EC 307 Power Electronics & Instrumentation

Size: px
Start display at page:

Download "EC 307 Power Electronics & Instrumentation"

Transcription

1 EC 307 Power Electronics & Instrumentation MODULE I Difference Between Linear Electronics and Power Electronics Electronics has now become the core component in the development of the technology. The fast processing computers with there compact size and high efficiency became possible due to the virtue of advancement in the field of electronics. The electronics is sub divided into two types namely (1) Linear Electronics (2) Power Electronics We often mix up with these two words and sometimes use them interchangeably. But according to engineers these two have clearly distinguished from each other. Linear Electronics It is the branch of electronics in which we operate the devices in there active mode of operation. We know that the evolution of electronics started with the invention of Transistor. The two PN junctions placed side by side happened to the discovery of a BJT Transistor. Now we know that the operations of a BJT transistor can be shown by its current-voltage characteristic curve. Now from the above figure it is clear that BJT has three regions of Operation 1. Cut-Off Region

2 2. Saturation Region 3. Active Region In linear electronics, we operate the transistor in its active region which can also be called ohmic region in which there is a relation-ship between current and the voltage with some gain value. This region is used in amplifiers circuits where we want to vary the current from collector to the emitter according to our need. In active region, the transistor itself also draws some power and hence causes power loss in it, which in return decrease the efficiency of the device. Power Electronics In power electronics, we deal with the cut-off and the saturation region of the transistor. Hence the transistor becomes a switch. When it is in cut off region, no current flows from collector to emitter ideally and it acts as an Off Switch. When it is in saturation region, rated current can flow from collector to emitter, hence act as an On Switch. This the key difference between the mode of operation of transistor which gives rise to a complete new field in electronics called power electronics. The main feature of power electronics is high efficiency power conversion because in either On state or Off state the power drawn by the transistor is zero (ideally), and hence high efficient devices can be built with efficiency as high as 96%. The switching converters which are the core of the power electronics actually use high speed switching transistors like MOSFETs and IGBTs which are also capable of sustaining voltages upto 1200 V and high currents. So these power devices help in the manufacturing of high speed devices A power semiconductor device is a semiconductor device used as a switch or rectifier in power electronics; a switch-mode power supply is an example. Such a device is also called a power device or, when used in an integrated circuit, a power IC. A power semiconductor device is usually used in "commutation mode" (i.e., it is either on or off), and therefore has a design optimized for such usage; it should usually not be used in linear operation. Linear power circuits are widespread as voltage regulators, audio amplifiers, and radio frequency amplifiers. Power semiconductors are found in systems delivering as little as a few tens of milliwatts for a headphone amplifier, up to around a gigwatt in a high voltage direct current transmission line. Switches

3 Fig.2 : Current/Voltage/switching frequency domains of the main power electronics switches. The trade-offs between voltage, current, and frequency ratings also exist for a switch. In fact, any power semiconductor relies on a PIN diode structure in order to sustain voltage; this can be seen in figure 2. The power MOSFET has the advantages of a majority carrier device, so it can achieve a very high operating frequency, but it cannot be used with high voltages; as it is a physical limit, no improvement is expected in the design of a silicon MOSFET concerning its maximum voltage ratings. However, its excellent performance in low voltage applications make it the device of choice (actually the only choice, currently) for applications with voltages below 200 V. By placing several devices in parallel, it is possible to increase the current rating of a switch. The MOSFET is particularly suited to this configuration, because its positive thermal coefficient of resistance tends to result in a balance of current between the individual devices. The IGBT is a recent component, so its performance improves regularly as technology evolves. It has already completely replaced the bipolar transistor in power applications; a power module is available in which several IGBT devices are connected in parallel, making it attractive for power levels up to several megawatts, which pushes further the limit at which thyristors and GTOs become the only option. Basically, an IGBT is a bipolar transistor driven by a power MOSFET; it has the advantages of being a minority carrier device (good performance in the on-state, even for high voltage devices), with the high input impedance of a MOSFET (it can be driven on or off with a very low amount of power). The major limitation of the IGBT for low voltage applications is the high voltage drop it exhibits in the on-state (2-to-4 V). Compared to the MOSFET, the operating frequency of the IGBT is relatively low (usually not higher than 50 khz), mainly

4 because of a problem during turn-off known as current-tail: The slow decay of the conduction current during turn-off results from a slow recombination of a large number of carriers that flood the thick 'drift' region of the IGBT during conduction. The net result is that the turn-off switching loss of an IGBT is considerably higher than its turn-on loss. Generally, in datasheets, turn-off energy is mentioned as a measured parameter; that number has to be multiplied with the switching frequency of the intended application in order to estimate the turn-off loss. At very high power levels, a thyristor-based device (e.g., a SCR, a GTO, a MCT, etc.) is still the only choice. This device can be turned on by a pulse provided by a driving circuit, but cannot be turned off by removing the pulse. A thyristor turns off as soon as no more current flows through it; this happens automatically in an alternating current system on each cycle, or requires a circuit with the means to divert current around the device. Both MCTs and GTOs have been developed to overcome this limitation, and are widely used in power distribution applications. A few applications of power semiconductors in switch mode include lamp dimmers, switch mode power supplies, induction cookers, automotive ignition systems, and AC and DC electric motor drives of all sizes. Power Diode Structure: Power Diode is the two terminal(namely anode and cathode) two layer(p- N) device which is used in most of the power electronics circuits. The power semiconductor diode is similar to low power PN junction diode (signal diode). In fact, power diode is more complex in structure and in operation than their low power counterparts. This complexity happens because low power device must be modified to make them suitable for high power applications. When the anode terminal is positive with respect to cathode, it is known as forward biased. When the anode terminal is negative with respect to the cathode, it is known as reverse biased. The power diode plays the vital role in the power electronics circuits. The major and most important applications of power diode in converter circuits are working as a rectifier ( remember that the rectification operation is uncontrollable), freewheeling diode or flyback diode, reverse voltage protection, voltage regulation circuits etc. When the anode is positive with respect to the cathode terminal the diode starts conducting. Then it act as an uncontrolled switch. ie we no need to provide any gate/base voltage to make it conduct the current. It operation as switch cannot be controlled by applying controlling voltage/current. The structure of the power diode is little different from the small signal diodes. In this post we will discuss about the power diode structure in detail. The

5 fundamentals of power diode is discussed separately. Please click here to know about basics of Power Diode. As shown in the figure, there is heavily doped n+ substrate with doping level of /cm 3. This substrate forms a cathode of the power diode. On n+ substrate, lightly doped n- epitaxial layer is grown. This layer is also known as drift region. The doping level of n- layer is about /cm 3. The the PN junction is formed by diffusing a heavily doped p+ region. This p+ region forms anode of the diode. The doping level of p+ region is about /cm 3. The thickness of p+ region is 10µm. The thickness of n + substrate is 250µm. The thickness of n- drift region depends upon the breakdown voltage of the diode. The drift region determines the reverse breakdown voltage of the diode. Its function is to absorb the depletion layer of the reverse biased p+n- junction. As it is lightly doped, it will add significant ohmic resistance to the diode when it is forward biased. For higher breakdown voltages, the drift region is wide. The n- drift region is absent in low power signal diodes. Conductivity modulation of drift layer: When the power diode is forward biased (anode is made positive with respect to cathode), the holes will be injected from the p+ region into the drift region. Some of the holes combine with the electrons in the drift region. Since injected holes are large, they attract electrons from the n+ layer. Thus holes and electrons are injected in the drift region simultaneously. Hence resistance of the drift region reduces significantly.

6 Thus diode current goes on increasing, but drift region resistance remains constant. So on-state losses in the diode are reduced. This phenomenon is called as Conductivity modulation of drift region. Characteristics of Power Diode The two types of characteristics of a power diode are shown in Fig. 3 and Fig. 4 named as follows: (i) Amp-volt characteristics (i-v characteristics) (ii) Turn-off characteristics (or reverse-recovery characteristics) Figure 3. Amp-Volt Characteristics of Power Diode Cut-in voltage is the value of the minimum voltage for V A (anode voltage) to make the diode works in forward conducting mode. Cut-in voltage of signal diode is 0.7 V while

7 in power diode it is 1 V. So, its typical forward conduction drop is larger. Under forwardbias condition, signal diode current increases exponentially and then increases linearly. In the case of the power diode, it almost increases linearly with the applied voltage as all the layers of P-I-N remain saturated with minority carriers under forward bias. Thus, a high value of current produces results in voltage drop which mask the exponential part of the curve. In reverse-bias condition, small leakage current flows due to minority carriers until the avalanche breakdown appears as shown in Fig. 3. Figure 4. Turn-Off Characteristics of Power Diode: a) Variation of Forward Current i f ; b) Variation of Forward Voltage Drop v f ; c) Variation of Power Loss After the forward diode comes to null, the diode continues to conduct in the opposite direction because of the presence of stored charges in the depletion layer and the p or n-layer. The diode current flows for a reverse-recovery time t rr. It is the time between the instant forward diode current becomes zero and the instant reverse-recovery current decays to 25 % of its reverse maximum value. Time T a : Charges stored in the depletion layer removed.

8 Time T b : Charges from the semiconductor layer is removed. Shaded area in Fig 4.a represents stored charges Q R which must be removed during reverse-recovery time t rr. Power loss across diode = v f * i f (shown in Fig. 4.c) As shown, major power loss in the diode occurs during the period t b. Recovery can be abrupt or smooth as shown in Fig. 5. To know it quantitatively, we can use the S factor. Ratio T b/t a : Softness factor or S-factor. S-factor: measure of the voltage transient that occurs during the time the diode recovers. S-factor = 1 low oscillatory reverse-recovery process. (Soft recovery diode) S-factor <1 large oscillatory over voltage (snappy-recovery diode or fast-recovery diode). Power diodes now exist with forward current rating of 1A to several thousand amperes with reverse-recovery voltage ratings of 50V to 5000V or more. Figure 5. Reverse-Recovery Characteristics for Power Diode Schottky Diode: It has an aluminum-silicon junction where the silicon is an n-type. As the metal has no holes, there is no stored charge and no reverse-recovery time. Therefore, there is only the movement of the majority carriers (electrons) and the turn-

9 off delay caused by recombination process is avoided. It can also switch off much faster than a p-n junction diode. As compared to the p-n junction diode it has: (a) Lower cut-in voltage (b) Higher reverse leakage current (c) Higher operating frequency Application: high-frequency instrumentation and switching power supplies. Figure 6. Schottky Diode Symbol and Current-Voltage Characteristics Curve Metal-Oxide Semiconductor Field-Effect Transistor (Power) MOSFET is a voltage-controlled majority carrier (or unipolar) three-terminal device. Its symbols are shown in Fig. 7 and Fig. 8. As compared to the simple lateral channel MOSFET for low-power signals, power MOSFET has different structure. It has a vertical channel structure where the source and the drain are on the opposite side of the silicon wafer as shown in Fig. 10. This opposite placement of the source and the drain increases the capability of the power MOSFET to handle larger power.

10 Figure 7. MOSFET Symbol Figure 8. MOSFET Symbols for Different Modes In all of these connections, substrates are internally connected. But in cases where it is connected externally, the symbol will change as shown in the n-channel enhancement type MOSFET in Fig. 9. N-channel enhancement type MOSFET is more common due to high mobility of electrons.

11 Figure 9. N-channel Enhancement-Type MOSFET with Substrate Connected Externally Figure 10. Cross-Sectional View of the Power MOSFET Basic circuit diagram and output characteristics of an n-channel enhancement power MOSFET with load connected are in Fig. 11 and Fig. 12 respectively.

12 Figure 11. Power MOSFET Structural View with Connections Drift region shown in Fig. 11 determines the voltage-blocking capability of the MOSFET. When V GS = 0, V DD makes it reverse biased and no current flows from drain to source. When V GS > 0, Electrons form the current path as shown in Fig. 11. Thus, current from the drain to the source flows. Now, if we will increase the gate-to-source voltage, drain current will also increase.

13 Figure 12. Drain Current (I D) vs Drain-to-Source Voltage (V DS) Characteristics Curves For lower value of V DS, MOSFET works in a linear region where it has a constant resistance equal to V DS / I D. For a fixed value of V GS and greater than threshold voltage V TH, MOSFET enters a saturation region where the value of the drain current has a fixed value. Figure 13. Output Characteristics with Load Line

14 If XY represents the load line, then the X-point represents the turn-off point and Y-point is the turn-on point where V DS = 0 (as voltage across the closed switch is zero). The direction of turning on and turning off process is also shown in Fig. 13. Besides the output characteristics curves, transfer characteristics of power MOSFET is also shown in Fig. 14. Figure 14. Gate-to-Source Voltage vs. Drain Current Characteristics for Power MOSFET Here, V TH is the minimum positive voltage between gate and the source above which MOSFET comes in on-state from the off-state. This is called threshold voltage. It is also shown in the output characteristics curve in Fig. 12. Close view of the structural diagram given in Fig. 11 reveals that there exists a fictitious BJT and a fictitious diode structure embedded in the power MOSFET as shown in Fig. 15. As source is connected to both base and emitter of this parasitic BJT, emitter and base of the BJT are short circuited. That means this BJT acts in cut-off state.

15 Figure 15. Fictitious BJT and Fictitious Diode in the Power MOSFET Fictitious diode anode is connected to the source and its cathode is connected to the drain. So, if we apply the negative voltage V DD across the drain and source, it will be forward biased. That means, the reverse-blocking capability of the MOSFET breaks. Thus, this can be used in inverter circuit for reactive loads without the need of excessive diode across a switch. Symbolically, it is represented in Fig. 16. Figure 16. MOSFET Representation with Internal Body Diode Although MOSFET internal body diode has sufficient current and switching speed for most of the applications, there may be some applications where the use of ultra-fast

16 diodes is required. In such cases, an external fast-recovery diode is connected in an antiparallel manner. But a slow-recovery diode is also required to block the body diode action as given in Fig. 17. Figure 17. Implementation of Fast-Recovery Diode for Power MOSFET One of the important parameters that affects the switching characteristics is the body capacitances existing between its three terminals i.e. drain, source and gate. Its representation is shown in Fig. 18.

17 Figure 18. MOSFET Representation Showing Junction Capacitances Parameters C GS, C GD and C DS are all non-linear in nature and given in the device s data sheet of a particular MOSFET. They also depend on the DC bias voltage and the device s structure or geometry. They must be charged through gate during turn-on process to actually turn on the MOSFET. The drive must be capable of charging and discharging these capacitances to switch on or switch off the MOSFET. Thus, the switching characteristics of a power MOSFET depend on these internal capacitances and the internal impedance of the gate drive circuits. Also, it depends on the delay due to the carrier transport through the drift region. Switching characteristics of power MOSFET are shown in Fig. 19 and Fig. 20.

18 Figure 19. Turn-on Characteristics of Power MOSFET There is a delay from t 0 to t 1 due to charging of input capacitance up to its threshold voltage V TH. Drain current in this duration remains at zero value. This is called a delay time. There is a further delay from t 1 to t 2 during which the gate voltage rises to V GS, a voltage required to drive the MOSFET into on-state. This is called the rise time. This total delay can be reduced by using a low-impedance drive circuit. The gate current during this duration decreases exponentially as shown. For the time greater than t 2, the drain current I D has reached its maximum constant value I. As drain current has reached the constant value, the gate-to-source voltage is also constant as shown in the transfer characteristics of MOSFET in Fig. 20.

19 Figure 20. Transfer Characteristics of Power MOSFET with Operating Point For turn-off characteristics, assume that the MOSFET is already in the switched-on situation with steady state. As t = t 0, gate voltage is reduced to zero value; C GS and C GD start to discharge through gate resistance R G. This causes a turn-off delay time up to t 1 from t 0 as shown in Fig. 21. Assuming the drain-to-source voltage remains fixed. During this duration, both V GSand I G decreases in magnitude, drain current remains at a fixed value drawing current from C GD and C GS.

20 Figure 21. Turn-Off Characteristics of Power MOSFET For the time where t 2 > t > t 1, gate-to-source voltage is constant. Thus, the entire current is now being drawn from C GD. Up to time t 3, the drain current will almost reach zero value; which turns off the MOSFET. This time is known as the fall time, this is when the input capacitance discharges up to the threshold value. Beyond t 3, gate voltage decreases exponentially to zero until the gate current becomes zero.

21 C. Power Bipolar Junction Transistor (BJT) Power BJT is used traditionally for many applications. However, IGBT (Insulated-Gate Bipolar Transistor) and MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) have replaced it for most of the applications but still they are used in some areas due to its lower saturation voltage over the operating temperature range. IGBT and MOSFET have higher input capacitance as compared to BJT. Thus, in case of IGBT and MOSFET, drive circuit must be capable to charge and discharge the internal capacitances. Figure 22. (a) NPN BJT (b) PNP BJT The BJT is a three-layer and two-junction npn or pnp semiconductor device as given in Fig. 22. (a) and (b). Although BJTs have lower input capacitance as compared to MOSFET or IGBT, BJTs are considerably slower in response due to low input impedance. BJTs use more silicon for the same drive performance. In the case of MOSFET studied earlier, power BJT is different in configuration as compared to simple planar BJT. In planar BJT, collector and emitter is on the same side of the wafer while in power BJT it is on the opposite edges as shown in Fig. 23. This is done to increase the power-handling capability of BJT.

22 Figure 23. Power BJT PNP Structure Power n-p-n transistors are widely used in high-voltage and high-current applications which will be discussed later. Input and output characteristics of planar BJT for common-emitter configuration are shown in Fig. 24. These are current-voltage characteristics curves.

23 Figure 24. Input Characteristics and Output Characteristics for the Common-Emitter Configuration of Planar BJT respectively Characteristic curves for power BJT is just the same except for the little difference in its saturation region. It has additional region of operation known as quasi-saturation as shown in Fig. 25. Figure 25. Power BJT Output Characteristics Curve This region appears due to the insertion of lightly-doped collector drift region where the collector base junction has a low reverse bias. The resistivity of this drift region is dependent on the value of the base current. In the quasi-saturation region, the value of ß decreases significantly. This is due to the increased value of the collector current with increased temperature. But the base current still has the control over the collector current due to the resistance offered by the drift region. If the transistor enters in hard saturation region, base current has no control over the collector current due to the absence of the drift region and mainly depends on the load and the value of V CC. A forward-biased p-n junction has two capacitances named depletion layer capacitance and diffused capacitance. While a reverse bias junction has only a depletion capacitance in action. Value of these capacitances depends on the junction voltage and construction of the transistor. These capacitances come into role during the transient operation i.e. switching operations. Due to these capacitances, transistor does not turn on or turn off instantly. Switching characteristics of power BJT is shown in Fig.26. As the positive base voltage is applied, base current starts to flow but there is no collector current for some time. This time is known as the delay time (t d) required to charge the junction capacitance of the base to emitter to 0.7 V approx. (known as forward-bias voltage). For t > t d, collector

24 current starts rising and V CE starts to drop with the magnitude of 9/10th of its peak value. This time is called rise time, required to turn on the transistor. The transistor remains on so long as the collector current is at least of this value. For turning off the BJT, polarity of the base voltage is reversed and thus the base current polarity will also be changed as shown in Fig. 26. The base current required during the steady-state operation is more than that required to saturate the transistor. Thus, excess minority carrier charges are stored in the base region which needs to be removed during the turn-off process. The time required to nullify this charge is the storage time, t s. Collector current remains at the same value for this time. After this, collector current starts decreasing and base-to-emitter junction charges to the negative polarity; base current also get reduced.

25 Figure 26. Turn-On and Turn-Off Characteristics of BJT Insulated-Gate Bipolar Transistor (IGBT)

26 IGBT combines the physics of both BJT and power MOSFET to gain the advantages of both worlds. It is controlled by the gate voltage. It has the high input impedance like a power MOSFET and has low on-state power loss as in case of BJT. There is no even secondary breakdown and not have long switching time as in case of BJT. It has better conduction characteristics as compared to MOSFET due to bipolar nature. It has no body diode as in case of MOSFET but this can be seen as an advantage to use external fast recovery diode for specific applications. They are replacing the MOSFET for most of the high voltage applications with less conduction losses. Its physical crosssectional structural diagram and equivalent circuit diagram is presented in Fig. 27 to Fig. 29. It has three terminals called collector, emitter and gate. Figure 27. IGBT Structure View There is a p+ substrate which is not present in the MOSFET and responsible for the minority carrier injection into the n-region. Gain of NPN terminal is reduced due to wide epitaxial base and n+ buffer layer. There are two structures of IGBTs based on doping of buffer layer: a) Punch-through IGBT: Heavily doped n buffer layer less switching time

27 b) Non-Punch-through IGBT: Lightly doped n buffer layer greater carrier lifetime increased conductivity of drift region reduced on-state voltage drop (Note: means implies) Figure 28. Equivalent Circuit for IGBT

28 Figure 29. Simplified Equivalent Circuit for IGBT

29 Figure 30. Circuit Diagram for IGBT Based on this circuit diagram given in Fig.30, forward characteristics and transfer characteristics are obtained which are given in Fig.31 and Fig.32. Its switching characteristic is also shown in Fig. 33.

30 Figure 31. Forward Characteristics for IGBT Figure 32. Transfer Characteristics of IGBT Figure 33. Turn-On and Turn-Off Characteristics of IGBT

31 (Note: T dn : delay time ; T r: rise time ; T df : delay time ; T f1: initial fall time ; T f2: final fall time) GTO (Gate Turn-off Thyristor) GTO can be turned on with the positive gate current pulse and turned off with the negative gate current pulse. Its capability to turn off is due to the diversion of PNP collector current by the gate and thus breaking the regenerative feedback effect. Actually the design of GTO is made in such a way that the pnp current gain of GTO is reduced. Highly doped n spots in the anode p layer form a shorted emitter effect and ultimately decreases the current gain of GTO for lower current regeneration and also the reverse voltage blocking capability. This reduction in reverse blocking capability can be improved by diffusing gold but this reduces the carrier lifetime. Moreover, it requires a special protection as shown in Fig. 43. Fig. 40 shows the four Si layers and the three junctions of GTO and Fig. 41 shows its practical form. The symbol for GTO is shown in Fig.42. Figure 40. Four Layers and Three Junctions of GTO

32 Figure 41. Practical Form of GTO Figure 42. Symbol of GTO Overall switching speed of GTO is faster than thyristor (SCR) but voltage drop of GTO is larger. The power range of GTO is better than BJT, IGBT or SCR. The static voltage current characteristics of GTO are similar to SCR except that the latching current of GTO is larger (about 2 A) as compared to SCR (around ma). The gate drive circuitry with switching characteristics is given in Fig. 43 and Fig. 44.

33 Figure 43. Gate Drive Circuit for GTO Figure 44. Turn-On and Turn-Off Characteristics of GTO

34 MODULE II Introduction to Switched mode regulators Switching regulator basics The basis of switch mode regulator revolves around the ability of inductors and capacitors to store energy. The capacitors and inductors are integral elements of the switch mode regulator technology. Capacitance If a current is applied to a capacitor, the capacitor gradually charges up and the voltage across it rises linearly at a rate equal to I/C where is the applied current and C is the capacitance. In this case the voltage across the capacitor cannot change instantly. When an instantaneous change in current occurs, the voltage changes linearly. [This assumes a current source with an infinite voltage capability is used].

35 Inductor: : For an inductor, it is not possible for there to be an instantaneous change in current. Instead, when a voltage is applied, the current builds up linearly over time at a rate equal to V/L where V is the applied voltage and L is the inductance. Using the standard equations it is possible to determine the current and voltage profiles: The energy from the rising current is stored in the magnetic field associated with the inductor. If the current flowing through the inductor is suddenly interrupted, the magnetic field reacts against this and produces a very high "back emf" to counteract the change. Having seen the fundamental or basic concepts behind switching voltages and currents to capacitors and inductors, these basic concepts can be applied to switch mode regulator solutions to provide a variety scenarios for voltage step up and step down circuits. As the technology uses switching techniques where the series element is on or off, this approach provides much better levels of efficiency than a linear where power is dissipated.

36 Capacitor based switch mode regulation The basic concept of the capacitor switched mode regulator is shown in the diagram. When the switch is closed, current is able to flow into the reservoir capacitor and provide charge. When the voltage on the capacitor is at is required level, the switch opens and the load will draw current from the capacitor. As the voltage falls, this will be sensed by the control circuitry and the series switch will be turned on again to bring the capacitor voltage up to the required level. This circuit is not as effective as may be thought at first sight. Although the only resistive element in the theoretical circuit is the load, this is not the only way in which energy is lost because charging a capacitor directly from a voltage source or a capacitor dissipates as much energy as is transferred to the capacitor. As a result of this, switching mode regulators cannot use capacitor switching techniques alone. Inductor based switch mode regulation It is also possible to use inductors as an element in switch mode regulators. The inductor can be used to transfer energy from one voltage source to another. While a simple resistor can be used as a dropper to drop voltage when transferring from one voltage source at a higher voltage to one at a lower voltage, this is very wasteful in terms of power. If an inductor is used, then all the energy is transferred, assuming a perfect inductor. The use of an inductor has the advantages that energy can be transferred from one source to another regardless of the respective values of voltage and their polarities. To achieve this the proper configuration is obviously required. When the switches are in the positions shown above, the voltage V1 is applied across the inductor and the current i1 builds up at a rate equal to V1/L. Therefore the peak value obtained will be proportional to the time the switches are in this position, i.e. (V1/L) x t

37 When the switches are reversed, the current will continue to flow at a rate i2 which is equal to -V2/L. As an ideal inductor dissipates no energy, there is no power loss in an ideal system using an inductor in this fashion. As a result, it is this method of energy transfer that forms the basis for all switching regulators. Buck-Boost Converter basics The buck-boost DC-DC converter offers a greater level of capability than the buck converter of boost converter individually, it as expected it extra components may be required to provide the level of functionality needed. There are several formats that can be used for buck-boost converters: +Vin, -Vout: This configuration of a buck-boost converter circuit uses the same number of components as the simple buck or boost converters. However this buck-boost regulator or DC- DC converter produces a negative output for a positive input. While this may be required or can be accommodated for a limited number of applications, it is not normally the most convenient format. When the switch in closed, current builds up through the inductor. When the switch is opened the inductor supplies current through the diode to the load. Obviously the polarities (including the diode) within the buck-boost converter can be reversed to provide a positive output voltage from a negative input voltage. +Vin, +Vout: The second buck-boost converter circuit allows both input and output to be the same polarity. However to achieve this, more components are required. The circuit for this buck boost converter is shown below.

38 In this circuit, both switches act together, i.e. both are closed or open. When the switches are open, the inductor current builds. At a suitable point, the switches are opened. The inductor then supplies current to the load through a path incorporating both diodes, D1 and D2. The buck boost converter is a DC to DC converter. The output voltage of the DC to DC converter is less than or greater than the input voltage. The output voltage of the magnitude depends on the duty cycle. These converters are also known as the step up and step down transformers and these names are coming from the analogous step up and step down transformer. The input voltages are step up/down to some level of more than or less than the input voltage. By using the low conversion energy, the input power is equal to the output power. The following expression shows the low of a conversion. Input power (Pin) = Output power (Pout) For the step up mode, the input voltage is less than the output voltage (Vin < Vout). It shows that the output current is less than the input current. Hence the buck booster is a step up mode. Vin < Vout and Iin > Iout In the step down mode the input voltage is greater than the output voltage (Vin > Vout). It follows that the output current is greater the input current. Hence the buck boost converter is a step down mode. Vin > Vout and Iin < Iout

39 What is a Buck Boost Converter? It is a type of DC to DC converter and it has a magnitude of output voltage. It may be more or less than equal to the input voltage magnitude. The buck boost converter is equal to the fly back circuit and single inductor is used in the place of the transformer. There are two types of converters in the buck boost converter that are buck converter and the other one is boost converter. These converters can produce the range of output voltage than the input voltage. The following diagram shows the basic buck boost converter. Buck Boost Converter Working principle of Buck Boost Converter The working operation of the DC to DC converter is the inductor in the input resistance has the unexpected variation in the input current. If the switch is ON then the inductor feed the energy from the input and it stores the energy of magnetic energy. If the switch is closed it discharges the energy. The output circuit of the capacitor is assumed as high sufficient than the time constant of an RC circuit is high on the output stage. The huge time constant is compared with the switching period and make sure that the steady state is a constant output voltage Vo(t) = Vo(constant) and present at the load terminal. There are two different types of working principles in the buck boost converter. Buck converter. Boost converter. Buck Converter Working The following diagram shows the working operation of the buck converter. In the buck converter first transistor is turned ON and second transistor is switched OFF due to high square wave frequency. If the gate terminal of the first transistor is more than the current

40 pass through the magnetic field, charging C, and it supplies the load. The D1 is the Schottky diode and it is turned OFF due to the positive voltage to the cathode. Working Buck Converter The inductor L is the initial source of current. If the first transistor is OFF by using the control unit then the current flow in the buck operation. The magnetic field of the inductor is collapsed and the back e.m.f is generated collapsing field turn around the polarity of the voltage across the inductor. The current flows in the diode D2, the load and the D1 diode will be turned ON. The discharge of the inductor L decreases with the help of the current. During the first transistor is in one state the charge of the accumulator in the capacitor. The current flows through the load and during the off period keeping Vout reasonably. Hence it keeps the minimum ripple amplitude and Vout closes to the value of Vs Boost Converter Working In this converter the first transistor is switched ON continually and for the second transistor the square wave of high frequency is applied to the gate terminal. The second transistor is in conducting when the on state and the input current flow from the inductor L through the second transistor. The negative terminal charging up the magnetic field around the inductor. The D2 diode cannot conduct because the anode is on the potential ground by highly conducting the second transistor.

41 Boost Converter Working By charging the capacitor C the load is applied to the entire circuit in the ON State and it can construct earlier oscillator cycles. During the ON period the capacitor C can discharge regularly and the amount of high ripple frequency on the output voltage. The approximate potential difference is given by the equation below. VS + VL During the OFF period of second transistor the inductor L is charged and the capacitor C is discharged. The inductor L can produce the back e.m.f and the values are depending up on the rate of change of current of the second transistor switch. The amount of inductance the coil can occupy. Hence the back e.m.f can produce any different voltage through a wide range and determined by the design of the circuit. Hence the polarity of voltage across the inductor L has reversed now. The input voltage gives the output voltage and atleast equal to or higher than the input voltage. The diode D2 is in forward biased and the current applied to the load current and it recharges the capacitors to VS + VL and it is ready for the second transistor. Modes Of Buck Boost Converters There are two different types of modes in the buck boost converter. The following are the two different types of buck boost converters. Continuous conduction mode. Discontinuous conduction mode. Continuous Conduction Mode

42 In the continuous conduction mode the current from end to end of inductor never goes to zero. Hence the inductor partially discharges earlier than the switching cycle. Discontinuous Conduction Mode In this mode the current through the inductor goes to zero. Hence the inductor will totally discharge at the end of switching cycles. Applications of Buck boost converter It is used in the self regulating power supplies. It has consumer electronics. It is used in the Battery power systems. Adaptive control applications. Power amplifier applications. Advantages of Buck Boost Converter It gives higher output voltage. Low operating duct cycle. Low voltage on MOSFETs Waveforms and expression of DC-DC converters for output voltage, voltage and current ripple under continuous conduction mode. Isolated converters - Flyback, Forward, Push Pull, Half Bridge and Full Bridge Converters - waveforms and governing equations. 6.3 TRANSFORMER ISOLATION In a large number of applications, it is desired to incorporate a transformer into a switching converter, to obtain dc isolation between the converter input and output. For example, in off-line applications (where the converter input is connected to the ac utility system), isolation is usually required by regulatory agencies. Isolation could be obtained in these cases by simply connecting a 50 Hz or 60 Hz transformer at the converter ac input. However, since transformer size and weight vary inversely with frequency, significant improvements can be made by incorporating the transformer into the converter, so that the transformer operates at the converter switching frequency of tens or hundreds of kilohertz. When a large step-up or step-down conversion ratio is required, the use of a transformer can allow better converter optimization. By proper choice of the transformer turns ratio, the voltage or current

43 stresses imposed on the transistors and diodes can be minimized, leading to improved efficiency and lower cost. Multiple dc outputs can also be obtained in an inexpensive manner, by adding multiple secondary windings and converter secondary-side circuits. The secondary turns ratios are chosen to obtain the desired output voltages. Usually only one output voltage can be regulated via control of the converter duty cycle, so wider tolerances must be allowed for the auxiliary output voltages. Cross-regularion is a measure of the variation in an auxiliary output voltage, given that the main output voltage is perfectly regulated [18-20]. A physical multiple-winding transformer having turns ratio n 1:n 2:n 3:... is illustrated in Fig. 6.17(a). A simple equivalent circuit is illustrated in Fig. 6.17(b), which is sufficient for understanding the operation of most transformer-isolated converters. The model assumes perfect coupling between windings and neglects losses; more accurate models are discussed in a later chapter. The ideal transformer obeys the relations v 1(t) v 2 (t) v 3(t) = = =... n 3 (6.16) n 1 n2 0 = n 1i 1(t)+n 2i 2 (t)+ n 3i 3 (t)+... In parallel with the ideal transformer is an inductance L M, called the magnetizing inductance, referred to the transformer primary in the figure.

44 Fig Simplified model of a multiple-winding transformer (a) schematic symbol, (b) equivalent circuit containing a magnetizing inductance and ideal transformer. Fig B-H characteristics of transformer core. Physical transformers must contain a magnetizing inductance. For example, suppose we disconnect all windings except for the primary winding. We are then left with a single winding on a magnetic core - an inductor. Indeed, the equivalent circuit of Fig. 6.17(b) predicts this behavior, via the magnetizing inductance. The magnetizing current i M(t) is proportional to the magnetic field H(t) inside the transformer core. The physical B-H characteristics of the transformer core material, illustrated in Fig. 6.18, govern the magnetizing current behavior. For example, if the magnetizing current i M(t) becomes too large, then the magnitude of the magnetic field H(t) causes the core to saturate. The magnetizing inductance then becomes very small in value, effectively shorting out the transformer. The presence of the magnetizing inductance explains why transformers do not work in dc circuits: at dc, the magnetizing inductance has zero impedance, and shorts out the windings. In a well-designed transformer, the impedance of the magnetizing inductance is large in magnitude over the intended range of operating frequencies, such that the magnetizing current i M(t) has much smaller magnitude than i l(t). Then i l (t) i l(t), and the transformer behaves nearly as an ideal transformer. It should be emphasized that the magnetizing current i M(t) and the primary winding current i l(t) are independent quantities. The magnetizing inductance must obey all of the usual rules for inductors. In the model of Fig. 6.17(b), the primary winding voltage v l(t) is applied across L M, and hence di M (t) v l (t) = L M (6.17) dt Integration leads to 1 i M (t) i M (0) = v l (τ )dτ (6.18) L M So the magnetizing current is determined by the integral of the applied winding voltage. The principle of inductor volt-second balance also applies: when the converter operates in steady-state, the dc component of voltage applied to the magnetizing inductance must be zero:

45 1 Ts 0 = v l (t)dt (6.19) T s 0 Since the magnetizing current is proportional to the integral of the applied winding voltage, it is important that the dc component of this voltage be zero. Otherwise, during each switching period there will be a net increase in magnetizing current, eventually leading to excessively large currents and transformer saturation. The operation of converters containing transformers may be understood by inserting the model of Fig. 6.17(b) in place of the transformer in the converter circuit. Analysis then proceeds as described in the previous chapters, treating the magnetizing inductance as any other inductor of the converter. Practical transformers must also contain leakage inductance. A small part of the flux linking a winding may not link the other windings. In the two-winding transformer, this phenomenon may be modeled with small inductors in series with the windings. In most isolated converters, leakage inductance is a nonideality that leads to switching loss, increased peak transistor voltage, and that degrades crossregulation, but otherwise has no influence on basic converter operation. There are several ways of incorporating transformer isolation into a dc-dc converter. The full-bridge, half-bridge, forward, and push-pull converters are commonly used isolated versions of the buck converter. Similar isolated variants of the boost converter are known. The flyback converter is an isolated version of the buck-boost converter. These isolated converters, as well as isolated versions of the SEPIC and the Cuk converter, are discussed in this section. Fig Full-bridge transformer-isolated buck converter: (a) schematic diagram, (b) replacement of transformer with equivalent circuit model.

46 6.3.1 Full Bridge and Half-Bridge Isolated Buck Converters The full-bridge transformer-isolated buck converter is sketched in Fig. 6.19(a). A version containing a center-tapped secondary winding is shown; this circuit is commonly used in converters producing low output voltages. The two halves of the center-tapped secondary winding may be viewed as separate windings, and hence we can treat this circuit element as a three-winding transformer having turns ratio 1:n:n. When the transformer is replaced by the equivalent circuit model of Fig. 6.17(b), the circuit of Fig. 6.19(b) is obtained. Typical waveforms are illustrated in Fig The output portion of the converter is similar to the nonisolated buck converter - compare the v s(t) and i(t) waveforms of Fig with Figs. 2.1(b) and Fig Waveforms of the full-bridge transformer-isolated buck converter. During the first subinterval 0 < t < DT s, transistors Q 1 and Q 4 conduct, and the transformer primary voltage is v T = V g. This positive voltage causes the magnetizing current i M(t) to increase with a slope of V g/l M. The voltage appearing across each half of the center-tapped secondary winding is nv g, with the polarity mark at positive potential. Diode D 5 is therefore forward-biased, and D 6 is reverse-biased. The voltage v s(t) is then equal to nv g, and the output filter inductor current i(t) flows through diode D 5. Several transistor control schemes are possible for the second subinterval DT s < t < T s. In the most common scheme, all four transistors are switched off, and hence the transformer voltage is v T = 0. Alternatively, transistors Q 2 and Q 4 could conduct, or transistors Q 1 and Q 3 could conduct. In any event, diodes D 5 and D 6 are both forward-biased during this subinterval; each diode conducts approximately one-half of the output filter inductor current.

47 Actually, the diode currents i D5 and i D6 during the second subinterval are functions of both the output inductor current and the transformer magnetizing current. In the ideal case (no magnetizing current), the transformer causes i D5(t) and i D6(t) to be equal in magnitude since, if i l (t) = 0, then ni D5(t)=ni D6(t). But the sum of the two diode currents is equal to the output inductor current: i D5(t)+ i D6(t) = i(t) (6.20) Therefore, it must be true that i D5 = i D6 = 0.5i during the second subinterval. In practice, the diode currents differ slightly from this result, because of the nonzero magnetizing current. The ideal transformer currents in Fig. 6.19(b) obey The node equation at the primary of the ideal transformer is i l '(t) ni D5 (t)+ i D6(t) = 0 (6.21) Elimination of i l'(t) from Eqs. (6.21) and (6.22) leads to i l (t) = i M (t) +i l '(t) = 0 (6.22) i l (t) ni D5 (t)+ ni D6(t) = i M (t) (6.23) Equations (6.23) and (6.20) describe, in the general case, the transformer winding currents during the second subinterval. According to Eq. (6.23), the magnetizing current i M(t) may flow through the primary winding, through one of the secondary windings, or it may divide between all three of these windings. How the division occurs depends on the i-v characteristics of the conducting transistors and diodes. In the case where i l = 0, the solution to Eqs. (6.20) and (6.23) is i D5(t) = i(t) i M (t) 1 1 i D6 (t) = i(t)+ i M (t) 2 2n Provided that i M << ni, then i D5 and i D6 are each approximately 0.5i. 1 2n (6.24) The next switching period, T s < t < 2T s, proceeds in a similar manner, except that the transformer is excited with voltage of the opposite polarity. During T s < t < (T s + DT s), transistors Q 2 and Q 3 and diode D 6 conduct. The applied transformer primary voltage is v T = -V g, which causes the magnetizing current to decrease with slope - V g/l M. The voltage v s(t) is equal to nv g, and the output inductor current i(t) flows through diode D 6. Diodes D 5 and D 6 again both conduct during (T s + DT s) < t < 2T s, with operation similar to subinterval 2 described previously. It can be seen that the switching ripple in the output filter elements has frequency f s = 1/T s. However, the transformer waveforms have frequency 0.5f s. By application of the principle of inductor volt-second balance to the magnetizing inductance, the average value of the transformer voltage v T(t) must be zero when the converter operates in steady state. During the first switching period, positive volt-seconds are applied to the transformer, approximately equal to (V g (Q 1 and Q 4 forward voltage drops))(q 1 and Q 4 conduction time) (6.25)

Power Semiconductor Devices

Power Semiconductor Devices TRADEMARK OF INNOVATION Power Semiconductor Devices Introduction This technical article is dedicated to the review of the following power electronics devices which act as solid-state switches in the circuits.

More information

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS Chapter 1 : Power Electronics Devices, Drivers, Applications, and Passive theinnatdunvilla.com - Google D Download Power Electronics: Devices, Drivers and Applications By B.W. Williams - Provides a wide

More information

Chapter 6: Converter circuits

Chapter 6: Converter circuits Chapter 6. Converter Circuits 6.1. Circuit manipulations 6.2. A short list of converters 6.3. Transformer isolation 6.4. Converter evaluation and design 6.5. Summary of key points Where do the boost, buck-boost,

More information

Power Electronics. P. T. Krein

Power Electronics. P. T. Krein Power Electronics Day 10 Power Semiconductor Devices P. T. Krein Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign 2011 Philip T. Krein. All rights reserved.

More information

Power Electronics Power semiconductor devices. Dr. Firas Obeidat

Power Electronics Power semiconductor devices. Dr. Firas Obeidat Power Electronics Power semiconductor devices Dr. Firas Obeidat 1 Table of contents 1 Introduction 2 Classifications of Power Switches 3 Power Diodes 4 Thyristors (SCRs) 5 The Triac 6 The Gate Turn-Off

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

SCR- SILICON CONTROLLED RECTIFIER

SCR- SILICON CONTROLLED RECTIFIER SCR- SILICON CONTROLLED RECTIFIER Definition: When a pn junction is added to a junction transistor, the resulting three pn junction device is called a silicon controlled rectifier. SCR can change alternating

More information

Lecture 19 - Single-phase square-wave inverter

Lecture 19 - Single-phase square-wave inverter Lecture 19 - Single-phase square-wave inverter 1. Introduction Inverter circuits supply AC voltage or current to a load from a DC supply. A DC source, often obtained from an AC-DC rectifier, is converted

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder pn junction! Junction diode consisting of! p-doped silicon! n-doped silicon! A p-n junction where

More information

Solid State Devices- Part- II. Module- IV

Solid State Devices- Part- II. Module- IV Solid State Devices- Part- II Module- IV MOS Capacitor Two terminal MOS device MOS = Metal- Oxide- Semiconductor MOS capacitor - the heart of the MOSFET The MOS capacitor is used to induce charge at the

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics F2 Active power devices»mos»bjt» IGBT, TRIAC» Safe Operating Area» Thermal analysis 30/05/2012-1 ATLCE - F2-2011 DDC Lesson F2:

More information

Lecture 23 Review of Emerging and Traditional Solid State Switches

Lecture 23 Review of Emerging and Traditional Solid State Switches Lecture 23 Review of Emerging and Traditional Solid State Switches 1 A. Solid State Switches 1. Circuit conditions and circuit controlled switches A. Silicon Diode B. Silicon Carbide Diodes 2. Control

More information

Lecture 3: Transistors

Lecture 3: Transistors Lecture 3: Transistors Now that we know about diodes, let s put two of them together, as follows: collector base emitter n p n moderately doped lightly doped, and very thin heavily doped At first glance,

More information

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s. UNIT-I FIELD EFFECT TRANSISTOR 1. Explain about the Field Effect Transistor and also mention types of FET s. The Field Effect Transistor, or simply FET however, uses the voltage that is applied to their

More information

Switching and Semiconductor Switches

Switching and Semiconductor Switches 1 Switching and Semiconductor Switches 1.1 POWER FLOW CONTROL BY SWITCHES The flow of electrical energy between a fixed voltage supply and a load is often controlled by interposing a controller, as shown

More information

CHAPTER I INTRODUCTION

CHAPTER I INTRODUCTION CHAPTER I INTRODUCTION High performance semiconductor devices with better voltage and current handling capability are required in different fields like power electronics, computer and automation. Since

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Inclusion of Switching Loss in the Averaged Equivalent Circuit Model The methods of Chapter 3 can

More information

Module 04.(B1) Electronic Fundamentals

Module 04.(B1) Electronic Fundamentals 1.1a. Semiconductors - Diodes. Module 04.(B1) Electronic Fundamentals Question Number. 1. What gives the colour of an LED?. Option A. The active element. Option B. The plastic it is encased in. Option

More information

Electrical Engineering EE / EEE. Postal Correspondence Course. Power Electronics. GATE, IES & PSUs

Electrical Engineering EE / EEE. Postal Correspondence Course. Power Electronics. GATE, IES & PSUs Power Electronics-EE GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Electrical Engineering EE / EEE Postal Correspondence Course Power Electronics GATE, IES & PSUs Power Electronics-EE GATE, IES, PSU 2 C O N T

More information

CHAPTER 1 DIODE CIRCUITS. Semiconductor act differently to DC and AC currents

CHAPTER 1 DIODE CIRCUITS. Semiconductor act differently to DC and AC currents CHAPTER 1 DIODE CIRCUITS Resistance levels Semiconductor act differently to DC and AC currents There are three types of resistances 1. DC or static resistance The application of DC voltage to a circuit

More information

3. Draw the two transistor model of a SCR and mention its applications. (MAY 2016)

3. Draw the two transistor model of a SCR and mention its applications. (MAY 2016) DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6503 POWER ELECTRONICS UNIT I- POWER SEMI-CONDUCTOR DEVICES PART - A 1. What is a SCR? A silicon-controlled rectifier

More information

Analog Electronic Circuits

Analog Electronic Circuits Analog Electronic Circuits Chapter 1: Semiconductor Diodes Objectives: To become familiar with the working principles of semiconductor diode To become familiar with the design and analysis of diode circuits

More information

Section 2.3 Bipolar junction transistors - BJTs

Section 2.3 Bipolar junction transistors - BJTs Section 2.3 Bipolar junction transistors - BJTs Single junction devices, such as p-n and Schottkty diodes can be used to obtain rectifying I-V characteristics, and to form electronic switching circuits

More information

Emitter base bias. Collector base bias Active Forward Reverse Saturation forward Forward Cut off Reverse Reverse Inverse Reverse Forward

Emitter base bias. Collector base bias Active Forward Reverse Saturation forward Forward Cut off Reverse Reverse Inverse Reverse Forward SEMICONDUCTOR PHYSICS-2 [Transistor, constructional characteristics, biasing of transistors, transistor configuration, transistor as an amplifier, transistor as a switch, transistor as an oscillator] Transistor

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 6.3.5. Boost-derived isolated converters A wide variety of boost-derived isolated dc-dc converters

More information

Experiment (1) Principles of Switching

Experiment (1) Principles of Switching Experiment (1) Principles of Switching Introduction When you use microcontrollers, sometimes you need to control devices that requires more electrical current than a microcontroller can supply; for this,

More information

EEL 5245 POWER ELECTRONICS I Lecture #4: Chapter 2 Switching Concepts and Semiconductor Overview

EEL 5245 POWER ELECTRONICS I Lecture #4: Chapter 2 Switching Concepts and Semiconductor Overview EEL 5245 POWER ELECTRONICS I Lecture #4: Chapter 2 Switching Concepts and Semiconductor Overview Objectives of Lecture Switch realizations Objective is to focus on terminal characteristics Blocking capability

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

Field Effect Transistors (npn)

Field Effect Transistors (npn) Field Effect Transistors (npn) gate drain source FET 3 terminal device channel e - current from source to drain controlled by the electric field generated by the gate base collector emitter BJT 3 terminal

More information

Power semiconductors. José M. Cámara V 1.0

Power semiconductors. José M. Cámara V 1.0 Power semiconductors José M. Cámara V 1.0 Introduction Here we are going to study semiconductor devices used in power electronics. They work under medium and high currents and voltages. Some of them only

More information

ELG3336: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives!

ELG3336: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives! ELG3336: Power Electronics Systems Objective To Realize and Design arious Power Supplies and Motor Drives! Power electronics refers to control and conversion of electrical power by power semiconductor

More information

AE103 ELECTRONIC DEVICES & CIRCUITS DEC 2014

AE103 ELECTRONIC DEVICES & CIRCUITS DEC 2014 Q.2 a. State and explain the Reciprocity Theorem and Thevenins Theorem. a. Reciprocity Theorem: If we consider two loops A and B of network N and if an ideal voltage source E in loop A produces current

More information

Fundamentals of Power Semiconductor Devices

Fundamentals of Power Semiconductor Devices В. Jayant Baliga Fundamentals of Power Semiconductor Devices 4y Spri ringer Contents Preface vii Chapter 1 Introduction 1 1.1 Ideal and Typical Power Switching Waveforms 3 1.2 Ideal and Typical Power Device

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-1 Transistor

More information

FET(Field Effect Transistor)

FET(Field Effect Transistor) Field Effect Transistor: Construction and Characteristic of JFETs. Transfer Characteristic. CS,CD,CG amplifier and analysis of CS amplifier MOSFET (Depletion and Enhancement) Type, Transfer Characteristic,

More information

NAME: Last First Signature

NAME: Last First Signature UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

More information

ELG4139: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives!

ELG4139: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives! ELG4139: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives! Power electronics refers to control and conversion of electrical power by power semiconductor

More information

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3.

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3. Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3. What is difference between electron and hole? 4. Why electrons have

More information

AN Analog Power USA Applications Department

AN Analog Power USA Applications Department Using MOSFETs for Synchronous Rectification The use of MOSFETs to replace diodes to reduce the voltage drop and hence increase efficiency in DC DC conversion circuits is a concept that is widely used due

More information

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press UNIT-1 Bipolar Junction Transistors Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press Figure 6.1 A simplified structure of the npn transistor. Microelectronic Circuits, Sixth

More information

Lecture Note on Switches Marc T. Thompson, 2003 Revised Use with gratefulness for ECE 3503 B term 2018 WPI Tan Zhang

Lecture Note on Switches Marc T. Thompson, 2003 Revised Use with gratefulness for ECE 3503 B term 2018 WPI Tan Zhang Lecture Note on Switches Marc T. Thompson, 2003 Revised 2007 Use with gratefulness for ECE 3503 B term 2018 WPI Tan Zhang Lecture note on switches_tan_thompsonpage 1 of 21 1. DEVICES OVERVIEW... 4 1.1.

More information

Chapter 8. Field Effect Transistor

Chapter 8. Field Effect Transistor Chapter 8. Field Effect Transistor Field Effect Transistor: The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There

More information

2 Marks - Question Bank. Unit 1- INTRODUCTION

2 Marks - Question Bank. Unit 1- INTRODUCTION Two marks 1. What is power electronics? EE6503 POWER ELECTRONICS 2 Marks - Question Bank Unit 1- INTRODUCTION Power electronics is a subject that concerns the applications electronics principles into situations

More information

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET) FIELD EFFECT TRANSISTOR (FET) The field-effect transistor (FET) is a three-terminal device used for a variety of applications that match, to a large extent, those of the BJT transistor. Although there

More information

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor transistors for logic and memory. Reading: Kasap

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor transistors for logic and memory. Reading: Kasap MTLE-6120: Advanced Electronic Properties of Materials 1 Semiconductor transistors for logic and memory Reading: Kasap 6.6-6.8 Vacuum tube diodes 2 Thermionic emission from cathode Electrons collected

More information

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

UNIT I POWER SEMI-CONDUCTOR DEVICES

UNIT I POWER SEMI-CONDUCTOR DEVICES UNIT I POWER SEMI-CONDUCTOR DEVICES SUBJECT CODE SUBJECT NAME STAFF NAME : EE6503 : Power Electronics : Ms.M.Uma Maheswari 1 SEMICONDUCTOR DEVICES POWER DIODE POWER TRANSISTORS POWER BJT POWER MOSFET IGBT

More information

Lecture - 18 Transistors

Lecture - 18 Transistors Electronic Materials, Devices and Fabrication Dr. S. Prarasuraman Department of Metallurgical and Materials Engineering Indian Institute of Technology, Madras Lecture - 18 Transistors Last couple of classes

More information

UNIT 3 Transistors JFET

UNIT 3 Transistors JFET UNIT 3 Transistors JFET Mosfet Definition of BJT A bipolar junction transistor is a three terminal semiconductor device consisting of two p-n junctions which is able to amplify or magnify a signal. It

More information

Lecture 2 - Overview of power switching devices. The Power Switch: what is a good power switch?

Lecture 2 - Overview of power switching devices. The Power Switch: what is a good power switch? Lecture 2 - Overview of power switching devices The Power Switch: what is a good power switch? A K G Attributes of a good power switch are: 1. No power loss when ON 2. No power loss when OFF 3. No power

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

More information

I E I C since I B is very small

I E I C since I B is very small Figure 2: Symbols and nomenclature of a (a) npn and (b) pnp transistor. The BJT consists of three regions, emitter, base, and collector. The emitter and collector are usually of one type of doping, while

More information

CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES

CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES Chapter-3 CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES This chapter is based on the published articles, 1. Nitai Pal, Pradip Kumar Sadhu, Dola Sinha and Atanu Bandyopadhyay, Selection

More information

Dr.Arkan A.Hussein Power Electronics Fourth Class. Commutation of Thyristor-Based Circuits Part-I

Dr.Arkan A.Hussein Power Electronics Fourth Class. Commutation of Thyristor-Based Circuits Part-I Commutation of Thyristor-Based Circuits Part-I ١ This lesson provides the reader the following: (i) (ii) (iii) (iv) Requirements to be satisfied for the successful turn-off of a SCR The turn-off groups

More information

Bipolar Junction Transistors (BJTs) Overview

Bipolar Junction Transistors (BJTs) Overview 1 Bipolar Junction Transistors (BJTs) Asst. Prof. MONTREE SIRIPRUCHYANUN, D. Eng. Dept. of Teacher Training in Electrical Engineering, Faculty of Technical Education King Mongkut s Institute of Technology

More information

(Refer Slide Time: 02:05)

(Refer Slide Time: 02:05) Electronics for Analog Signal Processing - I Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Lecture 27 Construction of a MOSFET (Refer Slide Time:

More information

Diode Bridges. Book page

Diode Bridges. Book page Diode Bridges Book page 450-454 Rectification The process of converting an ac supply into dc is called rectification The device that carries this out is called a rectifier Half wave rectifier only half

More information

Today s subject MOSFET and IGBT

Today s subject MOSFET and IGBT Today s subject MOSFET and IGBT 2018-05-22 MOSFET metal oxide semiconductor field effect transistor Drain Gate n-channel Source p-channel The MOSFET - Source Gate G D n + p p n + S body body n - drift

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

14.2 Photodiodes 411

14.2 Photodiodes 411 14.2 Photodiodes 411 Maximum reverse voltage is specified for Ge and Si photodiodes and photoconductive cells. Exceeding this voltage can cause the breakdown and severe deterioration of the sensor s performance.

More information

Insulated Gate Bipolar Transistor (IGBT)

Insulated Gate Bipolar Transistor (IGBT) nsulated Gate Bipolar Transistor (GBT) Comparison between BJT and MOS power devices: BJT MOS pros cons pros cons low V O thermal instability thermal stability high R O at V MAX > 400 V high C current complex

More information

Power Amplifiers. Class A Amplifier

Power Amplifiers. Class A Amplifier Power Amplifiers The Power amplifiers amplify the power level of the signal. This amplification is done in the last stage in audio applications. The applications related to radio frequencies employ radio

More information

Basic Electronics: Diodes and Transistors. October 14, 2005 ME 435

Basic Electronics: Diodes and Transistors. October 14, 2005 ME 435 Basic Electronics: Diodes and Transistors Eşref Eşkinat E October 14, 2005 ME 435 Electric lectricity ity to Electronic lectronics Electric circuits are connections of conductive wires and other devices

More information

CHAPTER 7 HARDWARE IMPLEMENTATION

CHAPTER 7 HARDWARE IMPLEMENTATION 168 CHAPTER 7 HARDWARE IMPLEMENTATION 7.1 OVERVIEW In the previous chapters discussed about the design and simulation of Discrete controller for ZVS Buck, Interleaved Boost, Buck-Boost, Double Frequency

More information

Shankersinh Vaghela Bapu Institute of Technology INDEX

Shankersinh Vaghela Bapu Institute of Technology INDEX Shankersinh Vaghela Bapu Institute of Technology Diploma EE Semester III 3330905: ELECTRONIC COMPONENTS AND CIRCUITS INDEX Sr. No. Title Page Date Sign Grade 1 Obtain I-V characteristic of Diode. 2 To

More information

Fundamentals of Power Electronics

Fundamentals of Power Electronics Fundamentals of Power Electronics SECOND EDITION Robert W. Erickson Dragan Maksimovic University of Colorado Boulder, Colorado Preface 1 Introduction 1 1.1 Introduction to Power Processing 1 1.2 Several

More information

How to Design an R g Resistor for a Vishay Trench PT IGBT

How to Design an R g Resistor for a Vishay Trench PT IGBT VISHAY SEMICONDUCTORS www.vishay.com Rectifiers By Carmelo Sanfilippo and Filippo Crudelini INTRODUCTION In low-switching-frequency applications like DC/AC stages for TIG welding equipment, the slow leg

More information

Physics 160 Lecture 5. R. Johnson April 13, 2015

Physics 160 Lecture 5. R. Johnson April 13, 2015 Physics 160 Lecture 5 R. Johnson April 13, 2015 Half Wave Diode Rectifiers Full Wave April 13, 2015 Physics 160 2 Note that there is no ground connection on this side of the rectifier! Output Smoothing

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) Summer 2016 EXAMINATIONS.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) Summer 2016 EXAMINATIONS. Summer 2016 EXAMINATIONS Subject Code: 17321 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the answer scheme. 2) The

More information

In addition to the power circuit a commercial power supply will require:

In addition to the power circuit a commercial power supply will require: Power Supply Auxiliary Circuits In addition to the power circuit a commercial power supply will require: -Voltage feedback circuits to feed a signal back to the error amplifier which is proportional to

More information

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY)

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) QUESTION BANK I YEAR B.Tech (II Semester) ELECTRONIC DEVICES (COMMON FOR EC102, EE104, IC108, BM106) UNIT-I PART-A 1. What are intrinsic and

More information

6.012 Microelectronic Devices and Circuits

6.012 Microelectronic Devices and Circuits Page 1 of 13 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Microelectronic Devices and Circuits Final Eam Closed Book: Formula sheet provided;

More information

Chapter 1 Power Electronic Devices

Chapter 1 Power Electronic Devices Chapter 1 Power Electronic Devices Outline 1.1 An introductory overview of power electronic devices 1.2 Uncontrolled device power diode 1.3 Half- controlled device thyristor 1.4 Typical fully- controlled

More information

Zero Voltage Switching In Practical Active Clamp Forward Converter

Zero Voltage Switching In Practical Active Clamp Forward Converter Zero Voltage Switching In Practical Active Clamp Forward Converter Laishram Ritu VTU; POWER ELECTRONICS; India ABSTRACT In this paper; zero voltage switching in active clamp forward converter is investigated.

More information

ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline:

ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline: ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline: Narrow-Base Diode BJT Fundamentals BJT Amplification Things you should know when you leave Key Questions How does the narrow-base diode multiply

More information

Elements of Power Electronics PART II: Topologies and applications

Elements of Power Electronics PART II: Topologies and applications Elements of Power Electronics PART II: Topologies and applications Fabrice Frébel (fabrice.frebel@ulg.ac.be) September 2 st, 207 PART II: Topologies and applications Chapter 6: Converter Circuits Applications

More information

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Current Transport: Diffusion, Thermionic Emission & Tunneling For Diffusion current, the depletion layer is

More information

An introduction to Depletion-mode MOSFETs By Linden Harrison

An introduction to Depletion-mode MOSFETs By Linden Harrison An introduction to Depletion-mode MOSFETs By Linden Harrison Since the mid-nineteen seventies the enhancement-mode MOSFET has been the subject of almost continuous global research, development, and refinement

More information

Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras

Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Lecture 38 Unit junction Transistor (UJT) (Characteristics, UJT Relaxation oscillator,

More information

Power Electronics. Prof. B. G. Fernandes. Department of Electrical Engineering. Indian Institute of Technology, Bombay.

Power Electronics. Prof. B. G. Fernandes. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Power Electronics Prof. B. G. Fernandes Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 28 So far we have studied 4 different DC to DC converters. They are; first

More information

Power Electronics (Sample Questions) Module-1

Power Electronics (Sample Questions) Module-1 Module-1 Short Questions (Previous Years BPUT Questions 1 to 18) 1. What are the conditions for a thyristor to conduct? di 2. What is the common method used for protection? dt 3. What is the importance

More information

Flyback Converter for High Voltage Capacitor Charging

Flyback Converter for High Voltage Capacitor Charging Flyback Converter for High Voltage Capacitor Charging Tony Alfrey (tonyalfrey at earthlink dot net) A Flyback Converter is a type of switching power supply that may be used to generate an output voltage

More information

FET Channel. - simplified representation of three terminal device called a field effect transistor (FET)

FET Channel. - simplified representation of three terminal device called a field effect transistor (FET) FET Channel - simplified representation of three terminal device called a field effect transistor (FET) - overall horizontal shape - current levels off as voltage increases - two regions of operation 1.

More information

Teccor brand Thyristors AN1001

Teccor brand Thyristors AN1001 A1001 Introduction The Thyristor family of semiconductors consists of several very useful devices. The most widely used of this family are silicon controlled rectifiers (SCRs), Triacs, SIDACs, and DIACs.

More information

Mechatronics and Measurement. Lecturer:Dung-An Wang Lecture 2

Mechatronics and Measurement. Lecturer:Dung-An Wang Lecture 2 Mechatronics and Measurement Lecturer:Dung-An Wang Lecture 2 Lecture outline Reading:Ch3 of text Today s lecture Semiconductor 2 Diode 3 4 Zener diode Voltage-regulator diodes. This family of diodes exhibits

More information

Unit III FET and its Applications. 2 Marks Questions and Answers

Unit III FET and its Applications. 2 Marks Questions and Answers Unit III FET and its Applications 2 Marks Questions and Answers 1. Why do you call FET as field effect transistor? The name field effect is derived from the fact that the current is controlled by an electric

More information

QUESTION BANK EC6201 ELECTRONIC DEVICES UNIT I SEMICONDUCTOR DIODE PART A. It has two types. 1. Intrinsic semiconductor 2. Extrinsic semiconductor.

QUESTION BANK EC6201 ELECTRONIC DEVICES UNIT I SEMICONDUCTOR DIODE PART A. It has two types. 1. Intrinsic semiconductor 2. Extrinsic semiconductor. FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai - 625 020. [An ISO 9001:2008 Certified Institution] QUESTION BANK EC6201 ELECTRONIC DEVICES SEMESTER:

More information

Pre-certification Electronics Questions. Answer the following with the MOST CORRECT answer.

Pre-certification Electronics Questions. Answer the following with the MOST CORRECT answer. Electronics Questions Answer the following with the MOST CORRECT answer. 1. The cathode end terminal of a semiconductor diode can be identified by: a. the negative sign marked on the case b. a circular

More information

THE JFET. Script. Discuss the JFET and how it differs from the BJT. Describe the basic structure of n-channel and p -channel JFETs

THE JFET. Script. Discuss the JFET and how it differs from the BJT. Describe the basic structure of n-channel and p -channel JFETs Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: Ist Year, Sem - IInd Subject: Electronics Paper No.: V Paper Title: Analog Circuits Lecture No.: 12 Lecture Title: Analog Circuits

More information

Fig.1. A Block Diagram of dc-dc Converter System

Fig.1. A Block Diagram of dc-dc Converter System ANALYSIS AND SIMULATION OF BUCK SWITCH MODE DC TO DC POWER REGULATOR G. C. Diyoke Department of Electrical and Electronics Engineering Michael Okpara University of Agriculture, Umudike Umuahia, Abia State

More information

IGBTs (Insulated Gate Bipolar Transistor)

IGBTs (Insulated Gate Bipolar Transistor) IGBTs (Insulated Gate Bipolar Transistor) Description This document describes the basic structures, ratings, and electrical characteristics of IGBTs. It also provides usage considerations for IGBTs. 1

More information

EC T34 ELECTRONIC DEVICES AND CIRCUITS

EC T34 ELECTRONIC DEVICES AND CIRCUITS RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY PONDY-CUDDALORE MAIN ROAD, KIRUMAMPAKKAM-PUDUCHERRY DEPARTMENT OF ECE EC T34 ELECTRONIC DEVICES AND CIRCUITS II YEAR Mr.L.ARUNJEEVA., AP/ECE 1 PN JUNCTION

More information

Appendix: Power Loss Calculation

Appendix: Power Loss Calculation Appendix: Power Loss Calculation Current flow paths in a synchronous buck converter during on and off phases are illustrated in Fig. 1. It has to be noticed that following parameters are interrelated:

More information

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams.

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams. POWER ELECTRONICS QUESTION BANK Unit 1: Introduction 1. Explain the control characteristics of SCR and GTO with circuit diagrams, and waveforms of control signal and output voltage. 2. Explain the different

More information

TRANSISTOR SWITCHING WITH A REACTIVE LOAD

TRANSISTOR SWITCHING WITH A REACTIVE LOAD TRANSISTOR SWITCHING WITH A REACTIVE LOAD (Old ECE 311 note revisited) Electronic circuits inevitably involve reactive elements, in some cases intentionally but always at least as significant parasitic

More information

COOPERATIVE PATENT CLASSIFICATION

COOPERATIVE PATENT CLASSIFICATION CPC H H02 COOPERATIVE PATENT CLASSIFICATION ELECTRICITY (NOTE omitted) GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER H02M APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN

More information

The silicon controlled rectifier (SCR)

The silicon controlled rectifier (SCR) The silicon controlled rectifier (SCR) Shockley diodes are curious devices, but rather limited in application. Their usefulness may be expanded, however, by equipping them with another means of latching.

More information

MOSFET as a Switch. MOSFET Characteristics Curves

MOSFET as a Switch. MOSFET Characteristics Curves MOSFET as a Switch MOSFET s make very good electronic switches for controlling loads and in CMOS digital circuits as they operate between their cut-off and saturation regions. We saw previously, that the

More information

DESIGN OF TAPPED INDUCTOR BASED BUCK-BOOST CONVERTER FOR DC MOTOR

DESIGN OF TAPPED INDUCTOR BASED BUCK-BOOST CONVERTER FOR DC MOTOR DESIGN OF TAPPED INDUCTOR BASED BUCK-BOOST CONVERTER FOR DC MOTOR 1 Arun.K, 2 Lingeshwaran.J, 3 C.Yuvraj, 4 M.Sudhakaran 1,2 Department of EEE, GTEC, Vellore. 3 Assistant Professor/EEE, GTEC, Vellore.

More information

S. General Topological Properties of Switching Structures, IEEE Power Electronics Specialists Conference, 1979 Record, pp , June 1979.

S. General Topological Properties of Switching Structures, IEEE Power Electronics Specialists Conference, 1979 Record, pp , June 1979. Problems 179 [22] [23] [24] [25] [26] [27] [28] [29] [30] J. N. PARK and T. R. ZALOUM, A Dual Mode Forward/Flyback Converter, IEEE Power Electronics Specialists Conference, 1982 Record, pp. 3-13, June

More information