LIGHT SOURCE C-WAVE. HÜBNER Photonics Coherence Matters. THE TUNABLE LASER LIGHT SOURCE HÜBNER Photonics Coherence Matters. FLEXIBILITY WITH PRECISION is the tunable laser light source for continuous-wave (cw) emission in the visible and near-infrared wavelength

More information

A continuous-wave Raman silicon laser

A continuous-wave Raman silicon laser A continuous-wave Raman silicon laser Haisheng Rong, Richard Jones,.. - Intel Corporation Ultrafast Terahertz nanoelectronics Lab Jae-seok Kim 1 Contents 1. Abstract 2. Background I. Raman scattering II.

More information

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS By Jason O Daniel, Ph.D. TABLE OF CONTENTS 1. Introduction...1 2. Pulse Measurements for Pulse Widths

More information

1.5 W green light generation by single-pass second harmonic generation of a singlefrequency

1.5 W green light generation by single-pass second harmonic generation of a singlefrequency 1.5 W green light generation by single-pass second harmonic generation of a singlefrequency tapered diode laser Ole Bjarlin Jensen 1,*, Peter E. Andersen 1, Bernd Sumpf 2, Karl-Heinz Hasler 2, Götz Erbert

More information

A Narrow-Band Tunable Diode Laser System with Grating Feedback

A Narrow-Band Tunable Diode Laser System with Grating Feedback A Narrow-Band Tunable Diode Laser System with Grating Feedback S.P. Spirydovich Draft Abstract The description of diode laser was presented. The tuning laser system was built and aligned. The free run

More information

TIGER Femtosecond and Picosecond Ti:Sapphire Lasers. Customized systems with SESAM technology*

TIGER Femtosecond and Picosecond Ti:Sapphire Lasers. Customized systems with SESAM technology* TIGER Femtosecond and Picosecond Ti:Sapphire Lasers Customized systems with SESAM technology* www.lumentum.com Data Sheet The TIGER femtosecond and picosecond lasers combine soliton mode-locking, a balance

More information

ASE Suppression in a Diode-Pumped Nd:YLF Regenerative Amplifier Using a Volume Bragg Grating

ASE Suppression in a Diode-Pumped Nd:YLF Regenerative Amplifier Using a Volume Bragg Grating ASE Suppression in a Diode-Pumped Nd:YLF Regenerative Amplifier Using a Volume Bragg Grating Spectral density (db) 0 10 20 30 40 Mirror VBG 1053.0 1053.3 1053.6 Wavelength (nm) Frontiers in Optics 2007/Laser

More information

Supercontinuum Sources

Supercontinuum Sources Supercontinuum Sources STYS-SC-5-FC (SM fiber coupled) Supercontinuum source SC-5-FC is a cost effective supercontinuum laser with single mode FC connector output. With a total output power of more than

More information

Narrow line diode laser stacks for DPAL pumping

Narrow line diode laser stacks for DPAL pumping Narrow line diode laser stacks for DPAL pumping Tobias Koenning David Irwin, Dean Stapleton, Rajiv Pandey, Tina Guiney, Steve Patterson DILAS Diode Laser Inc. Joerg Neukum Outline Company overview Standard

More information

Optical Phase Lock Loop (OPLL) with Tunable Frequency Offset for Distributed Optical Sensing Applications

Optical Phase Lock Loop (OPLL) with Tunable Frequency Offset for Distributed Optical Sensing Applications Optical Phase Lock Loop (OPLL) with Tunable Frequency Offset for Distributed Optical Sensing Applications Vladimir Kupershmidt, Frank Adams Redfern Integrated Optics, Inc, 3350 Scott Blvd, Bldg 62, Santa

More information

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers 1.0 Modulation depth 0.8 0.6 0.4 0.2 0.0 Laser 3 Laser 2 Laser 4 2 3 4 5 6 7 8 Absorbed pump power (W) Laser 1 W. Guan and J. R.

More information

488nm coherent emission by intracavity frequency doubling of extended cavity surface-emitting diode lasers

488nm coherent emission by intracavity frequency doubling of extended cavity surface-emitting diode lasers Invited Paper 488nm coherent emission by intracavity frequency doubling of extended cavity surface-emitting diode lasers A. V. Shchegrov, D. Lee, J. P. Watson, A. Umbrasas, E. M. Strzelecka, M. K. Liebman,

More information

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems Lasers à fibres ns et ps de forte puissance Francois SALIN EOLITE systems Solid-State Laser Concepts rod temperature [K] 347 -- 352 342 -- 347 337 -- 342 333 -- 337 328 -- 333 324 -- 328 319 -- 324 315

More information

A Coherent White Paper May 15, 2018

A Coherent White Paper May 15, 2018 OPSL Advantages White Paper #3 Low Noise - No Mode Noise 1. Wavelength flexibility 2. Invariant beam properties 3. No mode noise ( green noise ) 4. Superior reliability - huge installed base The optically

More information

Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm

Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm Nufern, East Granby, CT, USA Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm www.nufern.com Examples of Single Frequency Platforms at 1mm and 1.5mm and Applications 2 Back-reflection

More information

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Background theory. 1. The temporal and spatial coherence of light. 2. Interaction of electromagnetic waves

More information

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Keisuke Kasai a), Jumpei Hongo, Masato Yoshida, and Masataka Nakazawa Research Institute of

More information

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M.

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M. DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M. Published in: Proceedings of the 20th Annual Symposium of the IEEE Photonics

More information

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser V.I.Baraulya, S.M.Kobtsev, S.V.Kukarin, V.B.Sorokin Novosibirsk State University Pirogova 2, Novosibirsk, 630090, Russia ABSTRACT

More information

A new picosecond Laser pulse generation method.

A new picosecond Laser pulse generation method. PULSE GATING : A new picosecond Laser pulse generation method. Picosecond lasers can be found in many fields of applications from research to industry. These lasers are very common in bio-photonics, non-linear

More information

MEMORANDUM. Subject: Progress Report 009- Chaotic LIDAR for Naval Applications: FY13 Ql Progress Report (10/1/ /31/2012)

MEMORANDUM. Subject: Progress Report 009- Chaotic LIDAR for Naval Applications: FY13 Ql Progress Report (10/1/ /31/2012) Glarkson UNIVERSITY WALLACE H. COULTER SCHOOL OF ENGINEERING Technology Serving Humanity MEMORANDUM From: Bill Jemison To: Dr. Daniel Tarn, ONR Date: 12/31/2012 Subject: Progress Report 009- Chaotic LIDAR

More information

Wavelength Control and Locking with Sub-MHz Precision

Wavelength Control and Locking with Sub-MHz Precision Wavelength Control and Locking with Sub-MHz Precision A PZT actuator on one of the resonator mirrors enables the Verdi output wavelength to be rapidly tuned over a range of several GHz or tightly locked

More information

Continuous Wave (CW) Single-Frequency IR Laser NPRO 125/126 Series

Continuous Wave (CW) Single-Frequency IR Laser NPRO 125/126 Series COMMERCIAL LASERS Continuous Wave (CW) Single-Frequency IR Laser NPRO 125/126 Series Key Features 1319 or 1064 nm outputs available Fiber-coupled output Proven nonplanar ring oscillator (NPRO) design Superior

More information

1 kw, 15!J linearly polarized fiber laser operating at 977 nm

1 kw, 15!J linearly polarized fiber laser operating at 977 nm 1 kw, 15!J linearly polarized fiber laser operating at 977 nm V. Khitrov, D. Machewirth, B. Samson, K. Tankala Nufern, 7 Airport Park Road, East Granby, CT 06026 phone: (860) 408-5000; fax: (860)408-5080;

More information

Wavelength switching using multicavity semiconductor laser diodes

Wavelength switching using multicavity semiconductor laser diodes Wavelength switching using multicavity semiconductor laser diodes A. P. Kanjamala and A. F. J. Levi Department of Electrical Engineering University of Southern California Los Angeles, California 989-1111

More information

Waveguide-based single-pixel up-conversion infrared spectrometer

Waveguide-based single-pixel up-conversion infrared spectrometer Waveguide-based single-pixel up-conversion infrared spectrometer Qiang Zhang 1,2, Carsten Langrock 1, M. M. Fejer 1, Yoshihisa Yamamoto 1,2 1. Edward L. Ginzton Laboratory, Stanford University, Stanford,

More information

Fiber Lasers for EUV Lithography

Fiber Lasers for EUV Lithography Fiber Lasers for EUV Lithography A. Galvanauskas, Kai Chung Hou*, Cheng Zhu CUOS, EECS Department, University of Michigan P. Amaya Arbor Photonics, Inc. * Currently with Cymer, Inc 2009 International Workshop

More information

Integrated electro-optical waveguide based devices with liquid crystals on a silicon backplane

Integrated electro-optical waveguide based devices with liquid crystals on a silicon backplane Integrated electro-optical waveguide based devices with liquid crystals on a silicon backplane Florenta Costache Group manager Smart Micro-Optics SMO/AMS Fraunhofer Institute for Photonic Microsystems,

More information

Q-switched resonantly diode-pumped Er:YAG laser

Q-switched resonantly diode-pumped Er:YAG laser Q-switched resonantly diode-pumped Er:YAG laser Igor Kudryashov a) and Alexei Katsnelson Princeton Lightwave Inc., 2555 US Route 130, Cranbury, New Jersey, 08512 ABSTRACT In this work, resonant diode pumping

More information

LOPUT Laser: A novel concept to realize single longitudinal mode laser

LOPUT Laser: A novel concept to realize single longitudinal mode laser PRAMANA c Indian Academy of Sciences Vol. 82, No. 2 journal of February 2014 physics pp. 185 190 LOPUT Laser: A novel concept to realize single longitudinal mode laser JGEORGE, KSBINDRAand SMOAK Solid

More information

101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity

101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity PRAMANA c Indian Academy of Sciences Vol. 75, No. 5 journal of November 2010 physics pp. 935 940 101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity S K

More information

taccor Optional features Overview Turn-key GHz femtosecond laser

taccor Optional features Overview Turn-key GHz femtosecond laser taccor Turn-key GHz femtosecond laser Self-locking and maintaining Stable and robust True hands off turn-key system Wavelength tunable Integrated pump laser Overview The taccor is a unique turn-key femtosecond

More information

Fiber Coupled Semiconductor Laser

Fiber Coupled Semiconductor Laser Fiber Coupled Semiconductor Laser Features Plug & Play ESD Protection Power Adjustable LD Current Full Protection LD Temperature Stabilized Compact Size Applications Bio Technology Semiconductor Medical

More information

Fiber coupled diode laser of high spectral and spatial beam quality with kw class output power

Fiber coupled diode laser of high spectral and spatial beam quality with kw class output power Fiber coupled diode laser of high spectral and spatial beam quality with kw class output power Christian Wessling, Martin Traub, Dieter Hoffmann Fraunhofer Institute for Laser Technology, Aachen, Germany

More information

External-Cavity Tapered Semiconductor Ring Lasers

External-Cavity Tapered Semiconductor Ring Lasers External-Cavity Tapered Semiconductor Ring Lasers Frank Demaria Laser operation of a tapered semiconductor amplifier in a ring-oscillator configuration is presented. In first experiments, 1.75 W time-average

More information

The Beam Characteristics of High Power Diode Laser Stack

The Beam Characteristics of High Power Diode Laser Stack IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS The Beam Characteristics of High Power Diode Laser Stack To cite this article: Yuanyuan Gu et al 2018 IOP Conf. Ser.: Mater. Sci.

More information

visibility values: 1) V1=0.5 2) V2=0.9 3) V3=0.99 b) In the three cases considered, what are the values of FSR (Free Spectral Range) and

visibility values: 1) V1=0.5 2) V2=0.9 3) V3=0.99 b) In the three cases considered, what are the values of FSR (Free Spectral Range) and EXERCISES OF OPTICAL MEASUREMENTS BY ENRICO RANDONE AND CESARE SVELTO EXERCISE 1 A CW laser radiation (λ=2.1 µm) is delivered to a Fabry-Pérot interferometer made of 2 identical plane and parallel mirrors

More information

High energy khz Mid-IR tunable PPSLT OPO pumped at 1064 nm

High energy khz Mid-IR tunable PPSLT OPO pumped at 1064 nm High energy khz Mid-IR tunable PPSLT OPO pumped at 1064 nm A. Gaydardzhiev, D. Chuchumishev, D. Draganov, I. Buchvarov Abstract We report a single frequency sub-nanosecond optical parametric oscillator

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/4/e1501489/dc1 Supplementary Materials for A broadband chip-scale optical frequency synthesizer at 2.7 10 16 relative uncertainty Shu-Wei Huang, Jinghui Yang,

More information

Narrow-line, tunable, high-power, diode laser pump for DPAL applications

Narrow-line, tunable, high-power, diode laser pump for DPAL applications Narrow-line, tunable, high-power, diode laser pump for DPAL applications Rajiv Pandey* a, David Merchen a, Dean Stapleton a, David Irwin a, Chuck Humble a, Steve Patterson a a DILAS Diode Laser Inc., 9070

More information

Self-organizing laser diode cavities with photorefractive nonlinear crystals

Self-organizing laser diode cavities with photorefractive nonlinear crystals Institut d'optique http://www.iota.u-psud.fr/~roosen/ Self-organizing laser diode cavities with photorefractive nonlinear crystals Nicolas Dubreuil, Gilles Pauliat, Gérald Roosen Nicolas Huot, Laurent

More information

Widely tunable ultraviolet C generation using wavelength selective external high-q-cavity and a blue laser diode system

Widely tunable ultraviolet C generation using wavelength selective external high-q-cavity and a blue laser diode system Widely tunable ultraviolet C generation using wavelength selective external high-q-cavity and a blue laser diode system C. Tangtrongbenchasil a and K. Nonaka b a Department of Electronic and Photonic Systems

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction 1-1 Preface Telecommunication lasers have evolved substantially since the introduction of the early AlGaAs-based semiconductor lasers in the late 1970s suitable for transmitting

More information

DEVELOPMENT OF A NEW INJECTION LOCKING RING LASER AMPLIFIER USING A COUNTER INJECTION: MULTIWAVELENGTH AMPLIFICATION

DEVELOPMENT OF A NEW INJECTION LOCKING RING LASER AMPLIFIER USING A COUNTER INJECTION: MULTIWAVELENGTH AMPLIFICATION DEVELOPMENT OF A NEW INJECTION LOCKING RING LASER AMPLIFIER USING A COUNTER INJECTION: MULTAVELENGTH AMPLIFICATION Rosen Vanyuhov Peev 1, Margarita Anguelova Deneva 1, Marin Nenchev Nenchev 1,2 1 Dept.

More information

Efficient All-fiber Passive Coherent Combining of Fiber Lasers

Efficient All-fiber Passive Coherent Combining of Fiber Lasers Efficient All-fiber Passive Coherent Combining of Fiber Lasers Baishi Wang (1), Eric Mies (1), Monica Minden (2), Anthony Sanchez (3) (1) Vytran, LLC, 14 Campus Drive, Morganville, NJ 7751, (2) HRL Laboratories,

More information

A CW seeded femtosecond optical parametric amplifier

A CW seeded femtosecond optical parametric amplifier Science in China Ser. G Physics, Mechanics & Astronomy 2004 Vol.47 No.6 767 772 767 A CW seeded femtosecond optical parametric amplifier ZHU Heyuan, XU Guang, WANG Tao, QIAN Liejia & FAN Dianyuan State

More information

High Brightness kw QCW Diode Laser Stacks with Ultra-low Pitches

High Brightness kw QCW Diode Laser Stacks with Ultra-low Pitches High Brightness kw QCW Diode Laser Stacks with Ultra-low Pitches David Schleuning *, Rajiv Pathak, Calvin Luong, Eli Weiss, and Tom Hasenberg * Coherent Inc., 51 Patrick Henry Drive, Santa Clara, CA 9554

More information

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Qiyuan Song (M2) and Aoi Nakamura (B4) Abstracts: We theoretically and experimentally

More information

Tailored bar concepts for 10 mm-mrad fiber coupled modules scalable to kw-class direct diode lasers

Tailored bar concepts for 10 mm-mrad fiber coupled modules scalable to kw-class direct diode lasers Tailored bar concepts for 1 mm-mrad fiber coupled modules scalable to kw-class direct diode lasers Andreas Unger*, Ross Uthoff, Michael Stoiber, Thomas Brand, Heiko Kissel, Bernd Köhler, Jens Biesenbach

More information

771 Series LASER SPECTRUM ANALYZER. The Power of Precision in Spectral Analysis. It's Our Business to be Exact! bristol-inst.com

771 Series LASER SPECTRUM ANALYZER. The Power of Precision in Spectral Analysis. It's Our Business to be Exact! bristol-inst.com 771 Series LASER SPECTRUM ANALYZER The Power of Precision in Spectral Analysis It's Our Business to be Exact! bristol-inst.com The 771 Series Laser Spectrum Analyzer combines proven Michelson interferometer

More information

Tera-Hz Radiation Source by Deference Frequency Generation (DFG) and TPO with All Solid State Lasers

Tera-Hz Radiation Source by Deference Frequency Generation (DFG) and TPO with All Solid State Lasers Tera-Hz Radiation Source by Deference Frequency Generation (DFG) and TPO with All Solid State Lasers Jianquan Yao 1, Xu Degang 2, Sun Bo 3 and Liu Huan 4 1 Institute of Laser & Opto-electronics, 2 College

More information

OBIS CORE LS. Next Generation Miniaturized OEM Laser Module FEATURES

OBIS CORE LS. Next Generation Miniaturized OEM Laser Module FEATURES OBIS CORE LS Next Generation Miniaturized OEM Laser Module The Coherent OBIS CORE LS suite of products provide miniaturized building blocks for OEM instruments designers. Consisting out of the Optically

More information

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers T. Day and R. A. Marsland New Focus Inc. 340 Pioneer Way Mountain View CA 94041 (415) 961-2108 R. L. Byer

More information