50 GHz to 95 GHz, GaAs, phemt, MMIC, Wideband Power Amplifier ADPA7001CHIPS

Size: px
Start display at page:

Download "50 GHz to 95 GHz, GaAs, phemt, MMIC, Wideband Power Amplifier ADPA7001CHIPS"

Transcription

1 FEATURES Gain:.5 db typical at 5 GHz to 7 GHz S11: db typical at 5 GHz to 7 GHz S: 19 db typical at 5 GHz to 7 GHz P1dB: 17 dbm typical at 5 GHz to 7 GHz PSAT: 1 dbm typical OIP3: 5 dbm typical at 7 GHz to 9 GHz Supply voltage: 3.5 V at 35 ma 5 Ω matched input/output Die size:.5 mm 3.3 mm.5 mm APPLICATIONS Test instrumentation Military and space Telecommunications infrastructure 5 GHz to 95 GHz, GaAs, phemt, MMIC, Wideband Power Amplifier 1 RFIN FUNCTIONAL BLOCK DIAGRAM V GG A V DD 1A V DD A V GG 3A V DD 3A V DD A RFOUT GENERAL DESCRIPTION The is a gallium arsenide (GaAs), pseudomorphic high electron mobility transistor (phemt), monolithic microwave integrated circuit (MMIC), balanced medium power amplifier, with an integrated temperature compensated on-chip power detector that operates from 5 GHz to 95 GHz. In the lower band of 5 GHz to 7 GHz, the provides.5 db (typical) of gain, 5.5 dbm output third-order intercept (OIP3), and 17 dbm of output power for 1 db gain compression. In V GG B V DD 1B V DD B V GG 3B V DD 3B V DD B V REF V DET Figure 1. the upper band of 7 GHz to 9 GHz, the provides db (typical) of gain, 5 dbm output IP3, and 17.5 dbm of output power for 1 db gain compression. The requires 35 ma from a 3.5 V supply. The amplifier inputs/outputs are internally matched to 5 Ω, facilitating integration into multichip modules (MCMs). All data is taken with the chip connected via one.7 mm (3 mil) ribbon bond of.7 mm (3 mil) minimal length Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9, Norwood, MA -9, U.S.A. Tel: Analog Devices, Inc. All rights reserved. Technical Support

2 TABLE OF CONTENTS Features... 1 Applications... 1 Functional Block Diagram... 1 General Description... 1 Revision History... Specifications GHz to 7 GHz Frequency Range GHz to 9 GHz Frequency Range GHz to 95 GHz Frequency Range... Absolute Maximum Ratings... 5 Thermal Resistance... 5 ESD Caution... 5 Pin Configuration and Function Descriptions... Interface Schematics...7 Typical Performance Characteristics... Theory of Operation Applications Information... Mounting and Bonding Techniques for Millimeterwave GaAs MMICs... Typical Application Circuit... Assembly Diagram Outline Dimensions... 1 Ordering Guide... 1 REVISION HISTORY 3/19 Rev. to Rev. A Changes to Figure... /1 Revision : Initial Version Rev. A Page of 1

3 SPECIFICATIONS 5 GHz TO 7 GHz FREQUENCY RANGE TDIE BOTTOM = 5 C, VDD = VDD1A = VDDA = VDD3A = VDDA = 3.5 V and supply current (IDQ) = IDQ1A + IDQA + IDQ3A + IDQA = 35 ma, unless otherwise noted. Adjust VGG = VGGA = VGG3A from 1.5 V to V to achieve the desired IDQ. Typical VGG =.5 V for IDQ = 35 ma. Table 1. Parameter Symbol Min Typ Max Unit Test Conditions/Comments FREQUENCY RANGE 5 7 GHz GAIN.5.5 db Gain Variation over Temperature. db/ C RETURN LOSS Input S11 db Output S 19 db OUTPUT Output Power for 1 db Compression P1dB dbm Saturated Output Power PSAT 1 dbm Output Third-Order Intercept OIP3 5.5 dbm Output power (POUT) per tone = dbm with 1 MHz tone spacing INPUT Input Third-Order Intercept IIP dbm POUT per tone = dbm with 1 MHz tone spacing SUPPLY Current IDQ 35 ma Adjust VGG to achieve IDQ = 35 ma typical Voltage VDD V 7 GHz TO 9 GHz FREQUENCY RANGE TDIE BOTTOM = 5 C, VDD = VDD1A = VDDA = VDD3A = VDDA = 3.5 V and IDQ = IDQ1A + IDQA + IDQ3A + IDQA = 35 ma, unless otherwise noted. Adjust VGG = VGGA = VGG3A from 1.5 V to V to achieve the desired IDQ. Typical VGG =.5 V for IDQ = 35 ma. Table. Parameter Symbol Min Typ Max Unit Test Conditions/Comments FREQUENCY RANGE 7 9 GHz GAIN db Gain Variation over Temperature. db/ C RETURN LOSS Input S11 1 db Output S 13 db OUTPUT Output Power for 1 db Compression P1dB 17.5 dbm Saturated Output Power PSAT 1 dbm Output Third-Order Intercept OIP3 5 dbm POUT per tone = dbm with 1 MHz tone spacing INPUT Input Third-Order Intercept IIP3 11 dbm POUT per tone = dbm with 1 MHz tone spacing SUPPLY Current IDQ 35 ma Adjust VGG to achieve IDQ = 35 ma typical Voltage VDD V Rev. A Page 3 of 1

4 9 GHz TO 95 GHz FREQUENCY RANGE TDIE BOTTOM = 5 C, VDD = VDD1A = VDDA = VDD3A = VDDA = 3.5 V, and IDQ = IDQ1A + IDQA + IDQ3A + IDQA = 35 ma, unless otherwise noted. Adjust VGG = VGGA = VGG3A from 1.5 V to V to achieve the desired IDQ. Typical VGG =.5 V for IDQ = 35 ma. Table 3. Parameter Symbol Min Typ Max Unit Test Conditions/Comments FREQUENCY RANGE 9 95 GHz GAIN 15 db Gain Variation over Temperature. db/ C RETURN LOSS Input S11 15 db Output S db SUPPLY Current IDQ 35 ma Adjust VGG to achieve IDQ = 35 ma typical Voltage VDD V Rev. A Page of 1

5 ABSOLUTE MAXIMUM RATINGS Table. Parameter Drain Bias Voltage (VDD) Gate Bias Voltage (VGG) Radio Frequency (RF) Input Power (RFIN) Continuous Power Dissipation (PDISS), at TDIE BOTTOM = 5 C (Derate.95 mw/ C Above 5 C) Storage Temperature Range (Ambient) Operating Temperature Range (Die Bottom) ESD Sensitivity Human Body Model (HBM) Channel Temperature to Maintain 1 Million Hour Mean Time to Failure (MTTF) Nominal Channel Temperature at TDIE BOTTOM = 5 C, VDD = 3.5 V Rating.5 V V to V dc 17 dbm. W 5 C to +15 C 55 C to +5 C Class 5 V 175 C 13. C THERMAL RESISTANCE Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required. θjc is the junction-to-case thermal resistance Table 5. Thermal Resistance Package Type θjc Unit C C/W ESD CAUTION Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. A Page 5 of 1

6 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS V GG A V DD 1A V DD A V GG 3A V DD 3A V DD A RFOUT 1 RFIN V GG B V DD 1B V DD B V GG 3B V DD 3B V DD B V REF V DET Figure. Pad Configuration 95- Table. Pad Function Descriptions Pad No. Mnemonic Description 1 RFIN RF Input. This pad is ac-coupled and matched to 5 Ω. See Figure 3 for the interface schematic. VGGA Gate Control Pad for the First and Second Stage Amplifiers. See Figure for the interface schematic. 3, VDD1A, VDDA Drain Bias Voltage Pads for the First and Second Stage Amplifiers. External bypass capacitors of pf,.1 µf, and.7 µf are required on these pads. Connect these pads to a 3.5 V supply. See Figure 5 for the interface schematic. 5 VGG3A Gate Control Pad for the Third and Fourth Stage Amplifiers. See Figure for the interface schematic., 7 VDD3A, VDDA Drain Bias Voltage Pads for the Third and Fourth Stage Amplifiers. External bypass capacitors of pf,.1 µf, and.7 µf are required on these pads. Connect these pads to a 3.5 V supply. See Figure 5 for the interface schematic. RFOUT RF Output. This pad is ac-coupled and matched to 5 Ω. See Figure 9 for the interface schematic. 9 VDET DC Voltage Representing the RF Output Power. This pad is rectified by the diode that is biased through an external resistor. See Figure 9 for the interface schematic. VREF DC Voltage of the Diode. This pad is biased through an external detector circuit used for temperature compensation of VDET. See Figure for the interface schematic. 11, VDDB, VDD3B Drain Bias Voltage Pads for the Fourth and Third Stage Alternative Bias Configuration. External bypass capacitors of pf,.1 µf, and.7 µf are required. See Figure 7 for the interface schematic. 13 VGG3B Gate Control Pad for the Third and Fourth Stage Alternative Bias Configuration. Coupling capacitors are required. See Figure for the interface schematic., 15 VDDB, VDD1B Drain Bias Voltage Pads for the Second and First Stage Alternative Bias Configuration. External bypass capacitors of pf,.1 µf, and.7 µf are required. See Figure 7 for the interface schematic. VGGB Gate Control Pad for the First and Second Stage Alternative Bias Configuration. Coupling capacitors are required. See Figure for the interface schematic. Die Bottom GND Ground. Die bottom must be connected to RF/dc ground. See Figure for the interface schematic. Rev. A Page of 1

7 INTERFACE SCHEMATICS RFIN 95-3 V DD 1B TO V DD B 95-7 Figure 3. RFIN Interface Schematic Figure 7. VDD1B to VDDB Interface Schematic V GG A V GG 3A 95- V GG B V GG 3B 95- Figure. VGGA and VGG3A Interface Schematic Figure. VGGB and VGG3B Interface Schematic V DD 1A TO V DD A RFOUT Figure 5. VDD1A to VDDA Interface Schematic 95-5 V DET Figure 9. RFOUT and VDET Interface Schematic 95-9 GND 95- Figure. GND Interface Schematic V REF Figure. VREF Interface Schematic 95- Rev. A Page 7 of 1

8 TYPICAL PERFORMANCE CHARACTERISTICS BROADBAND GAIN AND RETURN LOSS (db) S11 S1 S GAIN (db) 1 1.5V.V.5V 3.V 3.5V.V Figure 11. Broadband Gain and Return Loss vs. Frequency Figure. Gain vs. Frequency for Various VDD Values GAIN (db) 1 +5 C +5 C 55 C INPUT RETURN LOSS (db) C +5 C 55 C Figure. Gain vs. Frequency for Various Temperatures Figure 15. Input Return Loss vs. Frequency at Various Temperatures GAIN (db) 1 ma 5mA 3mA 35mA ma 5mA INPUT RETURN LOSS (db) ma 5mA 3mA 35mA ma 5mA Figure 13. Gain vs. Frequency for Various IDQ Values Figure. Input Return Loss vs. Frequency for Various IDQ Values 95- Rev. A Page of 1

9 INPUT RETURN LOSS (db) V.V.5V 3.V 3.5V.V OUTPUT RETURN LOSS (db) V.V.5V 3.V 3.5V.V Figure 17. Input Return Loss vs. Frequency for Various VDD Values Figure. Output Return Loss vs. Frequency for Various VDD Values 95- OUTPUT RETURN LOSS (db) C +5 C 55 C OUTPUT RETURN LOSS (db) ma 5mA 3mA 35mA ma 5mA Figure 1. Output Return Loss vs. Frequency at Various Temperatures Figure 1. Output Return Loss vs. Frequency for Various IDQ Values P1dB (dbm) P SAT (dbm) +5 C +5 C 55 C +5 C +5 C 55 C Figure 19. P1dB vs. Frequency at Various Temperatures Figure. PSAT vs. Frequency at Various Temperatures Rev. A Page 9 of 1

10 1 1 P1dB (dbm) ma 5mA 3mA 35mA ma 5mA P SAT (dbm) ma 5mA 3mA 35mA ma 5mA Figure 3. P1dB vs. Frequency for Various IDQ Values Figure. PSAT vs. Frequency for Various IDQ Values 1 1 P1dB (dbm) P SAT (dbm) 1.5V.V.5V 3.V 3.5V.V 1.5V.V.5V 3.V 3.5V.V Figure. P1dB vs. Frequency for Various VDD Values Figure 7. PSAT vs. Frequency for Various VDD Values IIP3 (dbm) +5 C +5 C 55 C IIP3 (dbm) ma 5mA 3mA 35mA ma 5mA Figure 5. IIP3 vs. Frequency at Various Temperatures Figure. IIP3 vs. Frequency for Various IDQ Values Rev. A Page of 1

11 9 7 5 IIP3 (dbm) 1.5V 3.V.V 3.5V.5V.V OIP3 (dbm) V.V.5V 3.V 3.5V.V Figure 9. IIP3 vs. Frequency for Various VDD Values Figure 3. OIP3 vs. Frequency for Various VDD Values 9 1. OIP3 (dbm) P DISS (W) GHz 55GHz GHz 5GHz 7GHz 75GHz GHz 5GHz GHz C +5 C 55 C INPUT POWER AT 5 C Figure 3. OIP3 vs. Frequency at Various Temperatures Figure 33. PDISS vs. Input Power at 5 C for Various Frequencies 9 OIP3 (dbm) ma 5mA 3mA 35mA ma 5mA DRAIN SUPPLY CURRENT (ma) 3 3 5GHz 55GHz GHz 5GHz 7GHz 75GHz GHz 5GHz GHz Figure 31. OIP3 vs. Frequency for Various IDQ Values RF INPUT POWER (dbm) Figure 3. Drain Supply Current vs. RF Input Power for Various Frequencies 95-3 Rev. A Page 11 of 1

12 REVERSE ISOLATION (db) C +5 C 55 C GATE SUPPLY CURRENT (ma) GHz 55GHz GHz 5GHz 7GHz 75GHz GHz 5GHz GHz RF INPUT POWER (dbm) Figure 35. Reverse Isolation vs. Frequency at Various Temperatures Figure 37. Gate Supply Current vs. RF Input Power V REF V DET (V) C +5 C 55 C.1 1 OUTPUT POWER (dbm) 95-3 DRAIN SUPPLY CURRENT (ma) GATE SUPPLY VOLTAGE (V) Figure 3. Detector Voltage (VREF VDET) vs. Output Power for Various Temperatures at 7 GHz Figure 3. Drain Supply Current vs. Gate Supply Voltage Rev. A Page of 1

13 THEORY OF OPERATION The architecture of the medium power amplifier is shown in Figure 39. The uses four cascaded, four-stage amplifiers operating in quadrature between six 9 hybrids. The input signal is divided evenly into two. Then, each signal is again divided into two, and each of these paths is amplified through four independent gain stages. Then, the amplified signals are combined at the output. This balanced amplifier approach forms an amplifier with a combined gain of db and a PSAT value of 1 dbm. A portion of the RF output signal is directionally coupled to a diode for detection of the RF output power. When the diode is dc biased, it rectifies the RF power and makes it available for measurement as a dc voltage at VDET. To allow temperature compensation of VDET, an identical and symmetrically located circuit, minus the coupled RF power, is available via VREF. Taking the difference of VREF VDET provides a temperature compensated signal that is proportional to the RF output. (see Figure 3). The 9 hybrids ensure that the input and output return losses are greater than or equal to 15 db and db, respectively. See the application circuits shown in Figure 3 and Figure for further details on biasing the various blocks. 9 COUPLER FOUR STAGE BALANCED AMPLIFIER 9 COUPLER 9 COUPLER 9 COUPLER RFOUT RFIN 9 COUPLER FOUR STAGE BALANCED AMPLIFIER 9 COUPLER DIRECTIONAL COUPLER Figure 39. Architecture V REF V DET Rev. A Page 13 of 1

14 APPLICATIONS INFORMATION The is a GaAs, phemt, MMIC power amplifier. Capacitive bypassing is required for VDD1A through VDDA and VDD1B through VDDB (see Figure 3). VGGA is the gate bias pad for the first and second gain stages. VGG3A is the gate bias pad for the third and fourth gain stages. Apply a gate bias voltage to VGGA and VGG3A, and use capacitive bypassing as shown in Figure 3. All measurements for this device were taken using the typical application circuit (see Figure 3) and configured as shown in the assembly diagram (Figure 5). The following is the recommended bias sequence during power-up: 1. Connect GND to RF/dc ground.. Set the gate bias voltage to 1.5 V. 3. Set all the drain bias voltages, VDD = 3.5 V.. Increase the gate bias voltage to achieve a quiescent current, IDQ = 35 ma. 5. Apply the RF signal. The following is the recommended bias sequence during power-down: 1. Turn off the RF signal.. Decrease the gate bias voltage to 1.5 V to achieve IDQ = ma (approximately). 3. Decrease all of the drain bias voltages to V.. Increase the gate bias voltage to V. RFIN V GG A V GG B V DD 1A V DD 1B V DD A V DD B V DD 3A V DD 3B V DD A V DD B RFOUT Table 7. Power Selection Table 1, IDQ (ma) Gain (db) P1dB (dbm) OIP3 (dbm) PDISS (mw) VGG (V) Data taken at the following nominal bias conditions: VDD = 3.5 V, T = 5 C. Adjust VGGA and VGG3A from 1.5 V to V to achieve the desired drain current. The VDD = 3.5 V and IDD = 35 ma bias conditions are recommended to optimize overall performance. Unless otherwise noted, the data shown was taken using the recommended bias conditions. Operation of the at different bias conditions may provide performance that differs from what is shown in Table 1 and Table. Biasing the for higher drain current typically results in higher P1dB, output IP3, and gain at the expense of increased power consumption (see Table 7). MOUNTING AND BONDING TECHNIQUES FOR MILLIMETERWAVE GaAs MMICS Attach the die directly to the ground plane with conductive epoxy (see the Handling Precautions section, the Mounting section, and the Wire Bonding section). Microstrip, 5 Ω transmission lines on.7 mm (5 mil) thick alumina, thin film substrates are recommended for bringing the radio frequency to and from the chip. Raise the die.75 mm (3 mil) to ensure that the surface of the die is coplanar with the surface of the substrate. Place microstrip substrates as close to the die as possible to minimize ribbon bond length. Typical die to substrate spacing is.7 mm to.15 mm (3 mil to mil). To ensure wideband matching, a 15 ff capacitive stub is recommended on the PCB board before the ribbon bond. V GG 3A V GG 3B Figure. Simplified Block Diagram Simplified bias pad connections to dedicated gain stages and dependence and independence among pads are shown in Figure MATCHING STUB/BOND PAD SHUNT CAPACITANCE = 15fF 5Ω TRANSMISSION LINE 3mil GOLD RIBBON RFIN PCB BOARD Rev. A Page of 1 3mil GAP MMIC Figure 1. High Frequency Input Wideband Matching 95-

15 RFOUT 3mil GOLD RIBBON MATCHING STUB/BOND PAD SHUNT CAPACITANCE = 15fF 5Ω TRANSMISSION LINE Handle the chips in a clean environment. Do not attempt to clean the chip using liquid cleaning systems. Follow ESD precautions to protect against ESD strikes. While bias is applied, suppress instrument and bias supply transients. Use shielded signal and bias cables to minimize inductive pickup. Handle the chip along the edges with a vacuum collet or with a sharp pair of tweezers. The surface of the chip have fragile air bridges and must not be touched with vacuum collet, tweezers, or fingers. MMIC 3mil GAP PCB BOARD Figure. High Frequency Output Wideband Matching Place microstrip substrates as close to the die as possible to minimize bond wire length. Typical die to substrate spacing is.7 mm to.15 mm (3 mil to mil). Handling Precautions To avoid permanent damage, follow these storage, cleanliness, static sensitivity, transient, and general handling precautions: Place all bare die in either waffle or gel-based ESD protective containers and then seal the die in an ESD protective bag for shipment. After the sealed ESD protective bag is opened, store all die in a dry nitrogen environment Mounting Before epoxy die is attached, apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip after it is placed into position. Cure the epoxy per the schedule of the manufacturer. Wire Bonding RF bonds made with.3 in..5 in. gold ribbon are recommended for the RF ports. These bonds must be thermosonically bonded with a force of g to g. DC bonds of.1 in. (.5 mm) diameter, thermosonically bonded, are recommended. Create ball bonds with a force of g to 5 g and wedge bonds with a force of 1 g to g. Create all bonds with a nominal stage temperature of 15 C. Apply a minimum amount of ultrasonic energy to achieve reliable bonds. Keep all bonds as short as possible, less than mil (.31 mm). Alternatively, short ( 3 mil) RF bonds made with two 1 mil wires can be used. Rev. A Page 15 of 1

16 TYPICAL APPLICATION CIRCUIT The drain and gate voltages can be applied to either the north or the south side of the circuit. NO DC BIAS APPLIED NC +.7µF.1µF pf pf pf pf NC +.7µF.1µF pf pf V GG B TO V GG 3B RFIN 1.7µF.1µF pf pf 11 9 V DET V REF RFOUT kω +5V kω kω kω kω +5V V OUT = V REF V DET V DD 1B TO V DD B +.7µF.1µF pf pfpfpf Figure 3. Application Circuit kω 5V SUGGESTED CIRCUIT 95-3 V DD 1A TO V DD A +.7µF.1µF pf pf pf pf V GG A TO V GG 3A +.7µF.1µF pf pf RFIN V DET V REF RFOUT kω +5V kω kω kω +5V NC NC +.7µF.1µF pf +.7µF.1µF pf pfpfpf NO DC BIAS APPLIED pf kω kω Figure. Alternate Application Circuit 5V SUGGESTED CIRCUIT V OUT = V REF V DET 95- Rev. A Page of 1

17 ASSEMBLY DIAGRAM Figure 5. Assembly Diagram 95- Rev. A Page 17 of 1

18 OUTLINE DIMENSIONS TOP VIEW (CIRCUIT SIDE) *AIR BRIDGE AREA *This die utilizes fragile air bridges. Any pickup tools used must not contact this area. Figure. -Pad Bare Die [CHIP] (C--) Dimensions shown in millimeters SIDE VIEW ORDERING GUIDE Model Temperature Range Package Description Package Option 55 C to +5 C -Pad Bare Die [CHIP] C-- -SX 55 C to +5 C -Pad Bare Die [CHIP] C A 1 19 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D95--3/19(A) Rev. A Page 1 of 1

71 GHz to 76 GHz, 1 W E-Band Power Amplifier with Power Detector ADMV7710

71 GHz to 76 GHz, 1 W E-Band Power Amplifier with Power Detector ADMV7710 FEATURES Gain: db typical Output power for db compression: dbm typical Saturated output power: 29 dbm typical Output third-order intercept: dbm typical Input return loss: 8 db typical Output return loss:

More information

81 GHz to 86 GHz, E-Band Power Amplifier With Power Detector HMC8142

81 GHz to 86 GHz, E-Band Power Amplifier With Power Detector HMC8142 Data Sheet 8 GHz to 86 GHz, E-Band Power Amplifier With Power Detector FEATURES GENERAL DESCRIPTION Gain: db typical The is an integrated E-band gallium arsenide (GaAs), Output power for db compression

More information

71 GHz to 76 GHz, 1 W E-Band Power Amplifier with Power Detector ADMV7710

71 GHz to 76 GHz, 1 W E-Band Power Amplifier with Power Detector ADMV7710 Data Sheet FEATURES Gain: db typical Output power for db compression: dbm typical Saturated output power: 29 dbm typical Output third-order intercept: dbm typical Input return loss: 8 db typical Output

More information

GaAs, phemt, MMIC, Power Amplifier, HMC1126. Data Sheet FEATURES FUNCTIONAL BLOCK DIAGRAM APPLICATIONS GENERAL DESCRIPTION

GaAs, phemt, MMIC, Power Amplifier, HMC1126. Data Sheet FEATURES FUNCTIONAL BLOCK DIAGRAM APPLICATIONS GENERAL DESCRIPTION Data Sheet GaAs, phemt, MMIC, Power Amplifier, GHz to GHz FEATURES FUNCTIONAL BLOCK DIAGRAM Output power for 1 db compression (P1dB): 1. db typical Saturated output power (PSAT): 1 dbm typical Gain: 11

More information

2 GHz to 30 GHz, GaAs, phemt, MMIC, Low Noise Amplifier HMC8402

2 GHz to 30 GHz, GaAs, phemt, MMIC, Low Noise Amplifier HMC8402 2 GHz to 3 GHz, GaAs, phemt, MMIC, Low Noise Amplifier HMC842 FEATURES Output power for 1 db compression (P1dB): 21. dbm typical Saturated output power (PSAT): 22 dbm typical Gain: 13. db typical Noise

More information

20 GHz to 44 GHz, GaAs, phemt, MMIC, Low Noise Amplifier HMC1040CHIPS

20 GHz to 44 GHz, GaAs, phemt, MMIC, Low Noise Amplifier HMC1040CHIPS Data Sheet FEATURES Low noise figure: 2 db typical High gain: 25. db typical P1dB output power: 13.5 dbm, 2 GHz to GHz High output IP3: 25.5 dbm typical Die size: 1.39 mm 1..2 mm APPLICATIONS Software

More information

DC to 28 GHz, GaAs phemt MMIC Low Noise Amplifier HMC8401

DC to 28 GHz, GaAs phemt MMIC Low Noise Amplifier HMC8401 FEATURES Output power for db compression (PdB):.5 dbm typical Saturated output power (PSAT): 9 dbm typical Gain:.5 db typical Noise figure:.5 db Output third-order intercept (IP3): 26 dbm typical Supply

More information

GaAs, phemt, MMIC, Power Amplifier, 2 GHz to 50 GHz HMC1126

GaAs, phemt, MMIC, Power Amplifier, 2 GHz to 50 GHz HMC1126 GaAs, phemt, MMIC, Power Amplifier, 2 GHz to GHz FEATURES FUNCTIONAL BLOCK DIAGRAM Output power for 1 db compression (P1dB): 1. db typical Saturated output power (PSAT): dbm typical Gain: 11 db typical

More information

71 GHz to 76 GHz, E-Band Variable Gain Amplifier HMC8120

71 GHz to 76 GHz, E-Band Variable Gain Amplifier HMC8120 Data Sheet FEATURES Gain: 22 db typical Wide gain control range: 1 db typical Output third-order intercept (OIP3): 3 dbm typical Output power for 1 db compression (P1dB): 21 dbm typical Saturated output

More information

GaAs phemt MMIC Low Noise Amplifier, 0.3 GHz to 20 GHz HMC1049

GaAs phemt MMIC Low Noise Amplifier, 0.3 GHz to 20 GHz HMC1049 Data Sheet GaAs phemt MMIC Low Noise Amplifier,. GHz to GHz HMC9 FEATURES FUNCTIONAL BLOCK DIAGRAM Low noise figure:.7 db High gain: 6 db PdB output power: dbm Supply voltage: 7 V at 7 ma Output IP: 7

More information

Features. = +25 C, Vdd 1, 2, 3 = +3V

Features. = +25 C, Vdd 1, 2, 3 = +3V v3.917 Typical Applications Features The HMC17 is ideal for use as a LNA or Driver amplifier for: Point-to-Point Radios Point-to-Multi-Point Radios & VSAT Test Equipment and Sensors Military & Space Functional

More information

Features. = +25 C, Vdd 1, 2, 3 = +3V

Features. = +25 C, Vdd 1, 2, 3 = +3V v.91 HMC519 AMPLIFIER, 1-32 GHz Typical Applications The HMC519 is ideal for use as either a LNA or driver amplifier for: Point-to-Point Radios Point-to-Multi-Point Radios & VSAT Test Equipment & Sensors

More information

Features. Noise Figure db Supply Current (Idd) ma Supply Voltage (Vdd) V

Features. Noise Figure db Supply Current (Idd) ma Supply Voltage (Vdd) V v2.418 Typical Applications The HMC797A is ideal for: Test Instrumentation Military & Space Fiber Optics Functional Diagram Features High P1dB Output Power: +29 dbm High Psat Output Power: +31 dbm High

More information

HMC994A AMPLIFIERS - LINEAR & POWER - CHIP. GaAs phemt MMIC 0.5 WATT POWER AMPLIFIER, DC - 30 GHz. Features. Typical Applications

HMC994A AMPLIFIERS - LINEAR & POWER - CHIP. GaAs phemt MMIC 0.5 WATT POWER AMPLIFIER, DC - 30 GHz. Features. Typical Applications v3.218 HMC994A.5 WATT POWER AMPLIFIER, DC - 3 GHz Typical Applications The HMC994A is ideal for: Test Instrumentation Military & Space Fiber Optics Functional Diagram Features High P1dB Output Power: dbm

More information

HMC906A. Amplifiers - Linear & Power - CHIP. Electrical Specifications, T A. Typical Applications. Features. General Description. Functional Diagram

HMC906A. Amplifiers - Linear & Power - CHIP. Electrical Specifications, T A. Typical Applications. Features. General Description. Functional Diagram Typical Applications Features The HMC96A is ideal for: Satellite Communications Point-to-Point Radios Point-to-Multi-Point Radios VSAT Military & Space Functional Diagram Saturated Output Power: +33.5

More information

Features. = +25 C, Vdd1, Vdd2 = +5V

Features. = +25 C, Vdd1, Vdd2 = +5V v.11 HMC51 POWER AMPLIFIER, 5-2 GHz Typical Applications Features The HMC51 is ideal for use as a driver amplifier for: Point-to-Point Radios Point-to-Multi-Point Radios & VSAT Test Equipment & Sensors

More information

Features OUT E S T CODE. = +25 C, Vdd= 8V, Idd= 60 ma*

Features OUT E S T CODE. = +25 C, Vdd= 8V, Idd= 60 ma* E S T CODE E S T CODE v1.818 HMC6 AMPLIFIER, DC - 2 GHz Typical Applications Features The HMC6 is ideal for: Noise Figure: 2.5 db @ 1 GHz Telecom Infrastructure Microwave Radio & VSAT Military & Space

More information

Features. = +25 C, Vdd = +10V, Idd = 350mA

Features. = +25 C, Vdd = +10V, Idd = 350mA Typical Applications The is ideal for: Test Instrumentation Military & Space Functional Diagram Features High P1dB Output Power: +28 dbm High : 14 db High Output IP3: +41 dbm Single Supply: +V @ 3 ma Ohm

More information

Features dbm

Features dbm v9.917 HMC441 Typical Applications Features The HMC441 is ideal for: Point-to-Point and Point-to-Multi-Point Radios VSAT LO Driver for HMC Mixers Military EW & ECM Functional Diagram Gain:.5 db Saturated

More information

Features. = +25 C, Vdd= 5V, Idd= 60 ma*

Features. = +25 C, Vdd= 5V, Idd= 60 ma* Typical Applications The HMC63 is ideal for: Telecom Infrastructure Microwave Radio & VSAT Military & Space Test Instrumentation Fiber Optics Functional Diagram v.67 Vgg2: Optional Gate Bias for AGC HMC63

More information

14 GHz to 32 GHz, GaAs, MMIC, Double Balanced Mixer HMC292A

14 GHz to 32 GHz, GaAs, MMIC, Double Balanced Mixer HMC292A 14 GHz to 32 GHz, GaAs, MMIC, Double Balanced Mixer FEATURES Passive: no dc bias required Conversion loss (downconverter): 9 db typical at 14 GHz to 3 GHz Single-sideband noise figure: 11 db typical at

More information

Features OBSOLETE. Output Third Order Intercept (IP3) [2] dbm Total Supply Current ma

Features OBSOLETE. Output Third Order Intercept (IP3) [2] dbm Total Supply Current ma v.1111 Typical Applications Features The is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios VSAT & SATCOM Military & Space Functional Diagram P1dB Output Power: + dbm Psat Output Power: +

More information

Features. = +25 C, Vdd = Vdd1 = Vdd2 = Vdd3 = Vdd4 = Vdd5 = +7V, Idd = 1200mA [1]

Features. = +25 C, Vdd = Vdd1 = Vdd2 = Vdd3 = Vdd4 = Vdd5 = +7V, Idd = 1200mA [1] v2.211 HMC949 Typical Applications The HMC949 is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios VSAT & SATCOM Military & Space Functional Diagram Features Saturated Output Power: +5.5 dbm

More information

Features. = +25 C, Vdd = 5V, Idd = 200 ma*

Features. = +25 C, Vdd = 5V, Idd = 200 ma* v3.13 HMC9 Typical Applications The HMC9 is ideal for use as either a LNA or driver amplifier for: Point-to-Point Radios Point-to-Multi-Point Radios VSAT Military & Space Functional Diagram Features Noise

More information

Features. = +25 C, Vdd = +5V, Idd = 63 ma

Features. = +25 C, Vdd = +5V, Idd = 63 ma v2.213 LOW NOISE AMPLIFIER, 2-2 GHz Typical Applications Features The is ideal for: Test Instrumentation Microwave Radio & VSAT Military & Space Telecom Infrastructure Fiber Optics Functional Diagram Noise

More information

Features. = +25 C, Vdd = 5V, Idd = 85mA*

Features. = +25 C, Vdd = 5V, Idd = 85mA* Typical Applications The is ideal for use as a medium power amplifier for: Point-to-Point and Point-to-Multi-Point Radios VSAT Functional Diagram Features Saturated Power: +23 dbm @ 25% PAE Gain: 15 db

More information

Features. = +25 C, Vdd= +5V

Features. = +25 C, Vdd= +5V Typical Applications This is ideal for: Wideband Communication Systems Surveillance Systems Point-to-Point Radios Point-to-Multi-Point Radios Military & Space Test Instrumentation * VSAT Functional Diagram

More information

HMC998. Amplifiers - Linear & Power - Chip. GaAs phemt MMIC 2 WATT POWER AMPLIFIER, GHz. Electrical Specifications, T A.

HMC998. Amplifiers - Linear & Power - Chip. GaAs phemt MMIC 2 WATT POWER AMPLIFIER, GHz. Electrical Specifications, T A. v1.811 2 WATT POWER AMPLIFIER,.1-22 GHz Typical Applications Features The is ideal for: Test Instrumentation Microwave Radio & VSAT Military & Space Telecom Infrastructure Fiber Optics Functional Diagram

More information

Features. = +25 C, Vdd= 2V [1], Idd = 55mA [2]

Features. = +25 C, Vdd= 2V [1], Idd = 55mA [2] HMC-ALH12 Typical Applications This HMC-ALH12 is ideal for: Features Noise Figure: 2.5 db Wideband Communications Receivers Surveillance Systems Point-to-Point Radios Point-to-Multi-Point Radios Military

More information

GaAs, phemt, MMIC, Single Positive Supply, DC to 7.5 GHz, 1 W Power Amplifier HMC637BPM5E

GaAs, phemt, MMIC, Single Positive Supply, DC to 7.5 GHz, 1 W Power Amplifier HMC637BPM5E 9 11 13 31 NIC 3 ACG1 29 ACG2 2 NIC 27 NIC 26 NIC GaAs, phemt, MMIC, Single Positive Supply, DC to 7.5 GHz, 1 W Power Amplifier FEATURES P1dB output power: 2 dbm typical Gain:.5 db typical Output IP3:

More information

Features. = +25 C, Vdd = 5V

Features. = +25 C, Vdd = 5V v1.1 AMPLIFIER, 3. - 7. GHz Typical Applications The HMC39A is ideal for: Point-to-Point Radios VSAT LO Driver for HMC Mixers Military EW, ECM, C 3 I Space Functional Diagram Features Gain: 17. db Noise

More information

Features. = +25 C, Vdd = +3V

Features. = +25 C, Vdd = +3V v.117 HMC Typical Applications Features The HMC is ideal for: Millimeterwave Point-to-Point Radios LMDS VSAT SATCOM Functional Diagram Excellent Noise Figure: db Gain: db Single Supply: +V @ 8 ma Small

More information

Features. DC - 2 GHz GHz Supply Current (Idd) 400 ma

Features. DC - 2 GHz GHz Supply Current (Idd) 400 ma Typical Applications The HMC637A is ideal for: Telecom Infrastructure Microwave Radio & VSAT Military & Space Test Instrumentation Fiber Optics Functional Diagram Features P1dB Output Power: +3.5 dbm Gain:

More information

Features. = +25 C, Vdd 1, 2, 3 = +3V

Features. = +25 C, Vdd 1, 2, 3 = +3V Typical Applications Functional Diagram v.97 The HMC is ideal for use as a LNA or driver amplifi er for : Point-to-Point Radios Point-to-Multi-Point Radios & VSAT Test Equipment and Sensors Military &

More information

Features. = +25 C, Vdd = +6V, Idd = 375mA [1]

Features. = +25 C, Vdd = +6V, Idd = 375mA [1] v.119 HMC86 POWER AMPLIFIER, 24 -.5 GHz Typical Applications The HMC86 is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios VSAT Military & Space Functional Diagram Features Saturated Output

More information

Features. Output Third Order Intercept (IP3) [2] dbm Power Added Efficiency %

Features. Output Third Order Intercept (IP3) [2] dbm Power Added Efficiency % v5.1217 HMC187 2-2 GHz Typical Applications The HMC187 is ideal for: Test Instrumentation General Communications Radar Functional Diagram Features High Psat: +39 dbm Power Gain at Psat: +5.5 db High Output

More information

Features. = +25 C Vdd = Vdd1, Vdd2, Vdd3, Vdd4, Vdd5, Vdd6, Vdd7, Vdd8 = +6V, Idd = 1400 ma [1]

Features. = +25 C Vdd = Vdd1, Vdd2, Vdd3, Vdd4, Vdd5, Vdd6, Vdd7, Vdd8 = +6V, Idd = 1400 ma [1] HMC129 v1.412 Typical Applications The HMC129 is ideal for: Features Saturated Output Power: + dbm @ 25% PAE Point-to-Point Radios Point-to-Multi-Point Radios VSAT & SATCOM Military & Space Functional

More information

Customised Pack Sizes / Qtys. Support for all industry recognised supply formats: o o o. Waffle Pack Gel Pak Tape & Reel

Customised Pack Sizes / Qtys. Support for all industry recognised supply formats: o o o. Waffle Pack Gel Pak Tape & Reel Design Assistance Assembly Assistance Die handling consultancy Hi-Rel die qualification Hot & Cold die probing Electrical test & trimming Customised Pack Sizes / Qtys Support for all industry recognised

More information

HMC465 AMPLIFIERS- DRIVERS & GAIN BLOCKS - CHIP. GaAs phemt MMIC MODULATOR DRIVER AMPLIFIER, DC - 20 GHz. Electrical Specifications, T A.

HMC465 AMPLIFIERS- DRIVERS & GAIN BLOCKS - CHIP. GaAs phemt MMIC MODULATOR DRIVER AMPLIFIER, DC - 20 GHz. Electrical Specifications, T A. v9.114 DRIVER AMPLIFIER, DC - 2 GHz Typical Applications The wideband driver is ideal for: OC192 LN/MZ Modulator Driver Telecom Infrastructure Test Instrumentation Military & Space Functional Diagram Features

More information

HMC985A. attenuators - analog - Chip. GaAs MMIC VOLTAGE - VARIABLE ATTENUATOR, GHz. Features. Typical Applications. General Description

HMC985A. attenuators - analog - Chip. GaAs MMIC VOLTAGE - VARIABLE ATTENUATOR, GHz. Features. Typical Applications. General Description Typical Applications The is ideal for: Point-to-Point Radio VSAT Radio Test Instrumentation Microwave Sensors Military, ECM & Radar Functional Diagram v2.917 ATTENUATOR, 2-5 GHz Features Wide Bandwidth:

More information

HMC-APH596 LINEAR & POWER AMPLIFIERS - CHIP. GaAs HEMT MMIC MEDIUM POWER AMPLIFIER, GHz. Typical Applications. Features

HMC-APH596 LINEAR & POWER AMPLIFIERS - CHIP. GaAs HEMT MMIC MEDIUM POWER AMPLIFIER, GHz. Typical Applications. Features Typical Applications Features This is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios VSAT Military & Space Functional Diagram Output IP: + dbm P1dB: +24 dbm Gain: 17 db Supply Voltage: +5V

More information

Features. = +25 C, Vdd 1, 2, 3, 4 = +3V

Features. = +25 C, Vdd 1, 2, 3, 4 = +3V Typical Applications Functional Diagram v.3 The HMC5 is ideal for use as a LNA or driver amplifi er for: Point-to-Point Radios Point-to-Multi-Point Radios & VSAT Test Equipment and Sensors Military & Space

More information

Features. = +25 C, Vdd= +5V, Idd = 66mA

Features. = +25 C, Vdd= +5V, Idd = 66mA Typical Applications This HMC-ALH369 is ideal for: Features Excellent Noise Figure: 2 db Point-to-Point Radios Point-to-Multi-Point Radios Phased Arrays VSAT SATCOM Functional Diagram Gain: 22 db P1dB

More information

Features. = +25 C, Vdd 1, 2, 3 = +3V

Features. = +25 C, Vdd 1, 2, 3 = +3V Typical Applications Functional Diagram v2.29 The HMC6 is ideal for use as a LNA or driver amplifi er for : Point-to-Point Radios Point-to-Multi-Point Radios & VSAT Test Equipment and Sensors Military

More information

2 GHz to 28 GHz, GaAs phemt MMIC Low Noise Amplifier HMC7950

2 GHz to 28 GHz, GaAs phemt MMIC Low Noise Amplifier HMC7950 Data Sheet FEATURES Output power for db compression (PdB): 6 dbm typical Saturated output power (PSAT): 9. dbm typical Gain: db typical Noise figure:. db typical Output third-order intercept (IP3): 6 dbm

More information

10 W, GaN Power Amplifier, 2.7 GHz to 3.8 GHz HMC1114

10 W, GaN Power Amplifier, 2.7 GHz to 3.8 GHz HMC1114 9 13 16 FEATURES High saturated output power (PSAT): 41.5 dbm typical High small signal gain: db typical High power gain for saturated output power:.5 db typical Bandwidth: 2.7 GHz to 3.8 GHz High power

More information

Features. Gain: 15.5 db. = +25 C, Vdd = 5V

Features. Gain: 15.5 db. = +25 C, Vdd = 5V Typical Applications v2.97 Features AMPLIFIER, 3.5-7. GHz The HMC392 is ideal for: Gain: 5.5 db Point-to-Point Radios VSAT LO Driver for HMC Mixers Military EW, ECM, C 3 I Space Functional Diagram Noise

More information

Features. Gain: 12 db. 50 Ohm I/O s

Features. Gain: 12 db. 50 Ohm I/O s v.19 Typical Applications An excellent cascadable Ohm Block or LO Driver for: Microwave & VSAT Radios Test Equipment Military EW, ECM, C 3 I Space Telecom Functional Diagram Features : 1 P1 Output Power:

More information

Features. = +25 C, With 0/-5V Control, 50 Ohm System

Features. = +25 C, With 0/-5V Control, 50 Ohm System Typical Applications This switch is suitable DC - 0 GHz applications: Fiber Optics Microwave Radio Military Space VSAT Functional Diagram Features High Isolation: >40 db @ 0 GHz Low Insertion Loss:.1 db

More information

Features. = +25 C, With 0/-5V Control, 50 Ohm System

Features. = +25 C, With 0/-5V Control, 50 Ohm System Typical Applications This switch is suitable 0.1-0 GHz applications: Fiber Optics Microwave Radio Military Space VSAT Functional Diagram Features High Isolation: 45 db @ 0 GHz Low Insertion Loss: 1.7 db

More information

HMC397 DRIVER & GAIN BLOCK AMPLIFIERS - CHIP. InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 10 GHz. Features. Typical Applications. General Description

HMC397 DRIVER & GAIN BLOCK AMPLIFIERS - CHIP. InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 10 GHz. Features. Typical Applications. General Description v3.19 MMIC AMPLIFIER, DC - 1 GHz Typical Applications An excellent cascadable Ohm Block or LO Driver for: Microwave & VSAT Radios Test Equipment Military EW, ECM, C 3 I Space Telecom Functional Diagram

More information

Features. Parameter Frequency Min. Typ. Max. Units GHz GHz GHz GHz GHz GHz

Features. Parameter Frequency Min. Typ. Max. Units GHz GHz GHz GHz GHz GHz v1.16 SPDT SWITCH,.1 - GHz Typical Applications The HMC986A is ideal for: Wideband Switching Matrices High Speed Data Infrastructure Military Comms, RADAR, and ECM Test and Measurement Equipment Jamming

More information

Features. = +25 C, 50 Ohm System

Features. = +25 C, 50 Ohm System Typical Applications Features This is ideal for: Low Insertion Loss:.5 db Point-to-Point Radios Point-to-Multi-Point Radios Military Radios, Radar & ECM Test Equipment & Sensors Space Functional Diagram

More information

Features. Parameter Frequency (GHz) Min. Typ. Max. Units. Attenuation Range GHz 31 db. All States db db. 0.

Features. Parameter Frequency (GHz) Min. Typ. Max. Units. Attenuation Range GHz 31 db. All States db db. 0. Typical Applications The is ideal for: Features 1. LSB Steps to 31 Fiber Optics & Broadband Telecom Microwave Radio & VSAT Military Radios, Radar & ECM Space Applications Functional Diagram 11 3 4 5 6

More information

Features. = +25 C, Vdd= +8V *

Features. = +25 C, Vdd= +8V * Typical Applications Features This is ideal for: Fiber Optic Modulator Driver Fiber Optic Photoreceiver Post Amplifi er Gain Block for Test & Measurement Equipment Point-to-Point/Point-to-Multi-Point Radio

More information

Features. = +25 C, Vdd = +10 V, Idd = 350 ma

Features. = +25 C, Vdd = +10 V, Idd = 350 ma HMC97APME v2.4 POWER AMPLIFIER,.2-22 GHz Typical Applications The HMC97APME is ideal for: Test Instrumentation Military & Space Functional Diagram Features High P1dB Output Power: + dbm High : 14 db High

More information

Features. = +25 C, Vdd1, 2, 3 = 5V, Idd = 250 ma*

Features. = +25 C, Vdd1, 2, 3 = 5V, Idd = 250 ma* v.4 HMC498LC4 Typical Applications Features The HMC498LC4 is ideal for use as a LNA or Driver amplifier for: Point-to-Point Radios Point-to-Multi-Point Radios & VSAT Test Equipment & Sensors Military End-Use

More information

HMC561 FREQUENCY MULTIPLIER - ACTIVE - CHIP. Electrical Specifications, T A. Features. Typical Applications. General Description. Functional Diagram

HMC561 FREQUENCY MULTIPLIER - ACTIVE - CHIP. Electrical Specifications, T A. Features. Typical Applications. General Description. Functional Diagram Typical Applications The HMC51 is suitable for: Clock Generation Applications: SONET OC-19 & SDH STM- Point-to-Point & VSAT Radios Test Instrumentation Military & Space Functional Diagram Features High

More information

HMC814. GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, GHz OUTPUT. Features. Typical Applications. Functional Diagram. General Description

HMC814. GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, GHz OUTPUT. Features. Typical Applications. Functional Diagram. General Description v.119 Typical Applications The is ideal for: Clock Generation Applications: SONET OC-19 & SDH STM-64 Point-to-Point & VSAT Radios Test Instrumentation Military & Space Sensors Functional Diagram Features

More information

Features. = +25 C, 50 Ohm System. Return Loss (Input and Output) 5-18 GHz 8 db

Features. = +25 C, 50 Ohm System. Return Loss (Input and Output) 5-18 GHz 8 db v.89 4 ANALOG PHASE SHIFTER Typical Applications The is ideal for: Fiber Optics Military Test Equipment Features Wide Bandwidth: Phase Shift: >4 Single Positive Voltage Control Small Size: 2. x 1.6 x.1

More information

HMC576 FREQUENCY MULTIPLIERS - ACTIVE - CHIP. GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, GHz OUTPUT. Features. Typical Applications

HMC576 FREQUENCY MULTIPLIERS - ACTIVE - CHIP. GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, GHz OUTPUT. Features. Typical Applications v.56 GaAs MMIC x ACTIVE FREQUENCY MULTIPLIER, 18-9 GHz OUTPUT Typical Applications The is suitable for: Clock Generation Applications: SONET OC-19 & SDH STM-64 Point-to-Point & VSAT Radios Test Instrumentation

More information

OBSOLETE HMC5846LS6 AMPLIFIERS - LINEAR & POWER - SMT. Electrical Specifications, T A. Features. Typical Applications. General Description

OBSOLETE HMC5846LS6 AMPLIFIERS - LINEAR & POWER - SMT. Electrical Specifications, T A. Features. Typical Applications. General Description v1.414 Typical Applications The HMC846LS6 is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios VSAT & SATCOM Military & Space Functional Diagram Electrical Specifications, T A = +2 C Vdd = Vdd1,

More information

Features. Gain: 17 db. OIP3: 25 dbm. = +25 C, Vdd 1, 2 = +3V

Features. Gain: 17 db. OIP3: 25 dbm. = +25 C, Vdd 1, 2 = +3V v.7 HMCLC Typical Applications The HMCLC is ideal for use as a LNA or driver amplifier for: Point-to-Point Radios Point-to-Multi-Point Radios & VSAT Test Equipment and Sensors Military & Space Functional

More information

HMC-AUH232 MICROWAVE & OPTICAL DRIVER AMPLIFIERS - CHIP. GaAs HEMT MMIC MODULATOR DRIVER AMPLIFIER, DC - 43 GHz. Typical Applications.

HMC-AUH232 MICROWAVE & OPTICAL DRIVER AMPLIFIERS - CHIP. GaAs HEMT MMIC MODULATOR DRIVER AMPLIFIER, DC - 43 GHz. Typical Applications. DRIVER AMPLIFIER, DC - 3 GHz Typical Applications This is ideal for: 0 Gb/s Lithium Niobate/ Mach Zender Fiber Optic Modulators Broadband Gain Block for Test & Measurement Equipment Broadband Gain Block

More information

Features. = +25 C, Vdd = +15V, Vgg2 = +9.5V [1], Idq = 500 ma [2]

Features. = +25 C, Vdd = +15V, Vgg2 = +9.5V [1], Idq = 500 ma [2] v3.41 Typical Applications Features The is ideal for: Test Instrumentation Military & Space Fiber optics Functional Diagram P1dB Output Power: + dbm Psat Output Power: + dbm High Gain: db Output IP3: 42

More information

0.1 GHz to 18 GHz, GaAs SP4T Switch HMC641A

0.1 GHz to 18 GHz, GaAs SP4T Switch HMC641A Data Sheet 0. GHz to 8 GHz, GaAs SP4T Switch FEATURES Broadband frequency range: 0. GHz to 8 GHz Nonreflective 50 Ω design Low insertion loss: 2. db to 2 GHz High isolation: 42 db to 2 GHz High input linearity

More information

Customised Pack Sizes / Qtys. Support for all industry recognised supply formats: o o o. Waffle Pack Gel Pak Tape & Reel

Customised Pack Sizes / Qtys. Support for all industry recognised supply formats: o o o. Waffle Pack Gel Pak Tape & Reel Design Assistance Assembly Assistance Die handling consultancy Hi-Rel die qualification Hot & Cold die probing Electrical test & trimming Customised Pack Sizes / Qtys Support for all industry recognised

More information

Features = +5V. = +25 C, Vdd 1. = Vdd 2

Features = +5V. = +25 C, Vdd 1. = Vdd 2 v7.11 HMC1LC3 POWER AMPLIFIER, - GHz Typical Applications The HMC1LC3 is ideal for use as a medium power amplifier for: Microwave Radio & VSAT Military & Space Test Equipment & Sensors Fiber Optics LO

More information

Features. = +25 C, Vdd 1, 2, 3 = +3V

Features. = +25 C, Vdd 1, 2, 3 = +3V v.11 HMC6LC AMPLIFIER, 6-2 GHz Typical Applications The HMC6LC is ideal for use as a LNA or driver amplifier for: Point-to-Point Radios Point-to-Multi-Point Radios & VSAT Test Equipment and Sensors Military

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v1.414 Typical Applications The HMC5846LS6

More information

Features. The HMC985 is ideal for: = +25 C, See Test Conditions. Parameter Condition Min. Typ. Max. Units db. Output Return Loss 13 db

Features. The HMC985 is ideal for: = +25 C, See Test Conditions. Parameter Condition Min. Typ. Max. Units db. Output Return Loss 13 db Typical Applications The is ideal for: Point-to-Point Radio Vsat Radio Test Instrumentation Microwave Sensors Military, ECM & Radar Functional Diagram v.211 attenuator, 2-5 GHz Features Wide Bandwidth:

More information

Features. Parameter Min Typ. Max Min Typ. Max Min Typ Max Units Frequency Range GHz Gain

Features. Parameter Min Typ. Max Min Typ. Max Min Typ Max Units Frequency Range GHz Gain Typical Applications The HMC82LP4E is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios VSAT & SATCOM Marine Radar Military EW & ECM Functional Diagram Features High Saturated Output Power:

More information

>10 W, GaN Power Amplifier, 0.01 GHz to 1.1 GHz HMC1099

>10 W, GaN Power Amplifier, 0.01 GHz to 1.1 GHz HMC1099 9 1 11 12 13 14 1 16 32 GND 31 29 28 27 26 FEATURES High saturated output power (PSAT):. dbm typical High small signal gain: 18. db typical High power added efficiency (PAE): 69% typical Instantaneous

More information

Features OBSOLETE. = +25 C, With 0/-5V Control, 50 Ohm System. DC - 10 GHz DC - 6 GHz DC - 15 GHz. DC - 6 GHz DC - 15 GHz

Features OBSOLETE. = +25 C, With 0/-5V Control, 50 Ohm System. DC - 10 GHz DC - 6 GHz DC - 15 GHz. DC - 6 GHz DC - 15 GHz v03.1203 Typical Applications Broadband switch for applications: Fiber Optics Microwave Radio Military & Space Test Equipment VSAT Functional Diagram Features High Isolation: >50 @ 10 GHz Low Insertion

More information

Features. = 25 C, IF = 3 GHz, LO = +16 dbm

Features. = 25 C, IF = 3 GHz, LO = +16 dbm mixers - i/q mixers / irm - CHIP Typical Applications This is ideal for: Point-to-Point Radios Test & Measurement Equipment SATCOM Radar Functional Diagram Features Wide IF Bandwidth: DC - 5 GHz High Image

More information

HMC5805ALS6 AMPLIFIERS - LINEAR & POWER - SMT. Typical Applications. Features. Functional Diagram

HMC5805ALS6 AMPLIFIERS - LINEAR & POWER - SMT. Typical Applications. Features. Functional Diagram HMC585ALS6 v2.517 GaAs phemt MMIC.25 WATT POWER AMPLIFIER DC - 4 GHz Typical Applications The HMC585ALS6 is ideal for: Test Instrumentation Microwave Radio & VSAT Military & Space Telecom Infrastructure

More information

Features. = +25 C, Vdd = +4V, Idd = 90 ma [2]

Features. = +25 C, Vdd = +4V, Idd = 90 ma [2] v.91 HMCLCB AMPLIFIER, 1-27 GHz Typical Applications This HMCLCB is ideal for: Features Noise Figure: 2.2 db @ 2 GHz Point-to-Point Radios Point-to-Multi-Point Radios Military & Space Test Instrumentation

More information

Features. Gain: 14.5 db. Electrical Specifications [1] [2] = +25 C, Rbias = 825 Ohms for Vdd = 5V, Rbias = 5.76k Ohms for Vdd = 3V

Features. Gain: 14.5 db. Electrical Specifications [1] [2] = +25 C, Rbias = 825 Ohms for Vdd = 5V, Rbias = 5.76k Ohms for Vdd = 3V Typical Applications The HMC77ALP3E is ideal for: Fixed Wireless and LTE/WiMAX/4G BTS & Infrastructure Repeaters and Femtocells Public Safety Radio Access Points Functional Diagram Features Noise Figure:.

More information

Features. Parameter Min. Typ. Max. Units. Frequency Range 3 6 GHz Insertion Loss* db. Input Return Loss* 12 db

Features. Parameter Min. Typ. Max. Units. Frequency Range 3 6 GHz Insertion Loss* db. Input Return Loss* 12 db Typical Applications The is ideal for: EW Receivers Weather & Military Radar Satellite Communications Beamforming Modules Phase Cancellation Functional Diagram Features Low RMS Phase Error: Low Insertion

More information

Features. Parameter Min. Typ. Max. Units. Frequency Range 8 12 GHz Insertion Loss* 5 7 db. Input Return Loss* 10 db

Features. Parameter Min. Typ. Max. Units. Frequency Range 8 12 GHz Insertion Loss* 5 7 db. Input Return Loss* 10 db v2.29 HMC4 Typical Applications The HMC4 is ideal for: EW Receivers Weather & Military Radar Satellite Communications Beamforming Modules Features Low RMS Phase Error: Low Insertion Loss: 6. db Excellent

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v0.0907 HMC37 Typical Applications

More information

SURFACE MOUNT PHEMT 2 WATT POWER AMPLIFIER,

SURFACE MOUNT PHEMT 2 WATT POWER AMPLIFIER, v2.617 AMPLIFIER, - 12 GHz Typical Applications The is ideal for use as a power amplifier for: Point-to-Point Radios Point-to-Multi-Point Radios Test Equipment and Sensors Military End-Use Features Saturated

More information

Features. = +25 C, Vdd = 5V

Features. = +25 C, Vdd = 5V v3.117 HMC1LH5 Typical Applications The HMC1LH5 is a medium PA for: Telecom Infrastructure Military Radio, Radar & ECM Space Systems Test Instrumentation Functional Diagram Features Gain: 5 db Saturated

More information

GaAs, phemt, MMIC, Low Noise Amplifier, 0.3 GHz to 20 GHz HMC1049LP5E

GaAs, phemt, MMIC, Low Noise Amplifier, 0.3 GHz to 20 GHz HMC1049LP5E ACG ACG ACG FEATURES Low noise figure:. db PdB output power:. dbm PSAT output power: 7. dbm High gain: db Output IP: 9 dbm Supply voltage: VDD = 7 V at 7 ma Ω matched input/output (I/O) -lead, mm mm LFCSP

More information

HMC659LC5 LINEAR & POWER AMPLIFIERS - SMT. GaAs PHEMT MMIC POWER AMPLIFIER, DC - 15 GHz. Features. Typical Applications. General Description

HMC659LC5 LINEAR & POWER AMPLIFIERS - SMT. GaAs PHEMT MMIC POWER AMPLIFIER, DC - 15 GHz. Features. Typical Applications. General Description v.61 Typical Applications The wideband PA is ideal for: Telecom Infrastructure Microwave Radio & VSAT Military & Space Test Instrumentation Fiber Optics Functional Diagram Features P1dB Output Power: +27.5

More information

Features. = +25 C, Vdd= 8V, Vgg2= 3V, Idd= 290 ma [1]

Features. = +25 C, Vdd= 8V, Vgg2= 3V, Idd= 290 ma [1] Typical Applications The is ideal for: Telecom Infrastructure Microwave Radio & VSAT Military EW, ECM & C 3 I Test Instrumentation Fiber Optics Functional Diagram Features P1dB Output Power: + dbm Gain:

More information

Features. Parameter Frequency (GHz) Min. Typ. Max. Units GHz GHz. Attenuation Range GHz 31 db

Features. Parameter Frequency (GHz) Min. Typ. Max. Units GHz GHz. Attenuation Range GHz 31 db v1.511 1. LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR,.1-4 GHz Typical Applications The is ideal for: Fiber Optics & Broadband Telecom Microwave Radio & VSAT Military Radios, Radar & ECM Space Applications

More information

Features OBSOLETE. = +25 C, 5 ma Bias Current

Features OBSOLETE. = +25 C, 5 ma Bias Current v3.34 Typical Applications The is suitable for: Wireless Local Loop LMDS & VSAT Point-to-Point Radios Test Equipment Functional Diagram Features Electrical Specifications, T A = +2 C, ma Bias Current Chip

More information

Features = +5V. = +25 C, Vdd 1. = Vdd 2

Features = +5V. = +25 C, Vdd 1. = Vdd 2 v1.11 HMC51LP3 / 51LP3E POWER AMPLIFIER, 5-1 GHz Typical Applications The HMC51LP3(E) is ideal for: Microwave Radio & VSAT Military & Space Test Equipment & Sensors Fiber Optics LO Driver for HMC Mixers

More information

= +25 C, IF= 100 MHz, LO = +15 dbm*

= +25 C, IF= 100 MHz, LO = +15 dbm* v1.17 HMC5 6-1 GHz MIXERS - I/Q MIXERS / IRM - CHIP Typical Applications The HMC5 is ideal for: Point-to-Point and Point-to-Multi-Point Radio C-Band VSAT Military Radar and ECM Functional Diagram Features

More information

Features. = +25 C, Vdd = 5V, Vgg1 = Vgg2 = Open

Features. = +25 C, Vdd = 5V, Vgg1 = Vgg2 = Open v3.117 HMC441LM1 Typical Applications The HMC441LM1 is a medium PA for: Point-to-Point Radios Point-to-Multi-Point Radios VSAT LO Driver for HMC Mixers Military EW & ECM Functional Diagram Vgg1, Vgg2:

More information

21 GHz to 27 GHz, GaAs, MMIC, I/Q Upconverter HMC815B

21 GHz to 27 GHz, GaAs, MMIC, I/Q Upconverter HMC815B Data Sheet 1 GHz to 7 GHz, GaAs, MMIC, I/Q Upconverter HMC1B FEATURES Conversion gain: db typical Sideband rejection: dbc typical OP1dB compression: dbm typical OIP3: 7 dbm typical LO to RF isolation:

More information

GaAs phemt MMIC Low Noise Amplifier, 0.3 GHz to 20 GHz HMC1049

GaAs phemt MMIC Low Noise Amplifier, 0.3 GHz to 20 GHz HMC1049 ACG ACG ACG FEATURES Low noise figure:. db PdB output power:. dbm PSAT output power: 7. dbm High gain: db Output IP: 9 dbm Supply voltage: VDD = 7 V at 7 ma Ω matched input/output (I/O) -lead mm mm SMT

More information

TEL: FAX: v1.77 HMC64 Insertion Loss, Major States Only Normalized Loss, Major States Only 4 INSERTION LOSS (db)

TEL: FAX: v1.77 HMC64 Insertion Loss, Major States Only Normalized Loss, Major States Only 4 INSERTION LOSS (db) TEL:7-896822 FAX:7-876182 E-MAIL: szss2@16.com v1.77 HMC64 Typical Applications The HMC64 is ideal for: EW Receivers Weather & Military Radar Satellite Communications Beamforming Modules Phase Cancellation

More information

HMC650 TO HMC658 v

HMC650 TO HMC658 v HMC65 TO v1.38 WIDEBAND FIXED ATTENUATOR FAMILY, DC - 5 GHz HMC65 / 651 / 65 / 653 / 654 / 655 / 656 / 657 / 658 Typical Applications The HMC65 through are ideal for: Fiber Optics Microwave Radio Military

More information

HMC-SDD112 SWITCHES - CHIP. GaAs PIN MMIC SPDT SWITCH GHz. Typical Applications. Features. General Description. Functional Diagram

HMC-SDD112 SWITCHES - CHIP. GaAs PIN MMIC SPDT SWITCH GHz. Typical Applications. Features. General Description. Functional Diagram Typical Applications This is ideal for: FCC E-Band Communication Systems Short-Haul / High Capacity Radios Automotive Radar Test & Measurement Equipment SATCOM Sensors Features Low Insertion Loss: 2 db

More information

HMC6590. transimpedance amplifiers - chip. 43 Gbps Transimpedance Amplifier. Typical Applications. Features. Functional Diagram. General Description

HMC6590. transimpedance amplifiers - chip. 43 Gbps Transimpedance Amplifier. Typical Applications. Features. Functional Diagram. General Description Typical Applications The is ideal for: 40 GbE-FR 40 GBps VSR / SFF Short, intermediate, and long-haul optical receivers Features Supports data rates up to 43 Gbps Internal DCA feedback with external adjustment

More information

Features. = +25 C, Vdd= 5V, Vgg2= Open, Idd= 60 ma*

Features. = +25 C, Vdd= 5V, Vgg2= Open, Idd= 60 ma* v.7 HMCLH AGC AMPLIFIER, - GHz Typical Applications The HMCLH is ideal for: Telecom Infrastructure Microwave Radio & VSAT Military EW, ECM & C I Test Instrumentation Fiber Optics Functional Diagram Features

More information

30 MHz to 6 GHz RF/IF Gain Block ADL5610

30 MHz to 6 GHz RF/IF Gain Block ADL5610 Data Sheet FEATURES Fixed gain of 18.4 db Broad operation from 3 MHz to 6 GHz High dynamic range gain block Input and output internally matched to Ω Integrated bias circuit OIP3 of 38.8 dbm at 9 MHz P1dB

More information

30 MHz to 6 GHz RF/IF Gain Block ADL5611

30 MHz to 6 GHz RF/IF Gain Block ADL5611 Data Sheet FEATURES Fixed gain of 22.2 db Broad operation from 3 MHz to 6 GHz High dynamic range gain block Input and output internally matched to Ω Integrated bias circuit OIP3 of 4. dbm at 9 MHz P1dB

More information