Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION:

Size: px
Start display at page:

Download "Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION:"

Transcription

1 Theoretical Approach Why do we need ultra short technology?? INTRODUCTION: Generating ultrashort laser pulses that last a few femtoseconds is a highly active area of research that is finding applications ranging from micromachining to eye surgery. For optimum results it is often important to know a laser s wavelength, average power and pulse duration. While it is relatively easy to check the first two parameters with a spectrometer and a power meter respectively but measuring the latter is more complicated. The problem is that all conventional electronic photodetectors that convert a light signal into an electrical current respond too slowly to measure very short light pulses. The fact is, the most common

2 device used to determine the duration of less than picosecond pulses is an optical instrument called an autocorrelator - using an interferometer in combination with a nonlinear optical material. Other sophisticated pulse analysis equipment based on so-called FROG and SPIDER techniques can also measure the phase profile, amplitude and spectrum of a pulse. However, these really need their own article and will not be discussed here. PRINCIPLES: Scanning Autocorrelator work: The basic principle is a Michelson interferometer consisting of two arms ( about 50 mm long), one of which has its optical path length continually changed ( scanned ) to create a variable optical delay. An incoming laser pulse arriving at the autocorrelator is split into two replica pulses by a beam splitter. The two pulses then travel along the different arms of the interferometer before they are recombined by the beam splitter and focused to a common point in a nonlinear crystal. The crystal generates an upconverted light signal (often but not always a second harmonic) that is detected and displayed. The trace of the intensity of this mixing signal vs. the amount of the optical delay is known as an autocorrelation function (ACF). By assuming the shape of the pulse, its duration can be determined by multiplying the width of the ACF by a form factor.

3 Different types of autocorrelator introduce the optical time delay in different ways. The three most common techniques use a dispersive material such as special glass, a set of rotating mirrors or a stepper motor/scanner. The dispersive technique relies on slowing the propagation speed of the pulse by passing it through pieces of rotating glass. Another possibility is to have the two pulses travel different distances. This can be accomplished by using rotating mirrors that control the path length of reflected pulses. A final option is a variable-length arm. One of the arms is linearly extended by either a fast scanning system with limited scan range, or a stepper motor with slow movement but a wider scan range. PULSE DURATION RANGE: Pulses shorter than 100 fs are strongly affected by dispersion, so in this case the autocorrelator that uses a dispersive material is not suitable. When analysing such short pulses it is important that each optical element inside the autocorrelator (such as the crystal delay line and the beam splitter) has as little dispersion as possible. This can be done by using reflective instead of transmissive optics.

4 On the other hand, pulses longer than 5 ps place different requirements on the measuring system. In this case the dispersion effects are negligible, but scan ranges (time delays) need to be larger. A useful rule say that the maximum scan range equals four times the maximum pulse length. All types of scanning autocorrelator have an upper limit for their scan range. With rotating mirrors a delay of up to 300 ps can be achieved, while a spring-loaded scanner enables the measurement of pulses up to around 150 ps long. Stepper motor translators can measure up to several nanoseconds, but the size of such a device is considerable as a scan of 1 ns needs a physical scan range of about 15 cm. POWER & REPETITION RATE: These two parameters are interrelated and define the sensitivity requirements of the autocorrelator. For example, consider a train of identical 100 fs pulses with an average power of 100 mw. At a repetition rate of 1 khz (1000 pulses per second) each pulse reaches a peak power of 100 GW. However, at a higher repetition rate of 100 MHz the peak power is reduced to 1 MW. To take this into account the sensitivity of the autocorrelator is defined by the product of the peak power multiplied by the necessary average power. Highly sensitive autocorrelators reach a P PEAK xp AVERAGE of 10-7 W 2. This degree of sensitivity is required, for example, by a fibre laser with an average power of 0.1 mw at a repetition rate of 10 GHz and a pulse duration of 10 ps.

5 To provide such sensitivity, autocorrelators use highly reflective optics, efficient crystals, low-noise photomultiplier detectors and special noise-reducing data acquisition. For high-energy pulses at a low repetition rate, such as amplifier pulses, the priorities are entirely different. In this case, photomultipliers are not suitable and photodiodes are used as detectors instead. Depending on the scan frequency of the autocorrelator system it may be necessary to measure laser systems with a slow repetition rate in triggered mode so that only the pulse is measured and not the pause between two pulses. WAVELENGTH: Another important consideration is the wavelength of the pulses. To work well, the autocorrelator has to feature low-loss, low-dispersion optics suitable for the respective wavelength. It is vital that the nonlinear crystal can be phase matched at the wavelength in question so that it can generate an upconverted light signal. The detector must also be sensitive to the wavelength of the upconverted signal but insensitive to the fundamental wavelength, which should be filtered out.

6 SIGNAL GENERATION: All autocorrelators require a nonlinear crystal to convert the incoming pulses into an autocorrelator signal. Often the crystal performs second harmonic generation (SHG), which is also known as upconversion or frequency doubling. In this case it is necessary to phase match the crystal to the wavelength range by tilting it. An alternative design that is easier to operate but that sacrifices sensitivity is an autocorrelator that relies on two-photon absorption in a photodiode. This method is more cost efficient than SHG designs and does not require wavelength tuning, but it does have several disadvantages. First, the wavelength range is limited. Second, a background-free autocorrelation function is not available because the laser pulses cannot be filtered.

APE Autocorrelator Product Family

APE Autocorrelator Product Family APE Autocorrelator Product Family APE Autocorrelators The autocorrelator product family by APE includes a variety of impressive features and properties, designed to cater for a wide range of ultrafast

More information

pulsecheck The Modular Autocorrelator

pulsecheck The Modular Autocorrelator pulsecheck The Modular Autocorrelator Pulse Measurement Perfection with the Multitalent from APE It is good to have plenty of options at hand. Suitable for the characterization of virtually any ultrafast

More information

Spider Pulse Characterization

Spider Pulse Characterization Spider Pulse Characterization Spectral and Temporal Characterization of Ultrashort Laser Pulses The Spider series by APE is an all-purpose and frequently used solution for complete characterization of

More information

Ultrafast Optical Physics II (SoSe 2017) Lecture 9, June 16

Ultrafast Optical Physics II (SoSe 2017) Lecture 9, June 16 Ultrafast Optical Physics II (SoSe 2017) Lecture 9, June 16 9 Pulse Characterization 9.1 Intensity Autocorrelation 9.2 Interferometric Autocorrelation (IAC) 9.3 Frequency Resolved Optical Gating (FROG)

More information

REU Student: Si (Athena) Pan Connecticut College Mentor: Dimitre Ouzounov Graduate Student Mentor: Heng Li Summer 2008

REU Student: Si (Athena) Pan Connecticut College Mentor: Dimitre Ouzounov Graduate Student Mentor: Heng Li Summer 2008 REU Student: Si (Athena) Pan Connecticut College Mentor: Dimitre Ouzounov Graduate Student Mentor: Heng Li Summer 008 Ultrashort pulses, its measurement and motivation of my project Two-photon absorption

More information

Ultrashort Pulse Measurement Using High Sensitivity Two Photon Absorption Waveguide Semiconductor

Ultrashort Pulse Measurement Using High Sensitivity Two Photon Absorption Waveguide Semiconductor Ultrashort Pulse Measurement Using High Sensitivity Two Photon Absorption Wguide Semiconductor MOHAMMAD MEHDI KARKHANEHCHI Department of Electronics, Faculty of Engineering Razi University Taghbostan,

More information

ULTRAFAST LASER DIAGNOSTICS

ULTRAFAST LASER DIAGNOSTICS ULTRAFAST LASER DIAGNOSTICS USE OUR APP IN YOUR LAB The faster way to master nonlinear phenomena... Wavelength conversion calculator Bandwidth and pulse duration Frequency conversion Bandwidth conversion

More information

Testing with Femtosecond Pulses

Testing with Femtosecond Pulses Testing with Femtosecond Pulses White Paper PN 200-0200-00 Revision 1.3 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers Integrated disruptive components for 2µm fibre Lasers ISLA 2 µm Sub-Picosecond Fiber Lasers Advantages: 2 - microns wavelength offers eye-safety potentially higher pulse energy and average power in single

More information

Designing for Femtosecond Pulses

Designing for Femtosecond Pulses Designing for Femtosecond Pulses White Paper PN 200-1100-00 Revision 1.1 July 2013 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

The All New HarmoniXX Series. Wavelength Conversion for Ultrafast Lasers

The All New HarmoniXX Series. Wavelength Conversion for Ultrafast Lasers The All New HarmoniXX Series Wavelength Conversion for Ultrafast Lasers 1 The All New HarmoniXX Series Meet the New HarmoniXX Wavelength Conversion Series from APE The HarmoniXX series has been completely

More information

FR-103 WS AUTO/CROSSCORRELATOR

FR-103 WS AUTO/CROSSCORRELATOR 2123 4 th St., Berkeley, CA 94710 Ph#: 510-644-1869, Fx#: 510-644-0118 e-mail: sales@femtochrome.com; http: www.femtochrome.com FR-103 WS AUTO/CROSSCORRELATOR Specifications: * Resolution: < 5fs * Minimum

More information

GRENOUILLE.

GRENOUILLE. GRENOUILLE Measuring ultrashort laser pulses the shortest events ever created has always been a challenge. For many years, it was possible to create ultrashort pulses, but not to measure them. Techniques

More information

taccor Optional features Overview Turn-key GHz femtosecond laser

taccor Optional features Overview Turn-key GHz femtosecond laser taccor Turn-key GHz femtosecond laser Self-locking and maintaining Stable and robust True hands off turn-key system Wavelength tunable Integrated pump laser Overview The taccor is a unique turn-key femtosecond

More information

14. Measuring Ultrashort Laser Pulses I: Autocorrelation

14. Measuring Ultrashort Laser Pulses I: Autocorrelation 14. Measuring Ultrashort Laser Pulses I: Autocorrelation The dilemma The goal: measuring the intensity and phase vs. time (or frequency) Why? The Spectrometer and Michelson Interferometer Autocorrelation

More information

TIGER Femtosecond and Picosecond Ti:Sapphire Lasers. Customized systems with SESAM technology*

TIGER Femtosecond and Picosecond Ti:Sapphire Lasers. Customized systems with SESAM technology* TIGER Femtosecond and Picosecond Ti:Sapphire Lasers Customized systems with SESAM technology* www.lumentum.com Data Sheet The TIGER femtosecond and picosecond lasers combine soliton mode-locking, a balance

More information

Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania

Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania Razvan Dabu, Daniel Ursescu INFLPR, Magurele, Romania Contents GiWALAS laser facility TEWALAS laser facility CETAL project

More information

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

SUPPLEMENTARY INFORMATION DOI: /NPHOTON Supplementary Methods and Data 1. Apparatus Design The time-of-flight measurement apparatus built in this study is shown in Supplementary Figure 1. An erbium-doped femtosecond fibre oscillator (C-Fiber,

More information

Ultrafast instrumentation (No Alignment!)

Ultrafast instrumentation (No Alignment!) Ultrafast instrumentation (No Alignment!) We offer products specialized in ultrafast metrology with strong expertise in the production and characterization of high energy ultrashort pulses. We provide

More information

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual 2012 858 West Park Street, Eugene, OR 97401 www.mtinstruments.com Table of Contents Specifications and Overview... 1 General Layout...

More information

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models PGx1 PGx3 PGx11 PT2 Transform Limited Broadly Tunable Picosecond OPA optical parametric devices employ advanced design concepts in order to produce broadly tunable picosecond pulses with nearly Fourier-transform

More information

The Measurement of Ultrashort Laser Pulses

The Measurement of Ultrashort Laser Pulses The Measurement of Ultrashort Laser Pulses To spectrometer SHG crystal Fresnel biprism beamsplitter Cylindrical lens Etalon Oppositely tilted pulses Lens Prof. Rick Trebino Input pulse Georgia Tech & Swamp

More information

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017 R. J. Jones College of Optical Sciences OPTI 511L Fall 2017 Active Modelocking of a Helium-Neon Laser The generation of short optical pulses is important for a wide variety of applications, from time-resolved

More information

Yb-doped Mode-locked fiber laser based on NLPR Yan YOU

Yb-doped Mode-locked fiber laser based on NLPR Yan YOU Yb-doped Mode-locked fiber laser based on NLPR 20120124 Yan YOU Mode locking method-nlpr Nonlinear polarization rotation(nlpr) : A power-dependent polarization change is converted into a power-dependent

More information

PCS-150 / PCI-200 High Speed Boxcar Modules

PCS-150 / PCI-200 High Speed Boxcar Modules Becker & Hickl GmbH Kolonnenstr. 29 10829 Berlin Tel. 030 / 787 56 32 Fax. 030 / 787 57 34 email: info@becker-hickl.de http://www.becker-hickl.de PCSAPP.DOC PCS-150 / PCI-200 High Speed Boxcar Modules

More information

Fiber Laser Chirped Pulse Amplifier

Fiber Laser Chirped Pulse Amplifier Fiber Laser Chirped Pulse Amplifier White Paper PN 200-0200-00 Revision 1.2 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Fiber lasers offer advantages in maintaining stable operation over

More information

Femtosecond to millisecond transient absorption spectroscopy: two lasers one experiment

Femtosecond to millisecond transient absorption spectroscopy: two lasers one experiment 7 Femtosecond to millisecond transient absorption spectroscopy: two lasers one experiment 7.1 INTRODUCTION The essential processes of any solar fuel cell are light absorption, electron hole separation

More information

Swept Wavelength Testing:

Swept Wavelength Testing: Application Note 13 Swept Wavelength Testing: Characterizing the Tuning Linearity of Tunable Laser Sources In a swept-wavelength measurement system, the wavelength of a tunable laser source (TLS) is swept

More information

LASER TECHNOLOGY. Key parameters. Groundbreaking in the laser processing of cutting tools. A member of the UNITED GRINDING Group

LASER TECHNOLOGY. Key parameters. Groundbreaking in the laser processing of cutting tools. A member of the UNITED GRINDING Group Creating Tool Performance A member of the UNITED GRINDING Group Groundbreaking in the laser processing of cutting tools Key parameters The machining of modern materials using laser technology knows no

More information

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems Lasers à fibres ns et ps de forte puissance Francois SALIN EOLITE systems Solid-State Laser Concepts rod temperature [K] 347 -- 352 342 -- 347 337 -- 342 333 -- 337 328 -- 333 324 -- 328 319 -- 324 315

More information

Ultra High Speed All Optical Demultiplexing based on Two Photon Absorption. in a Laser Diode. Glasnevin, Dublin 9, IRELAND

Ultra High Speed All Optical Demultiplexing based on Two Photon Absorption. in a Laser Diode. Glasnevin, Dublin 9, IRELAND Ultra High Speed All Optical Demultiplexing based on Two Photon Absorption in a Laser Diode B.C. Thomsen 1, L.P Barry 2, J.M. Dudley 1, and J.D. Harvey 1 1. Department of Physics, University of Auckland,

More information

A new picosecond Laser pulse generation method.

A new picosecond Laser pulse generation method. PULSE GATING : A new picosecond Laser pulse generation method. Picosecond lasers can be found in many fields of applications from research to industry. These lasers are very common in bio-photonics, non-linear

More information

3.003 Lab 3 Part A. Measurement of Speed of Light

3.003 Lab 3 Part A. Measurement of Speed of Light 3.003 Lab 3 Part A. Measurement of Speed of Light Objective: To measure the speed of light in free space Experimental Apparatus: Feb. 18, 2010 Due Mar. 2, 2010 Components: 1 Laser, 4 mirrors, 1 beam splitter

More information

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT In this chapter, the experimental results for fine-tuning of the laser wavelength with an intracavity liquid crystal element

More information

High-Power Femtosecond Lasers

High-Power Femtosecond Lasers High-Power Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average power. PHAROS features a mechanical and optical design optimized

More information

A CW seeded femtosecond optical parametric amplifier

A CW seeded femtosecond optical parametric amplifier Science in China Ser. G Physics, Mechanics & Astronomy 2004 Vol.47 No.6 767 772 767 A CW seeded femtosecond optical parametric amplifier ZHU Heyuan, XU Guang, WANG Tao, QIAN Liejia & FAN Dianyuan State

More information

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Qiyuan Song (M2) and Aoi Nakamura (B4) Abstracts: We theoretically and experimentally

More information

Figure1. To construct a light pulse, the electric component of the plane wave should be multiplied with a bell shaped function.

Figure1. To construct a light pulse, the electric component of the plane wave should be multiplied with a bell shaped function. Introduction The Electric field of a monochromatic plane wave is given by is the angular frequency of the plane wave. The plot of this function is given by a cosine function as shown in the following graph.

More information

High Power and Energy Femtosecond Lasers

High Power and Energy Femtosecond Lasers High Power and Energy Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average powers. PHAROS features a mechanical and optical

More information

SHM-180 Eight Channel Sample & Hold Module

SHM-180 Eight Channel Sample & Hold Module Becker & Hickl GmbH April 2003 Printer HP 4500 PS High Performance Photon Counting Tel. +49 / 30 / 787 56 32 FAX +49 / 30 / 787 57 34 http://www.becker-hickl.com email: info@becker-hickl.com SHM-180 Eight

More information

Directly Chirped Laser Source for Chirped Pulse Amplification

Directly Chirped Laser Source for Chirped Pulse Amplification Directly Chirped Laser Source for Chirped Pulse Amplification Input pulse (single frequency) AWG RF amp Output pulse (chirped) Phase modulator Normalized spectral intensity (db) 64 65 66 67 68 69 1052.4

More information

High Energy Non - Collinear OPA

High Energy Non - Collinear OPA High Energy Non - Collinear OPA Basics of Operation FEATURES Pulse Duration less than 10 fs possible High Energy (> 80 microjoule) Visible Output Wavelength Tuning Computer Controlled Tuning Range 250-375,

More information

Mira OPO-X. Fully Automated IR/Visible OPO for femtosecond and picosecond Ti:Sapphire Lasers. Superior Reliability & Performance. Mira OPO-X Features:

Mira OPO-X. Fully Automated IR/Visible OPO for femtosecond and picosecond Ti:Sapphire Lasers. Superior Reliability & Performance. Mira OPO-X Features: Fully Automated IR/Visible OPO for femtosecond and picosecond Ti:Sapphire Lasers Mira OPO-X is a synchronously pumped, widely tunable, optical parametric oscillator (OPO) accessory that dramatically extends

More information

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS By Jason O Daniel, Ph.D. TABLE OF CONTENTS 1. Introduction...1 2. Pulse Measurements for Pulse Widths

More information

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton Progress in ultrafast Cr:ZnSe Lasers Evgueni Slobodtchikov, Peter Moulton Topics Diode-pumped Cr:ZnSe femtosecond oscillator CPA Cr:ZnSe laser system with 1 GW output This work was supported by SBIR Phase

More information

Testing with 40 GHz Laser Sources

Testing with 40 GHz Laser Sources Testing with 40 GHz Laser Sources White Paper PN 200-0500-00 Revision 1.1 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s 40 GHz fiber lasers are actively mode-locked fiber lasers.

More information

Autocorrelator MODEL AA- 10DM

Autocorrelator MODEL AA- 10DM Autocorrelator MODEL AA- 10DM 1 1. INTRODUCTION The autocorrelation technique is the most common method used to determine laser pulse width characteristics on a femtosecond time scale. The basic optical

More information

Kit for building your own THz Time-Domain Spectrometer

Kit for building your own THz Time-Domain Spectrometer Kit for building your own THz Time-Domain Spectrometer 16/06/2016 1 Table of contents 0. Parts for the THz Kit... 3 1. Delay line... 4 2. Pulse generator and lock-in detector... 5 3. THz antennas... 6

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Student Name Date MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.161 Modern Optics Project Laboratory Laboratory Exercise No. 6 Fall 2010 Solid-State

More information

Femtosecond Synchronization of Laser Systems for the LCLS

Femtosecond Synchronization of Laser Systems for the LCLS Femtosecond Synchronization of Laser Systems for the LCLS, Lawrence Doolittle, Gang Huang, John W. Staples, Russell Wilcox (LBNL) John Arthur, Josef Frisch, William White (SLAC) 26 Aug 2010 FEL2010 1 Berkeley

More information

PulseScout Autocorrelator. PScout Series User s Manual

PulseScout Autocorrelator. PScout Series User s Manual PulseScout Autocorrelator PScout Series User s Manual ii Preface Warranty Newport Corporation warrants that this product will be free from defects in material and workmanship and will comply with Newport

More information

Chad A. Husko 1,, Sylvain Combrié 2, Pierre Colman 2, Jiangjun Zheng 1, Alfredo De Rossi 2, Chee Wei Wong 1,

Chad A. Husko 1,, Sylvain Combrié 2, Pierre Colman 2, Jiangjun Zheng 1, Alfredo De Rossi 2, Chee Wei Wong 1, SOLITON DYNAMICS IN THE MULTIPHOTON PLASMA REGIME Chad A. Husko,, Sylvain Combrié, Pierre Colman, Jiangjun Zheng, Alfredo De Rossi, Chee Wei Wong, Optical Nanostructures Laboratory, Columbia University

More information

1550 nm Programmable Picosecond Laser, PM

1550 nm Programmable Picosecond Laser, PM 1550 nm Programmable Picosecond Laser, PM The Optilab is a programmable laser that produces picosecond pulses with electrical input pulses. It functions as a seed pulse generator for Master Oscillator

More information

IR Antibunching Measurements with id201 InGaAs Gated SPAD Detectors

IR Antibunching Measurements with id201 InGaAs Gated SPAD Detectors IR Antibunching Measurements with id201 GaAs Gated SPAD Detectors Abstract. Antibunching measurements with GaAs SPAD detectors are faced with the problems of high background count rate, afterpulsing, and

More information

Optical coherence tomography

Optical coherence tomography Optical coherence tomography Peter E. Andersen Optics and Plasma Research Department Risø National Laboratory E-mail peter.andersen@risoe.dk Outline Part I: Introduction to optical coherence tomography

More information

APPLICATION NOTE. Synchronization of Two Spectra-Physics Spitfire Pro Amplifiers for Pump-Probe Experiments

APPLICATION NOTE. Synchronization of Two Spectra-Physics Spitfire Pro Amplifiers for Pump-Probe Experiments APPLICATION NOTE Synchronization of Two Spectra-Physics Spitfire Pro Amplifiers for Pump-Probe Experiments 43 Technology and Applications Center Newport Corporation Introduction: The invention of nanosecond

More information

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices Dr. Rüdiger Paschotta RP Photonics Consulting GmbH Competence Area: Fiber Devices Topics in this Area Fiber lasers, including exotic types Fiber amplifiers, including telecom-type devices and high power

More information

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1 Spectral phase shaping for high resolution CARS spectroscopy around 3 cm A.C.W. van Rhijn, S. Postma, J.P. Korterik, J.L. Herek, and H.L. Offerhaus Mesa + Research Institute for Nanotechnology, University

More information

Mode-locking and frequency beating in. compact semiconductor lasers. Michael J. Strain

Mode-locking and frequency beating in. compact semiconductor lasers. Michael J. Strain Mode-locking and frequency beating in Michael J. Strain Institute of Photonics Dept. of Physics University of Strathclyde compact semiconductor lasers Outline Pulsed lasers Mode-locking basics Semiconductor

More information

Delay Line Interferometers

Delay Line Interferometers w w w. k y l i a. c o m i n f o @ k y l i a. c o m Delay ine Interferometers MINT and WT-MINT 1 Description p1 2 Block diagrams.. p2 3 Absolute maximum ratings p3 4 Operating conditions. p3 5 MINT specifications

More information

Heterodyne Interferometry with a Supercontinuum Local Oscillator. Pavel Gabor Vatican Observatory, 933 N Cherry Ave., Tucson AZ 85721, USA

Heterodyne Interferometry with a Supercontinuum Local Oscillator. Pavel Gabor Vatican Observatory, 933 N Cherry Ave., Tucson AZ 85721, USA **Volume Title** ASP Conference Series, Vol. **Volume Number** **Author** c **Copyright Year** Astronomical Society of the Pacific Heterodyne Interferometry with a Supercontinuum Local Oscillator Pavel

More information

Dispersion measurement in optical fibres over the entire spectral range from 1.1 mm to 1.7 mm

Dispersion measurement in optical fibres over the entire spectral range from 1.1 mm to 1.7 mm 15 February 2000 Ž. Optics Communications 175 2000 209 213 www.elsevier.comrlocateroptcom Dispersion measurement in optical fibres over the entire spectral range from 1.1 mm to 1.7 mm F. Koch ), S.V. Chernikov,

More information

Picosecond Pulses for Test & Measurement

Picosecond Pulses for Test & Measurement Picosecond Pulses for Test & Measurement White Paper PN 200-0100-00 Revision 1.1 September 2003 Calmar Optcom, Inc www.calamropt.com Overview Calmar s picosecond laser sources are actively mode-locked

More information

Quantifying the energy of Terahertz fields using Electro-Optical Sampling. Tom George. LCLS, Science Undergraduate Laboratory Internship Program

Quantifying the energy of Terahertz fields using Electro-Optical Sampling. Tom George. LCLS, Science Undergraduate Laboratory Internship Program Quantifying the energy of Terahertz fields using Electro-Optical Sampling Tom George LCLS, Science Undergraduate Laboratory Internship Program San Jose State University SLAC National Accelerator Laboratory

More information

HEO 1080P APPLICATION NOTE

HEO 1080P APPLICATION NOTE HEO 8P APPLICATION NOTE HDTV Phase Panel Developer Kit For FS-Laser Applications,8,6,4,2 759.95 nm 77.9 nm 78.2 nm 789.88 nm 799.98 nm 8.6 nm 82.2 nm 83.7 nm 84.2 nm 3 6 9 2 5 8 2 24 HOLOEYE Photonics

More information

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser V.I.Baraulya, S.M.Kobtsev, S.V.Kukarin, V.B.Sorokin Novosibirsk State University Pirogova 2, Novosibirsk, 630090, Russia ABSTRACT

More information

TIME-PRESERVING MONOCHROMATORS FOR ULTRASHORT EXTREME-ULTRAVIOLET PULSES

TIME-PRESERVING MONOCHROMATORS FOR ULTRASHORT EXTREME-ULTRAVIOLET PULSES TIME-PRESERVING MONOCHROMATORS FOR ULTRASHORT EXTREME-ULTRAVIOLET PULSES Luca Poletto CNR - Institute of Photonics and Nanotechnologies Laboratory for UV and X-Ray Optical Research Padova, Italy e-mail:

More information

Characterization of Chirped volume bragg grating (CVBG)

Characterization of Chirped volume bragg grating (CVBG) Characterization of Chirped volume bragg grating (CVBG) Sobhy Kholaif September 7, 017 1 Laser pulses Ultrashort laser pulses have extremely short pulse duration. When the pulse duration is less than picoseconds

More information

SNP High Performances IR Microchip Series

SNP High Performances IR Microchip Series SNP High Performances IR Microchip Series Key features Repetition rate up to 130kHz Ultrashort pulses down to 600ps Multi-kW peak power Excellent beam quality, M²

More information

Characterizing a single photon detector

Characterizing a single photon detector Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports - Open Dissertations, Master's Theses and Master's Reports 2011 Characterizing a single

More information

Week IX: INTERFEROMETER EXPERIMENTS

Week IX: INTERFEROMETER EXPERIMENTS Week IX: INTERFEROMETER EXPERIMENTS Notes on Adjusting the Michelson Interference Caution: Do not touch the mirrors or beam splitters they are front surface and difficult to clean without damaging them.

More information

Stability of a Fiber-Fed Heterodyne Interferometer

Stability of a Fiber-Fed Heterodyne Interferometer Stability of a Fiber-Fed Heterodyne Interferometer Christoph Weichert, Jens Flügge, Paul Köchert, Rainer Köning, Physikalisch Technische Bundesanstalt, Braunschweig, Germany; Rainer Tutsch, Technische

More information

Towards On-Chip MEMS-Based Optical Autocorrelator

Towards On-Chip MEMS-Based Optical Autocorrelator > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Towards On-Chip MEMS-Based Optical Autocorrelator Ahmed M. Othman, Student Member, IEEE, Hussein E. Kotb, Member,

More information

RF Time Measuring Technique With Picosecond Resolution and Its Possible Applications at JLab. A. Margaryan

RF Time Measuring Technique With Picosecond Resolution and Its Possible Applications at JLab. A. Margaryan RF Time Measuring Technique With Picosecond Resolution and Its Possible Applications at JLab A. Margaryan 1 Contents Introduction RF time measuring technique: Principles and experimental results of recent

More information

SNP High Performances IR Microchip Series

SNP High Performances IR Microchip Series SNP High Performances IR Microchip Series KEY FEATURES Repetition rate up to 130 khz Ultrashort pulses down to 600 ps Multi-kW peak power Excellent beam quality, M²

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION Control of pulse duration and shape in a 4-W Q-switched 532-nm laser Simon Chard, Timothy S. McComb, Ying Chen, Michael Barty, Young Key Kwon Andritz Powerlase Limited, 3 & 4 Meadowbrook Industrial Centre,

More information

some aspects of Optical Coherence Tomography

some aspects of Optical Coherence Tomography some aspects of Optical Coherence Tomography SSOM Lectures, Engelberg 17.3.2009 Ch. Meier 1 / 34 Contents 1. OCT - basic principles (Time Domain Frequency Domain) 2. Performance and limiting factors 3.

More information

Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015

Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015 Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015 Chapter 9: Optical Parametric Amplifiers and Oscillators 9.8 Noncollinear optical parametric amplifier (NOPA) 9.9 Optical parametric chirped-pulse

More information

Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca

Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca Femtosecond laser microfabrication in polymers Prof. Dr. Cleber R. Mendonca laser microfabrication focus laser beam on material s surface laser microfabrication laser microfabrication laser microfabrication

More information

Progress of the TEO experiment at FLASH

Progress of the TEO experiment at FLASH Progress of the TEO experiment at VUV-FEL at DESY - Armin Azima S. Duesterer, J. Feldhaus, H. Schlarb, H. Redlin, B. Steffen, DESY Hamburg K. Sengstock, Uni Hamburg Adrian Cavalieri, David Fritz, David

More information

C. J. S. de Matos and J. R. Taylor. Femtosecond Optics Group, Imperial College, Prince Consort Road, London SW7 2BW, UK

C. J. S. de Matos and J. R. Taylor. Femtosecond Optics Group, Imperial College, Prince Consort Road, London SW7 2BW, UK Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 4 pulse compression using air-core fiber and conventional erbium-doped fiber amplifier C. J. S. de Matos and J. R. Taylor

More information

Picosecond Time Analyzer Applications in...

Picosecond Time Analyzer Applications in... ORTEC AN52 Picosecond Time Analyzer Applications in... LIDAR and DIAL Time-of-Flight Mass Spectrometry Fluorescence/Phosphorescence Lifetime Spectrometry Pulse or Signal Jitter Analysis CONTENTS of this

More information

The Virgo detector. L. Rolland LAPP-Annecy GraSPA summer school L. Rolland GraSPA2013 Annecy le Vieux

The Virgo detector. L. Rolland LAPP-Annecy GraSPA summer school L. Rolland GraSPA2013 Annecy le Vieux The Virgo detector The Virgo detector L. Rolland LAPP-Annecy GraSPA summer school 2013 1 Table of contents Principles Effect of GW on free fall masses Basic detection principle overview Are the Virgo mirrors

More information

ADALAM Sensor based adaptive laser micromachining using ultrashort pulse lasers for zero-failure manufacturing D2.2. Ger Folkersma (Demcon)

ADALAM Sensor based adaptive laser micromachining using ultrashort pulse lasers for zero-failure manufacturing D2.2. Ger Folkersma (Demcon) D2.2 Automatic adjustable reference path system Document Coordinator: Contributors: Dissemination: Keywords: Ger Folkersma (Demcon) Ger Folkersma, Kevin Voss, Marvin Klein (Demcon) Public Reference path,

More information

LUCX - THZ PROGRAM: OVERVIEW AND PROSPECTS

LUCX - THZ PROGRAM: OVERVIEW AND PROSPECTS LUCX - THZ PROGRAM: OVERVIEW AND PROSPECTS A. Aryshev On behalf of QB group and THz collaboration 14 Outline THz project overview LUCX activity LUCX Projects Overview THz program LUCX Laser system LUCX

More information

Pulse stretching and compressing using grating pairs

Pulse stretching and compressing using grating pairs Pulse stretching and compressing using grating pairs A White Paper Prof. Dr. Clara Saraceno Photonics and Ultrafast Laser Science Publication Version: 1.0, January, 2017-1 - Table of Contents Dispersion

More information

Case Study: Simplifying Access to High Energy sub-5-fs Pulses

Case Study: Simplifying Access to High Energy sub-5-fs Pulses Case Study: Simplifying Access to High Energy sub-5-fs Pulses High pulse energy and long term stability from a one-box Coherent Astrella ultrafast amplifier, together with a novel hollow fiber compressor

More information

dnx/dt = -9.3x10-6 / C dny/dt = -13.6x10-6 / C dnz/dt = ( λ)x10-6 / C

dnx/dt = -9.3x10-6 / C dny/dt = -13.6x10-6 / C dnz/dt = ( λ)x10-6 / C Lithium Triborate Crystal LBO Lithium triborate (LiB3O5 or LBO) is an excellent nonlinear optical crystal for many applications. It is grown by an improved flux method. AOTK s LBO is Featured by High damage

More information

TIMING DISTRIBUTION AND SYNCHRONIZATION COMPLETE SOLUTIONS FROM ONE SINGLE SOURCE

TIMING DISTRIBUTION AND SYNCHRONIZATION COMPLETE SOLUTIONS FROM ONE SINGLE SOURCE TIMING DISTRIBUTION AND SYNCHRONIZATION COMPLETE SOLUTIONS FROM ONE SINGLE SOURCE link stabilization FEMTOSECOND SYNCHRONIZATION FOR LARGE-SCALE FACILITIES TAILOR-MADE FULLY INTEGRATED SOLUTIONS The Timing

More information

On-line spectrometer for FEL radiation at

On-line spectrometer for FEL radiation at On-line spectrometer for FEL radiation at FERMI@ELETTRA Fabio Frassetto 1, Luca Poletto 1, Daniele Cocco 2, Marco Zangrando 3 1 CNR/INFM Laboratory for Ultraviolet and X-Ray Optical Research & Department

More information

Theoretical and Experimental Study of Harmonically Modelocked Fiber Lasers for Optical Communication Systems

Theoretical and Experimental Study of Harmonically Modelocked Fiber Lasers for Optical Communication Systems JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 11, NOVEMBER 2000 1565 Theoretical and Experimental Study of Harmonically Modelocked Fiber Lasers for Optical Communication Systems Moshe Horowitz, Curtis

More information

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression Optimization of supercontinuum generation in photonic crystal fibers for pulse compression Noah Chang Herbert Winful,Ted Norris Center for Ultrafast Optical Science University of Michigan What is Photonic

More information

1 Abstract. 2 Introduction

1 Abstract. 2 Introduction Analysis of Auto- and Cross-correlator Lee Teng Internship Paper D. Gutierrez Coronel Department of Physics, Illinois Institute of Technology August 11, 2017 Mentors: J. C. Dooling and Y. Sun Accelerator

More information

ELECTRONICS FOR PULSE PICKERS

ELECTRONICS FOR PULSE PICKERS Rev. 3.07 / 2014 04 10 ELECTRONICS FOR PULSE PICKERS TABLE OF CONTENTS Description... 2 High voltage switches... 3 Appearance / dimensions... 3 Power ratings... 3 Interfaces... 4 Specifications... 6 How

More information

Flash-lamp Pumped Q-switched

Flash-lamp Pumped Q-switched NL120 NL200 NL220 NL230 NL300 NL303D NL310 NL300 series electro-optically Q-switched nanosecond Nd:YAG lasers produce high energy pulses with 3 6 ns duration. Pulse repetition rate can be selected in range

More information

The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width

The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width Ryo Kawahara *1, Hiroshi Hashimoto *1, Jeffrey W. Nicholson *2, Eisuke Otani *1,

More information

Propagation, Dispersion and Measurement of sub-10 fs Pulses

Propagation, Dispersion and Measurement of sub-10 fs Pulses Propagation, Dispersion and Measurement of sub-10 fs Pulses Table of Contents 1. Theory 2. Pulse propagation through various materials o Calculating the index of refraction Glass materials Air Index of

More information

Extremely simple device for measuring 1.5-µm ultrashort laser pulses

Extremely simple device for measuring 1.5-µm ultrashort laser pulses Extremely simple device for measuring 1.5-µm ultrashort laser pulses Selcuk Akturk, Mark Kimmel, and Rick Trebino School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA akturk@socrates.physics.gatech.edu

More information

Rear Side Processing of Soda-Lime Glass Using DPSS Nanosecond Laser

Rear Side Processing of Soda-Lime Glass Using DPSS Nanosecond Laser Lasers in Manufacturing Conference 215 Rear Side Processing of Soda-Lime Glass Using DPSS Nanosecond Laser Juozas Dudutis*, Paulius Gečys, Gediminas Račiukaitis Center for Physical Sciences and Technology,

More information

External-Cavity Tapered Semiconductor Ring Lasers

External-Cavity Tapered Semiconductor Ring Lasers External-Cavity Tapered Semiconductor Ring Lasers Frank Demaria Laser operation of a tapered semiconductor amplifier in a ring-oscillator configuration is presented. In first experiments, 1.75 W time-average

More information