MATH 1040 CP 15 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Size: px
Start display at page:

Download "MATH 1040 CP 15 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question."

Transcription

1 MATH 1040 CP 15 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) (sin x + cos x) 1 + sin x cos x =? 1) ) sec 4 x + sec x tan x - tan 4 x =? ) ) cos x + sin x cos x - sin x - cos x sin x =? ) 4) sec x csc x =? 4) 5) (1 + tan u)(1 - sin u) = 1 5) ) cot x + csc x = csc x - 1 ) Show that the equation is not an identity by finding a value of x for which both sides are defined but not equal. 7) sin x - sin x cosx = sin x 7) Rewrite the expression in terms of the given function or functions. 8) csc x + tan x csc x; cos x and sin x 8) Find the exact value of the expression. 9) cos ) Identify and in the following expression which is the right side of the formula for cos ( - ). 10) cos 18 cos 9 + sin 18 sin 9 10) Find the exact value of the expression. 11) cos (15 ) cos (45 ) + sin (15 ) sin (45 ) 11) Write the expression as the cosine of an angle, knowing that the expression is the right side of the formula for cos ( - ) with particular values for and. 1) cos cos sin sin 1) 9 18 Use the given information to find the exact value of the expression. 1) sin = 4 5, lies in quadrant II, and cos =, lies in quadrant I Find cos ( - ). 1) 5 1

2 Find the exact value by using a sum or difference identity. 14) cos ( ) 14) sin ( - ) 15) cos cos =? 15) Find the exact value of the expression. 1) sin 0 cos 40 + cos 0 sin 40 1) cos() 17) = cot - tan 17) cos sin 18) sin( - ) cos() = sin cos - sin cos 18) Use the given information to find the exact value of the expression. 19) sin = , lies in quadrant II, and cos =, lies in quadrant I Find sin ( - ). 19) 17 0) cos = - 7 5, lies in quadrant III, and sin = 1, lies in quadrant II Find cos ( + 5 ). 0) Find the exact value by using a difference identity. 1) tan 1 1) Use trigonometric identities to find the exact value. tan 5 + tan 85 ) 1 - tan 5 tan 85 ) ) tan x - 4 = tan x tan x ) Find the exact value under the given conditions. 4) cos = - 4 5, < < ; sin = - 1 5, < < Find tan ( + ). 4) Rewrite the expression as a simplified expression containing one term. 5) sin cos cos sin + 5)

3 Use the given information to find the exact value of the expression. ) cos = 5, lies in quadrant IV Find sin. ) 1 Use the figure to find the exact value of the trigonometric function. 7) Find tan. 7) Write the expression as the sine, cosine, or tangent of a double angle. Then find the exact value of the expression. 8) tan tan 5 8 8) 9) cos 0 - sin 0 9) 0) sin x cos x + sin x cos x =? 0) 1) cos 4 = cos ( ) - 1 1) Rewrite the expression as an equivalent expression that does not contain powers of trigonometric functions greater than 1. ) cos 4 x ) ) sin x ) Use a half-angle formula to find the exact value of the expression. 4) cos 5 1 4) 5) tan 15 5) Use the given information to find the exact value of the trigonometric function. ) cos = 1 4, csc > 0 Find sin. ) 7) sec = 4, lies in quadrant I Find cos. 7)

4 8) sec = - 5, lies in quadrant II Find sin. 8) 9) csc = - 5, tan > 0 Find cos. 9) 40) tan - cot =? 40) Use a graph in a [-,, ] by [-,, 1] viewing rectangle to complete the identity. 41) tan x 1 + tan x =? 41) Express the product as a sum or difference. 4) sin 4x sin 7x 4) 4) cos 11x cos x 4) 44) sin x cos 9x 44) Express the sum or difference as a product. 45) cos 5x x + cos 45) 4) sin 1x + sin 9x 4) 47) sin - sin - = tan cot sin + sin 47) sin x + sin 5x 48) cos x + cos 4x =? 48) Use substitution to determine whether the given x-value is a solution of the equation. 49) cos x + 1 = sin x, x = ) 4

5 50) tan x =, x = -5 50) Find all solutions of the equation. 51) 9 cos x + = 7 cos x+ 5 51) 5) tan x sec x = - tan x 5) Solve the equation on the interval [0, ). 5) sin 4x = 5) 54) sin x = sin x 54) 55) sec x - = tan x 55) 5) sin x - cos x = 0 5) Solve the equation on the interval [0, ). 57) -tan x sin x = -tan x 57) 58) cos x + cos x sin x = 0 58) Solve the equation on the interval [0, ). 59) cos x + sin x - = 0 59) 0) sin x sin x - 11 = 1 0) Use a calculator to solve the equation on the interval [0, ). Round the answer to two decimal places. 1) cos x = ) Solve the problem. ) A coil of wire rotating in a magnetic field induces a voltage given by e = 0 sin ( t 4 - ), where t is time in seconds. Find the smallest positive time to produce a voltage of 10. ) 5

6 Answer Key Testname: MATH1040CP15 1) 1 ) sec 4 x - ) sec x csc x 4) sec x + csc x 5) (1 + tan u)(1 - sin u) = sec u cos u = 1 cos cos u = 1 u ) cot x + csc x = csc x csc x = csc x ) 4 8) 1 sin x cos x 9) 10) = 18, = 9 11) - 1 1) cos 1) ) - ( + 1) 4 15) tan - tan 1) 17) cos() cos cos - sin sin cos cos = = cos sin cos sin cos sin - sin sin cos sin = cos sin 18) sin( - ) cos () = (sin cos - cos sin )(cos cos - sin sin ) = sin cos cos - sin cos sin - cos sin cos + cos sin sin - sin cos = sin cos (cos + sin ) - sin cos (sin + cos ) = sin cos - sin cos 19) = cot - tan 0) ) - ) - ) tan x - 4 = tan x - tan /4 1 + (tan x)(tan /4) = tan x tan x. 4)

7 Answer Key Testname: MATH1040CP15 5) ) ) ) 1 9) 1 0) sin x 1) cos 4 = cos[( )] = cos ( ) cos x + cos 4x ) 8 ) 4 sin x sin x 4) 1-5) - ) 4 7) ) 5 5 9) ) - cot 41) sin x 4) 1 (cos x - cos 11x) 4) 1 (cos 5x + cos x) 44) 1 (sin5x - sin 4x) 45) cos x cos x 4) sin 11x cos x 47) - sin cos sin - sin sin + sin = sin cos - = sin cos - - cos sin = tan - cot 48) sin 4x cos x 7

8 Answer Key Testname: MATH1040CP15 49) No 50) Yes 51) x = 4 + n or x = 4 + n 5) x = + n or x = + n or x = n 5) 1,,, 7 1, 7, 1 1, 5, ) 0,,, 5 55) no solution 5) 4, 4, 5 4, ) 0, 58),,, 11 59) 0,,, 5 0) 1).55,.7 ) seconds 8

5-5 Multiple-Angle and Product-to-Sum Identities

5-5 Multiple-Angle and Product-to-Sum Identities Find the values of sin 2, cos 2, and tan 2 for the given value and interval. 1. cos =, (270, 360 ) Since on the interval (270, 360 ), one point on the terminal side of θ has x-coordinate 3 and a distance

More information

Math 1205 Trigonometry Review

Math 1205 Trigonometry Review Math 105 Trigonometry Review We begin with the unit circle. The definition of a unit circle is: x + y =1 where the center is (0, 0) and the radius is 1. An angle of 1 radian is an angle at the center of

More information

Honors Algebra 2 w/ Trigonometry Chapter 14: Trigonometric Identities & Equations Target Goals

Honors Algebra 2 w/ Trigonometry Chapter 14: Trigonometric Identities & Equations Target Goals Honors Algebra w/ Trigonometry Chapter 14: Trigonometric Identities & Equations Target Goals By the end of this chapter, you should be able to Identify trigonometric identities. (14.1) Factor trigonometric

More information

4-3 Trigonometric Functions on the Unit Circle

4-3 Trigonometric Functions on the Unit Circle Find the exact values of the five remaining trigonometric functions of θ. 33. tan θ = 2, where sin θ > 0 and cos θ > 0 To find the other function values, you must find the coordinates of a point on the

More information

Math 180 Chapter 6 Lecture Notes. Professor Miguel Ornelas

Math 180 Chapter 6 Lecture Notes. Professor Miguel Ornelas Math 180 Chapter 6 Lecture Notes Professor Miguel Ornelas 1 M. Ornelas Math 180 Lecture Notes Section 6.1 Section 6.1 Verifying Trigonometric Identities Verify the identity. a. sin x + cos x cot x = csc

More information

You found trigonometric values using the unit circle. (Lesson 4-3)

You found trigonometric values using the unit circle. (Lesson 4-3) You found trigonometric values using the unit circle. (Lesson 4-3) LEQ: How do we identify and use basic trigonometric identities to find trigonometric values & use basic trigonometric identities to simplify

More information

Trigonometric identities

Trigonometric identities Trigonometric identities An identity is an equation that is satisfied by all the values of the variable(s) in the equation. For example, the equation (1 + x) = 1 + x + x is an identity. If you replace

More information

Module 5 Trigonometric Identities I

Module 5 Trigonometric Identities I MAC 1114 Module 5 Trigonometric Identities I Learning Objectives Upon completing this module, you should be able to: 1. Recognize the fundamental identities: reciprocal identities, quotient identities,

More information

Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan. Review Problems for Test #3

Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan. Review Problems for Test #3 Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan Review Problems for Test #3 Exercise 1 The following is one cycle of a trigonometric function. Find an equation of this graph. Exercise

More information

Math 104 Final Exam Review

Math 104 Final Exam Review Math 04 Final Exam Review. Find all six trigonometric functions of θ if (, 7) is on the terminal side of θ.. Find cosθ and sinθ if the terminal side of θ lies along the line y = x in quadrant IV.. Find

More information

Double-Angle, Half-Angle, and Reduction Formulas

Double-Angle, Half-Angle, and Reduction Formulas Double-Angle, Half-Angle, and Reduction Formulas By: OpenStaxCollege Bicycle ramps for advanced riders have a steeper incline than those designed for novices. Bicycle ramps made for competition (see [link])

More information

PreCalc: Chapter 6 Test Review

PreCalc: Chapter 6 Test Review Name: Class: Date: ID: A PreCalc: Chapter 6 Test Review Short Answer 1. Draw the angle. 135 2. Draw the angle. 3. Convert the angle to a decimal in degrees. Round the answer to two decimal places. 8. If

More information

Trigonometric Equations

Trigonometric Equations Chapter Three Trigonometric Equations Solving Simple Trigonometric Equations Algebraically Solving Complicated Trigonometric Equations Algebraically Graphs of Sine and Cosine Functions Solving Trigonometric

More information

2. Be able to evaluate a trig function at a particular degree measure. Example: cos. again, just use the unit circle!

2. Be able to evaluate a trig function at a particular degree measure. Example: cos. again, just use the unit circle! Study Guide for PART II of the Fall 18 MAT187 Final Exam NO CALCULATORS are permitted on this part of the Final Exam. This part of the Final exam will consist of 5 multiple choice questions. You will be

More information

Algebra2/Trig Chapter 10 Packet

Algebra2/Trig Chapter 10 Packet Algebra2/Trig Chapter 10 Packet In this unit, students will be able to: Convert angle measures from degrees to radians and radians to degrees. Find the measure of an angle given the lengths of the intercepted

More information

Multiple-Angle and Product-to-Sum Formulas

Multiple-Angle and Product-to-Sum Formulas Multiple-Angle and Product-to-Sum Formulas MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 011 Objectives In this lesson we will learn to: use multiple-angle formulas to rewrite

More information

The reciprocal identities are obvious from the definitions of the six trigonometric functions.

The reciprocal identities are obvious from the definitions of the six trigonometric functions. The Fundamental Identities: (1) The reciprocal identities: csc = 1 sec = 1 (2) The tangent and cotangent identities: tan = cot = cot = 1 tan (3) The Pythagorean identities: sin 2 + cos 2 =1 1+ tan 2 =

More information

6.4 & 6.5 Graphing Trigonometric Functions. The smallest number p with the above property is called the period of the function.

6.4 & 6.5 Graphing Trigonometric Functions. The smallest number p with the above property is called the period of the function. Math 160 www.timetodare.com Periods of trigonometric functions Definition A function y f ( t) f ( t p) f ( t) 6.4 & 6.5 Graphing Trigonometric Functions = is periodic if there is a positive number p such

More information

5-5 Multiple-Angle and Product-to-Sum Identities

5-5 Multiple-Angle and Product-to-Sum Identities Find the values of sin 2, cos 2, tan 2 1 cos for the given value interval, (270, 360 ) Since on the interval (270, 360 ), one point on the terminal side of θ has x-coordinate 3 a distance of 5 units from

More information

Math 36 "Fall 08" 5.2 "Sum and Di erence Identities" * Find exact values of functions of rational multiples of by using sum and di erence identities.

Math 36 Fall 08 5.2 Sum and Di erence Identities * Find exact values of functions of rational multiples of by using sum and di erence identities. Math 36 "Fall 08" 5.2 "Sum and Di erence Identities" Skills Objectives: * Find exact values of functions of rational multiples of by using sum and di erence identities. * Develop new identities from the

More information

Find the exact values of the indicated trigonometric functions. Write fractions in lowest terms. 1)

Find the exact values of the indicated trigonometric functions. Write fractions in lowest terms. 1) MAC 1114 Review for Exam 1 Name Find the exact values of the indicated trigonometric functions. Write fractions in lowest terms. 1) 1) 12 20 16 Find sin A and cos A. 2) 2) 9 15 6 Find tan A and cot A.

More information

cos sin sin 2 60 = 1.

cos sin sin 2 60 = 1. Name: Class: Date: Use the definitions to evaluate the six trigonometric functions of. In cases in which a radical occurs in a denominator, rationalize the denominator. Suppose that ABC is a right triangle

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 0 - Section 4. Unit Circle Trigonometr An angle is in standard position if its verte is at the origin and its initial side is along the positive ais. Positive angles are measured counterclockwise

More information

Mathematics Lecture. 3 Chapter. 1 Trigonometric Functions. By Dr. Mohammed Ramidh

Mathematics Lecture. 3 Chapter. 1 Trigonometric Functions. By Dr. Mohammed Ramidh Mathematics Lecture. 3 Chapter. 1 Trigonometric Functions By Dr. Mohammed Ramidh Trigonometric Functions This section reviews the basic trigonometric functions. Trigonometric functions are important because

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Draw the given angle in standard position. Draw an arrow representing the correct amount of rotation.

More information

( x "1) 2 = 25, x 3 " 2x 2 + 5x "12 " 0, 2sin" =1.

( x 1) 2 = 25, x 3  2x 2 + 5x 12  0, 2sin =1. Unit Analytical Trigonometry Classwork A) Verifying Trig Identities: Definitions to know: Equality: a statement that is always true. example:, + 7, 6 6, ( + ) 6 +0. Equation: a statement that is conditionally

More information

Year 10 Term 1 Homework

Year 10 Term 1 Homework Yimin Math Centre Year 10 Term 1 Homework Student Name: Grade: Date: Score: Table of contents 6 Year 10 Term 1 Week 6 Homework 1 6.1 Triangle trigonometry................................... 1 6.1.1 The

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MATH 1113 Exam III PRACTICE TEST FALL 2015 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact values of the indicated trigonometric

More information

Name: Period: Date: Math Lab: Explore Transformations of Trig Functions

Name: Period: Date: Math Lab: Explore Transformations of Trig Functions Name: Period: Date: Math Lab: Explore Transformations of Trig Functions EXPLORE VERTICAL DISPLACEMENT 1] Graph 2] Explain what happens to the parent graph when a constant is added to the sine function.

More information

Section 6-3 Double-Angle and Half-Angle Identities

Section 6-3 Double-Angle and Half-Angle Identities 6-3 Double-Angle and Half-Angle Identities 47 Section 6-3 Double-Angle and Half-Angle Identities Double-Angle Identities Half-Angle Identities This section develops another important set of identities

More information

Unit 6 Test REVIEW Algebra 2 Honors

Unit 6 Test REVIEW Algebra 2 Honors Unit Test REVIEW Algebra 2 Honors Multiple Choice Portion SHOW ALL WORK! 1. How many radians are in 1800? 10 10π Name: Per: 180 180π 2. On the unit circle shown, which radian measure is located at ( 2,

More information

Graphs of other Trigonometric Functions

Graphs of other Trigonometric Functions Graphs of other Trigonometric Functions Now we will look at other types of graphs: secant. tan x, cot x, csc x, sec x. We will start with the cosecant and y csc x In order to draw this graph we will first

More information

# 1,5,9,13,...37 (hw link has all odds)

# 1,5,9,13,...37 (hw link has all odds) February 8, 17 Goals: 1. Recognize trig functions and their integrals.. Learn trig identities useful for integration. 3. Understand which identities work and when. a) identities enable substitution by

More information

Trigonometric Identities. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Trigonometric Identities. Copyright 2017, 2013, 2009 Pearson Education, Inc. 5 Trigonometric Identities Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 5.3 Sum and Difference Identities Difference Identity for Cosine Sum Identity for Cosine Cofunction Identities Applications

More information

In Exercises 1-12, graph one cycle of the given function. State the period, amplitude, phase shift and vertical shift of the function.

In Exercises 1-12, graph one cycle of the given function. State the period, amplitude, phase shift and vertical shift of the function. 0.5 Graphs of the Trigonometric Functions 809 0.5. Eercises In Eercises -, graph one ccle of the given function. State the period, amplitude, phase shift and vertical shift of the function.. = sin. = sin.

More information

Chapter 3, Part 4: Intro to the Trigonometric Functions

Chapter 3, Part 4: Intro to the Trigonometric Functions Haberman MTH Section I: The Trigonometric Functions Chapter, Part : Intro to the Trigonometric Functions Recall that the sine and cosine function represent the coordinates of points in the circumference

More information

Chapter 1 and Section 2.1

Chapter 1 and Section 2.1 Chapter 1 and Section 2.1 Diana Pell Section 1.1: Angles, Degrees, and Special Triangles Angles Degree Measure Angles that measure 90 are called right angles. Angles that measure between 0 and 90 are called

More information

MATH STUDENT BOOK. 12th Grade Unit 5

MATH STUDENT BOOK. 12th Grade Unit 5 MATH STUDENT BOOK 12th Grade Unit 5 Unit 5 ANALYTIC TRIGONOMETRY MATH 1205 ANALYTIC TRIGONOMETRY INTRODUCTION 3 1. IDENTITIES AND ADDITION FORMULAS 5 FUNDAMENTAL TRIGONOMETRIC IDENTITIES 5 PROVING IDENTITIES

More information

F.TF.A.2: Reciprocal Trigonometric Relationships

F.TF.A.2: Reciprocal Trigonometric Relationships Regents Exam Questions www.jmap.org Name: If sin x =, a 0, which statement must be true? a ) csc x = a csc x = a ) sec x = a sec x = a 5 The expression sec 2 x + csc 2 x is equivalent to ) sin x ) cos

More information

Trigonometric Functions. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Trigonometric Functions. Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 Trigonometric Functions Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 1.4 Using the Definitions of the Trigonometric Functions Reciprocal Identities Signs and Ranges of Function Values Pythagorean

More information

13-1 Trigonometric Identities. Find the exact value of each expression if 0 < θ < If cot θ = 2, find tan θ. SOLUTION: 2. If, find cos θ.

13-1 Trigonometric Identities. Find the exact value of each expression if 0 < θ < If cot θ = 2, find tan θ. SOLUTION: 2. If, find cos θ. Find the exact value of each expression if 0 < θ < 90 1. If cot θ = 2, find tan θ. 2. If, find cos θ. Since is in the first quadrant, is positive. Thus,. 3. If, find sin θ. Since is in the first quadrant,

More information

13-3The The Unit Unit Circle

13-3The The Unit Unit Circle 13-3The The Unit Unit Circle Warm Up Lesson Presentation Lesson Quiz 2 Warm Up Find the measure of the reference angle for each given angle. 1. 120 60 2. 225 45 3. 150 30 4. 315 45 Find the exact value

More information

1 Trigonometric Identities

1 Trigonometric Identities MTH 120 Spring 2008 Essex County College Division of Mathematics Handout Version 6 1 January 29, 2008 1 Trigonometric Identities 1.1 Review of The Circular Functions At this point in your mathematical

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math 1316 Ch.1-2 Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 1) Find the supplement of an angle whose

More information

Ready To Go On? Skills Intervention 14-1 Graphs of Sine and Cosine

Ready To Go On? Skills Intervention 14-1 Graphs of Sine and Cosine 14A Ready To Go On? Skills Intervention 14-1 Graphs of Sine and Cosine Find these vocabulary words in Lesson 14-1 and the Multilingual Glossary. Vocabulary periodic function cycle period amplitude frequency

More information

Chapter 4/5 Part 2- Trig Identities and Equations

Chapter 4/5 Part 2- Trig Identities and Equations Chapter 4/5 Part 2- Trig Identities and Equations Lesson Package MHF4U Chapter 4/5 Part 2 Outline Unit Goal: By the end of this unit, you will be able to solve trig equations and prove trig identities.

More information

Math 3 Trigonometry Part 2 Waves & Laws

Math 3 Trigonometry Part 2 Waves & Laws Math 3 Trigonometry Part 2 Waves & Laws GRAPHING SINE AND COSINE Graph of sine function: Plotting every angle and its corresponding sine value, which is the y-coordinate, for different angles on the unit

More information

the input values of a function. These are the angle values for trig functions

the input values of a function. These are the angle values for trig functions SESSION 8: TRIGONOMETRIC FUNCTIONS KEY CONCEPTS: Graphs of Trigonometric Functions y = sin θ y = cos θ y = tan θ Properties of Graphs Shape Intercepts Domain and Range Minimum and maximum values Period

More information

Pythagorean Identity. Sum and Difference Identities. Double Angle Identities. Law of Sines. Law of Cosines

Pythagorean Identity. Sum and Difference Identities. Double Angle Identities. Law of Sines. Law of Cosines Review for Math 111 Final Exam The final exam is worth 30% (150/500 points). It consists of 26 multiple choice questions, 4 graph matching questions, and 4 short answer questions. Partial credit will be

More information

MATH 1112 FINAL EXAM REVIEW e. None of these. d. 1 e. None of these. d. 1 e. None of these. e. None of these. e. None of these.

MATH 1112 FINAL EXAM REVIEW e. None of these. d. 1 e. None of these. d. 1 e. None of these. e. None of these. e. None of these. I. State the equation of the unit circle. MATH 111 FINAL EXAM REVIEW x y y = 1 x+ y = 1 x = 1 x + y = 1 II. III. If 1 tan x =, find sin x for x in Quadrant IV. 1 1 1 Give the exact value of each expression.

More information

Unit 7 Trigonometric Identities and Equations 7.1 Exploring Equivalent Trig Functions

Unit 7 Trigonometric Identities and Equations 7.1 Exploring Equivalent Trig Functions Unit 7 Trigonometric Identities and Equations 7.1 Exploring Equivalent Trig Functions When we look at the graphs of sine, cosine, tangent and their reciprocals, it is clear that there will be points where

More information

1 Trigonometry. Copyright Cengage Learning. All rights reserved.

1 Trigonometry. Copyright Cengage Learning. All rights reserved. 1 Trigonometry Copyright Cengage Learning. All rights reserved. 1.2 Trigonometric Functions: The Unit Circle Copyright Cengage Learning. All rights reserved. Objectives Identify a unit circle and describe

More information

13-1 Trigonometric Identities. Find the exact value of each expression if 0 < θ < If cot θ = 2, find tan θ. ANSWER: 2. If, find cos θ.

13-1 Trigonometric Identities. Find the exact value of each expression if 0 < θ < If cot θ = 2, find tan θ. ANSWER: 2. If, find cos θ. Find the exact value of each expression if 0 < θ < 90 1. If cot θ = 2, find tan θ. 8. CCSS PERSEVERANCE When unpolarized light passes through polarized sunglass lenses, the intensity of the light is cut

More information

Solutions to Exercises, Section 5.6

Solutions to Exercises, Section 5.6 Instructor s Solutions Manual, Section 5.6 Exercise 1 Solutions to Exercises, Section 5.6 1. For θ = 7, evaluate each of the following: (a) cos 2 θ (b) cos(θ 2 ) [Exercises 1 and 2 emphasize that cos 2

More information

MATH Week 10. Ferenc Balogh Winter. Concordia University

MATH Week 10. Ferenc Balogh Winter. Concordia University MATH 20 - Week 0 Ferenc Balogh Concordia University 2008 Winter Based on the textbook J. Stuart, L. Redlin, S. Watson, Precalculus - Mathematics for Calculus, 5th Edition, Thomson All figures and videos

More information

MHF4U. Advanced Functions Grade 12 University Mitchell District High School. Unit 4 Radian Measure 5 Video Lessons

MHF4U. Advanced Functions Grade 12 University Mitchell District High School. Unit 4 Radian Measure 5 Video Lessons MHF4U Advanced Functions Grade 12 University Mitchell District High School Unit 4 Radian Measure 5 Video Lessons Allow no more than 1 class days for this unit! This includes time for review and to write

More information

Mathematics UNIT FIVE Trigonometry II. Unit. Student Workbook. Lesson 1: Trigonometric Equations Approximate Completion Time: 4 Days

Mathematics UNIT FIVE Trigonometry II. Unit. Student Workbook. Lesson 1: Trigonometric Equations Approximate Completion Time: 4 Days Mathematics 0- Student Workbook Unit 5 Lesson : Trigonometric Equations Approximate Completion Time: 4 Days Lesson : Trigonometric Identities I Approximate Completion Time: 4 Days Lesson : Trigonometric

More information

MA 1032 Review for exam III

MA 1032 Review for exam III MA 10 Review for eam III Name Establish the identit. 1) cot θ sec θ = csc θ 1) ) cscu - cos u sec u= cot u ) ) cos u 1 + tan u - sin u 1 + cot u = cos u - sin u ) ) csc θ + cot θ tan θ + sin θ = csc θ

More information

SECTION 1.5: TRIGONOMETRIC FUNCTIONS

SECTION 1.5: TRIGONOMETRIC FUNCTIONS SECTION.5: TRIGONOMETRIC FUNCTIONS The Unit Circle The unit circle is the set of all points in the xy-plane for which x + y =. Def: A radian is a unit for measuring angles other than degrees and is measured

More information

Geometry Problem Solving Drill 11: Right Triangle

Geometry Problem Solving Drill 11: Right Triangle Geometry Problem Solving Drill 11: Right Triangle Question No. 1 of 10 Which of the following points lies on the unit circle? Question #01 A. (1/2, 1/2) B. (1/2, 2/2) C. ( 2/2, 2/2) D. ( 2/2, 3/2) The

More information

Basic Trigonometry You Should Know (Not only for this class but also for calculus)

Basic Trigonometry You Should Know (Not only for this class but also for calculus) Angle measurement: degrees and radians. Basic Trigonometry You Should Know (Not only for this class but also for calculus) There are 360 degrees in a full circle. If the circle has radius 1, then the circumference

More information

MATH 130 FINAL REVIEW version2

MATH 130 FINAL REVIEW version2 MATH 130 FINAL REVIEW version2 Problems 1 3 refer to triangle ABC, with =. Find the remaining angle(s) and side(s). 1. =50, =25 a) =40,=32.6,=21.0 b) =50,=21.0,=32.6 c) =40,=21.0,=32.6 d) =50,=32.6,=21.0

More information

= tanθ 3) cos2 θ. = tan θ. = 3cosθ 6) sinθ + cosθcotθ = cscθ. = 3cosθ. = 3cosθ sinθ

= tanθ 3) cos2 θ. = tan θ. = 3cosθ 6) sinθ + cosθcotθ = cscθ. = 3cosθ. = 3cosθ sinθ PRE-CALCULUS/TRIGONOMETRY 3 Name 5.-5.5 REVIEW Date: Block Verify. ) cscθ secθ = cotθ 2) sec2 θ tanθ = tanθ 3) cos2 θ +sin θ = Use RIs sin θ = cotθ tan 2 θ tanθ = tan θ sin 2 θ +sin θ = Multiply by reciprocal

More information

Trigonometric Integrals Section 5.7

Trigonometric Integrals Section 5.7 A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Trigonometric Integrals Section 5.7 Dr. John Ehrke Department of Mathematics Spring 2013 Eliminating Powers From Trig Functions

More information

JUST THE MATHS SLIDES NUMBER 3.5. TRIGONOMETRY 5 (Trigonometric identities & wave-forms) A.J.Hobson

JUST THE MATHS SLIDES NUMBER 3.5. TRIGONOMETRY 5 (Trigonometric identities & wave-forms) A.J.Hobson JUST THE MATHS SLIDES NUMBER 3.5 TRIGONOMETRY 5 (Trigonometric identities & wave-forms by A.J.Hobson 3.5.1 Trigonometric identities 3.5. Amplitude, wave-length, frequency and phase-angle UNIT 3.5 - TRIGONOMETRY

More information

In this section, you will learn the basic trigonometric identities and how to use them to prove other identities.

In this section, you will learn the basic trigonometric identities and how to use them to prove other identities. 4.6 Trigonometric Identities Solutions to equations that arise from real-world problems sometimes include trigonometric terms. One example is a trajectory problem. If a volleyball player serves a ball

More information

13-1 Practice. Trigonometric Identities. Find the exact value of each expression if 0 < θ < 90. 1, find sin θ. 1. If cos θ = 1, find cot θ.

13-1 Practice. Trigonometric Identities. Find the exact value of each expression if 0 < θ < 90. 1, find sin θ. 1. If cos θ = 1, find cot θ. 1-1 Practice Trigonometric Identities Find the exact value of each expression if 0 < θ < 90. 1. If cos θ = 5 1, find sin θ.. If cot θ = 1, find sin θ.. If tan θ = 4, find sec θ. 4. If tan θ =, find cot

More information

MATH 1113 Exam 3 Review. Fall 2017

MATH 1113 Exam 3 Review. Fall 2017 MATH 1113 Exam 3 Review Fall 2017 Topics Covered Section 4.1: Angles and Their Measure Section 4.2: Trigonometric Functions Defined on the Unit Circle Section 4.3: Right Triangle Geometry Section 4.4:

More information

Trigonometric Identities. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Trigonometric Identities. Copyright 2017, 2013, 2009 Pearson Education, Inc. 5 Trigonometric Identities Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 5.5 Double-Angle Double-Angle Identities An Application Product-to-Sum and Sum-to-Product Identities Copyright 2017, 2013,

More information

cos 2 x + sin 2 x = 1 cos(u v) = cos u cos v + sin u sin v sin(u + v) = sin u cos v + cos u sin v

cos 2 x + sin 2 x = 1 cos(u v) = cos u cos v + sin u sin v sin(u + v) = sin u cos v + cos u sin v Concepts: Double Angle Identities, Power Reducing Identities, Half Angle Identities. Memorized: cos x + sin x 1 cos(u v) cos u cos v + sin v sin(u + v) cos v + cos u sin v Derive other identities you need

More information

Copyright 2009 Pearson Education, Inc. Slide Section 8.2 and 8.3-1

Copyright 2009 Pearson Education, Inc. Slide Section 8.2 and 8.3-1 8.3-1 Transformation of sine and cosine functions Sections 8.2 and 8.3 Revisit: Page 142; chapter 4 Section 8.2 and 8.3 Graphs of Transformed Sine and Cosine Functions Graph transformations of y = sin

More information

1. Measure angle in degrees and radians 2. Find coterminal angles 3. Determine the arc length of a circle

1. Measure angle in degrees and radians 2. Find coterminal angles 3. Determine the arc length of a circle Pre- Calculus Mathematics 12 5.1 Trigonometric Functions Goal: 1. Measure angle in degrees and radians 2. Find coterminal angles 3. Determine the arc length of a circle Measuring Angles: Angles in Standard

More information

Trig Identities Packet

Trig Identities Packet Advanced Math Name Trig Identities Packet = = = = = = = = cos 2 θ + sin 2 θ = sin 2 θ = cos 2 θ cos 2 θ = sin 2 θ + tan 2 θ = sec 2 θ tan 2 θ = sec 2 θ tan 2 θ = sec 2 θ + cot 2 θ = csc 2 θ cot 2 θ = csc

More information

Math 1330 Precalculus Electronic Homework (EHW 6) Sections 5.1 and 5.2.

Math 1330 Precalculus Electronic Homework (EHW 6) Sections 5.1 and 5.2. Math 0 Precalculus Electronic Homework (EHW 6) Sections 5. and 5.. Work the following problems and choose the correct answer. The problems that refer to the Textbook may be found at www.casa.uh.edu in

More information

Precalculus Second Semester Final Review

Precalculus Second Semester Final Review Precalculus Second Semester Final Review This packet will prepare you for your second semester final exam. You will find a formula sheet on the back page; these are the same formulas you will receive for

More information

Jim Lambers Math 1B Fall Quarter Final Exam Practice Problems

Jim Lambers Math 1B Fall Quarter Final Exam Practice Problems Jim Lambers Math 1B Fall Quarter 2004-05 Final Exam Practice Problems The following problems are indicative of the types of problems that will appear on the Final Exam, which will be given on Monday, December

More information

Trigonometry Review Page 1 of 14

Trigonometry Review Page 1 of 14 Trigonometry Review Page of 4 Appendix D has a trigonometric review. This material is meant to outline some of the proofs of identities, help you remember the values of the trig functions at special values,

More information

2. (8pts) If θ is an acute angle, find the values of all the trigonometric functions of θ given

2. (8pts) If θ is an acute angle, find the values of all the trigonometric functions of θ given Trigonometry Joysheet 1 MAT 145, Spring 2017 D. Ivanšić Name: Covers: 6.1, 6.2 Show all your work! 1. 8pts) If θ is an acute angle, find the values of all the trigonometric functions of θ given that sin

More information

Review Test 1. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 1. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test 1 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Convert the angle to a decimal in degrees. Round the answer to two decimal places. 1)

More information

Name Date Class. Identify whether each function is periodic. If the function is periodic, give the period

Name Date Class. Identify whether each function is periodic. If the function is periodic, give the period Name Date Class 14-1 Practice A Graphs of Sine and Cosine Identify whether each function is periodic. If the function is periodic, give the period. 1.. Use f(x) = sinx or g(x) = cosx as a guide. Identify

More information

4-3 Trigonometric Functions on the Unit Circle

4-3 Trigonometric Functions on the Unit Circle The given point lies on the terminal side of an angle θ in standard position. Find the values of the six trigonometric functions of θ. 1. (3, 4) 7. ( 8, 15) sin θ =, cos θ =, tan θ =, csc θ =, sec θ =,

More information

Chapter 8. Analytic Trigonometry. 8.1 Trigonometric Identities

Chapter 8. Analytic Trigonometry. 8.1 Trigonometric Identities Chapter 8. Analytic Trigonometry 8.1 Trigonometric Identities Fundamental Identities Reciprocal Identities: 1 csc = sin sec = 1 cos cot = 1 tan tan = 1 cot tan = sin cos cot = cos sin Pythagorean Identities:

More information

Section 7.1 Graphs of Sine and Cosine

Section 7.1 Graphs of Sine and Cosine Section 7.1 Graphs of Sine and Cosine OBJECTIVE 1: Understanding the Graph of the Sine Function and its Properties In Chapter 7, we will use a rectangular coordinate system for a different purpose. We

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Trigonometry Final Exam Study Guide Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. The graph of a polar equation is given. Select the polar

More information

Trigonometry LESSON ONE - Degrees and Radians Lesson Notes

Trigonometry LESSON ONE - Degrees and Radians Lesson Notes 8 = 6 Trigonometry LESSON ONE - Degrees and Radians Example : Define each term or phrase and draw a sample angle. Angle in standard position. b) Positive and negative angles. Draw. c) Reference angle.

More information

3.2 Proving Identities

3.2 Proving Identities 3.. Proving Identities www.ck.org 3. Proving Identities Learning Objectives Prove identities using several techniques. Working with Trigonometric Identities During the course, you will see complex trigonometric

More information

WARM UP. 1. Expand the expression (x 2 + 3) Factor the expression x 2 2x Find the roots of 4x 2 x + 1 by graphing.

WARM UP. 1. Expand the expression (x 2 + 3) Factor the expression x 2 2x Find the roots of 4x 2 x + 1 by graphing. WARM UP Monday, December 8, 2014 1. Expand the expression (x 2 + 3) 2 2. Factor the expression x 2 2x 8 3. Find the roots of 4x 2 x + 1 by graphing. 1 2 3 4 5 6 7 8 9 10 Objectives Distinguish between

More information

Unit 3 Unit Circle and Trigonometry + Graphs

Unit 3 Unit Circle and Trigonometry + Graphs HARTFIELD PRECALCULUS UNIT 3 NOTES PAGE 1 Unit 3 Unit Circle and Trigonometry + Graphs (2) The Unit Circle (3) Displacement and Terminal Points (5) Significant t-values Coterminal Values of t (7) Reference

More information

Secondary Math Amplitude, Midline, and Period of Waves

Secondary Math Amplitude, Midline, and Period of Waves Secondary Math 3 7-6 Amplitude, Midline, and Period of Waves Warm UP Complete the unit circle from memory the best you can: 1. Fill in the degrees 2. Fill in the radians 3. Fill in the coordinates in the

More information

Unit 8 Trigonometry. Math III Mrs. Valentine

Unit 8 Trigonometry. Math III Mrs. Valentine Unit 8 Trigonometry Math III Mrs. Valentine 8A.1 Angles and Periodic Data * Identifying Cycles and Periods * A periodic function is a function that repeats a pattern of y- values (outputs) at regular intervals.

More information

Math 10/11 Honors Section 3.6 Basic Trigonometric Identities

Math 10/11 Honors Section 3.6 Basic Trigonometric Identities Math 0/ Honors Section 3.6 Basic Trigonometric Identities 0-0 - SECTION 3.6 BASIC TRIGONOMETRIC IDENTITIES Copright all rights reserved to Homework Depot: www.bcmath.ca I) WHAT IS A TRIGONOMETRIC IDENTITY?

More information

Math 102 Key Ideas. 1 Chapter 1: Triangle Trigonometry. 1. Consider the following right triangle: c b

Math 102 Key Ideas. 1 Chapter 1: Triangle Trigonometry. 1. Consider the following right triangle: c b Math 10 Key Ideas 1 Chapter 1: Triangle Trigonometry 1. Consider the following right triangle: A c b B θ C a sin θ = b length of side opposite angle θ = c length of hypotenuse cosθ = a length of side adjacent

More information

Apply Double-Angle and Half-Angle Formulas

Apply Double-Angle and Half-Angle Formulas 47 a2, 2A2A; P3A TEKS Apply Doble-Angle and Half-Angle Formlas Before Yo evalated expressions sing sm and difference formlas Now Yo will se doble-angle and half-angle formlas Why? So yo can find the distance

More information

13.4 Chapter 13: Trigonometric Ratios and Functions. Section 13.4

13.4 Chapter 13: Trigonometric Ratios and Functions. Section 13.4 13.4 Chapter 13: Trigonometric Ratios and Functions Section 13.4 1 13.4 Chapter 13: Trigonometric Ratios and Functions Section 13.4 2 Key Concept Section 13.4 3 Key Concept Section 13.4 4 Key Concept Section

More information

Chapter 4 Trigonometric Functions

Chapter 4 Trigonometric Functions Chapter 4 Trigonometric Functions Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8 Radian and Degree Measure Trigonometric Functions: The Unit Circle Right Triangle Trigonometry

More information

Double-Angle and Half-Angle Identities

Double-Angle and Half-Angle Identities 7-4 OBJECTIVE Use the doubleand half-angle identities for the sine, ine, and tangent functions. Double-Angle and Half-Angle Identities ARCHITECTURE Mike MacDonald is an architect who designs water fountains.

More information

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE)

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) Theory Class XI TARGET : JEE Main/Adv PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) MATHEMATICS Trigonometry SHARING IS CARING!! Want to Thank me? Share this Assignment with your friends and show

More information

GRAPHING TRIGONOMETRIC FUNCTIONS

GRAPHING TRIGONOMETRIC FUNCTIONS GRAPHING TRIGONOMETRIC FUNCTIONS Section.6B Precalculus PreAP/Dual, Revised 7 viet.dang@humbleisd.net 8//8 : AM.6B: Graphing Trig Functions REVIEW OF GRAPHS 8//8 : AM.6B: Graphing Trig Functions A. Equation:

More information

Section 8.4: The Equations of Sinusoidal Functions

Section 8.4: The Equations of Sinusoidal Functions Section 8.4: The Equations of Sinusoidal Functions In this section, we will examine transformations of the sine and cosine function and learn how to read various properties from the equation. Transformed

More information

Section 7.7 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions

Section 7.7 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions Section 7.7 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions In this section, we will look at the graphs of the other four trigonometric functions. We will start by examining the tangent

More information