Link Efficiency-Led Design of Mid-Range Inductive Power Transfer Systems

Size: px
Start display at page:

Download "Link Efficiency-Led Design of Mid-Range Inductive Power Transfer Systems"

Transcription

1 Link Efficiency-Led Design of Mid-Range Inductive Power Transfer Systems Christopher H. Kwan, George Kkelis, Samer Aldhaher, James Lawson, David C. Yates, Patrick C.-K. Luk, and Paul D. Mitcheson Department of Electrical and Electronic Engineering, Imperial College London, United Kingdom Power Engineering Centre, Cranfield University, United Kingdom Abstract For mid-range inductive power transfer (IPT) systems, improving link efficiency entails operating in the multi- MHz region in order to increase coil Q factors. However, designing end-to-end systems at such frequencies poses challenges associated with the efficiency of the power electronics. This paper presents a set of design principles with the aim of achieving maximal DC-to-load efficiency of such systems. se include the selection of semiconductor devices and power converter topologies that are suitable for high frequencies. Through these design methods, a 6.78 MHz ISM-band IPT system has been implemented, transferring W of power across cm with a DC-to-load efficiency of ~7 %. Index Terms DC-to-load efficiency, converters, mid-range wireless power I. INTRODUCTION In this paper, design principles for maximising the efficiency of a mid-range inductive power transfer (IPT) system are detailed. se principles address the challenges of operating at multi-mhz frequencies due to the potential for significant switching losses of the power electronics in the MHz region. methods include choosing appropriate types of semiconductor devices and selecting suitable converter topologies for the power electronics. Fig. shows a block diagram of a typical IPT system. Section II explains the rationale behind operating in the MHz range in order to improve link efficiency with air-core coils. Section III describes the choice of semiconductors available for high frequency power electronics. Section IV explains the use of the Class-E inverter in semi-resonant operation mode, the Class-E inverter with a saturable reactor, and the Class-EF or Class-E/F inverter, in order to drive the transmitter coil. Section V presents Class-D and Class-E rectifiers as efficient means of rectifying the high frequency AC voltage of the receiver coil. Section VI introduces load emulation in order for the IPT system to operate at maximal efficiency regardless of the actual impedance of the connected load. Section VII outlines the guidelines and regulations on exposure of humans to electromagnetic fields, which can also influence the design and usage scenarios of IPT systems. Section VIII highlights results from an implemented 6.78 MHz mid-range IPT system which was designed with these principles in mind MHz was selected as the operating frequency because it is the first ISM band in the MHz region; an example of an IPT application DC Power Supply Inverter Rectifier Load Emulation Fig.. Block diagram of an inductive power transfer system Load at this frequency is the charging of personal devices (e.g. mobile phones) where portability and being lightweight are highly desirable characteristics of the wireless charging system. Section IX concludes by summarising the methods described in this paper for designing mid-range IPT systems with the aim of maximising link efficiency. II. MAGNETIC DESIGN Coils with ferrite cores can be heavy and thus not very portable; in [], a khz system transferring.5 kw over 7 mm uses an H-shaped ferrite core which weighs.9 kg. Also, their directed magnetic flux leads to a restricted freedom of movement for both the transmitter and receiver sides due to the need for accurate coil alignment. refore, there are many situations in which air-core coils, with their wide flux coverage, are more suitable for wireless power transfer applications. In order to achieve high-q factors with an air core, MHz frequencies are necessary to maximise the coil Q factors. With the coils acting as a weakly-coupled air-core transformer, efficiency can deteriorate rapidly with distance. To maximise link efficiency, receiver resonance should be used to cancel the secondary leakage inductance, and the optimal load should be connected to the receiver s resonant tank. For a parallel resonant secondary, the optimal load is given by (), where k is the coupling factor, Q TX is the Q factor of the transmitter coil, Q RX is the Q factor of the receiver coil, ω is the frequency of operation and C RX is the secondary tank capacitance chosen to resonate with the receiver coil []. optimal load for a series resonant secondary is given by (), where L RX is the inductance of the receiver coil []. R opt,par = ωc RX ( ) Q RX + k Q TX Q RX ()

2 R opt,ser = ωl RX ( + k Q TX Q RX Q RX As a result of using either form of secondary tank resonance, the maximum link efficiency can be evaluated using () []. η link = ) () k Q TX Q RX ( + + k Q TX Q RX ) () From (), it can be seen that the Q factors of both the transmitter and receiver coils influence the maximum link efficiency. refore, to achieve improvements in the link efficiency, the Q factor of the coils should be maximised. This can be done by increasing the frequency of operation of the IPT system, but only up to a certain point after which the coils far-field radiation begins to dominate (causing the coils Q factor to drop) []. However, it does not necessarily follow that the overall efficiency of the system will be increased as well, as switching losses of the power electronics in both the inverter and rectifier circuits rise with frequency. refore, efficient high-frequency soft-switching power electronics are desired. se circuits, which will be described in more detail in Sections IV and V, rely also on fast devices which will be described in the next section. advantages of air-core coils can also be seen in longer range applications (up to m between TX and RX coils) where a network of sensors with mlliwatt-level consumption could be remotely powered [5]. In these situations, the superior tolerance to angular offsets and transverse displacements compared to coils with ferrite cores is essential to being able to supply power to multiple sensor nodes concurrently. Furthermore, the reduction in size and weight of the coils due to the absence of the ferrite core means that the wireless sensors can be kept small and lightweight. III. SEMICONDUCTORS Due to the high frequency, high voltage and high current requirements of the power electronics, the task of selecting appropriate semiconductor devices is not trivial. As midrange high power IPT systems operate near the limits of the capabilities of traditional Si devices, wide-bandgap semiconductors such as SiC and GaN ought to be considered due to their superior characteristics as power devices, e.g. faster switching rates and higher breakdown field strengths. Alternatively, specialist high-speed RF MOSFETs such as those from IXYS RF can be incorporated into designs. For example, the IXYS RF IXZDFN has a total rise and fall time of 7.5 ns [6], whilst the combined rise and fall times of highvoltage MOSFETs from International Rectifier are typically at least ns [7]. An IXYS RF power MOSFET combined with gate driver (IXZDFN) was used in the Class-E inverter of the mid-range IPT system that was designed and implemented (see Section IV). Cree SiC Schottky diodes (CD7 and CD6) were used in the Class-D and Class-E rectifiers (see Section V). packaging of the devices used in the power electronics can influence the performance of the inverter and rectifier circuits. Cree CD7 SiC Schottky diode in the rectifier comes in a TO-7- package [8], which has long, narrow leads, adding stray inductances to the circuit. Contrastingly, the IXYS RF IXZDFN module for the inverter has a surface-mount low-inductance package which means that parasitic effects, which could potentially reduce the switching speeds, can be minimised. It also has a low intrinsic gate resistance, leading to a decrease in rise and fall times, and enabling faster switching of the devices. IV. INVERTER Conventional hard-switching inverters are not suitable for IPT systems when operating in the MHz region. Since the switching time of the devices becomes comparable to the period of the driving signal, the result is that they can be inefficient at higher frequencies. Soft-switching inverters, such as Class- D and Class-E inverters, address this issue by employing zero-voltage switching to minimise power dissipation in the MOSFET during switching. This achieved by preventing concurrent high voltage across and current through the MOSFET. A disadvantage of Class-D inverters, which are popular with low-power systems adhering to Qi or AWP standards, is that they have lower output power compared to Class-E inverters for the same voltage and output load. Another issue is that they require a floating gate drive due to the presence of a high-side switching device. However, in contrast to Class-E inverters, Class-D inverters are able to operate over a larger load range with zero-voltage switching if the switching frequency is below the resonant frequency of the output load network. Fig. depicts the Class-E inverter in semi-resonant operation mode [9] used to drive the transmitter coil. In this topology, the transmitter resonant tank is tuned to a slightly higher frequency than the secondary resonant tank to keep the primary tank impedance inductive, a requirement for Class-E operation. parallel combination of the capacitor C res (in Fig. ) and the transmitter coil forms an impedance transformer, which causes the load impedance to appear larger, leading to an increase in driver efficiency. Fig. shows the simulated drain-source voltage of the MOSFET of the Class-E semi-resonant inverter. Class-E inverters may also include a saturable reactor [] to tune for optimum switching operation when a change in the load occurs (see Fig. ). A saturable reactor is essentially an AC-to-AC transformer that consists of a primary and a secondary winding, both wound on a single magnetic core. It operates by applying a low DC current in one winding, which causes the magnetic core s permeability to decrease, and therefore effectively changing the impedance of the second winding. tuning procedure relies on varying the switching frequency and the effective reactance of capacitor C in Fig. via the saturable reactor. Although Class-E inverters can achieve zero voltage and current switching operation, their voltage and current stresses can be large compared to other inverters. It has been reported in [], [] that adding a series LC resonant network in parallel

3 Fig.. Semi-resonant Class-E inverter from [9] Fig. 5. Circuit diagram of the Class-EF or Class-EF inverter. Inductor L represents inductance of transmitting coil. R L represents 6 reflected load seen by inverter in addition to coil ESR. [] 6 6 TABLE I COMPARISON BETWEEN DIFFERENT RESONANT INVERTER CLASSES Class-E.5768 Class-EF Class-E/F...76 time (ms) time (ms) (a) k=.5 optimum operation (b) k=. coils further apart Fig.. Simulated drain-source voltage for semi-resonant Class-E inverter against time in µs [9] network has been referred to as the Class-EF inverter when the V added resonant LC network is tuned to the second harmonic, or the Class-E/F inverter when the added resonant LC network RFC is tuned to the third harmonic. Fig. 5 shows the circuit diagram r C C of the Class-EF or -E/F inverter; inductor L and capacitor C form the added resonant network and their values are set C DC r r r LP suchr Q LS that their C CP r resonant frequency is either twice or three times CS f s Mthe switching frequency []. Fig. 6 compares the waveforms of the Class-EF and Class-E/F R L inverter with the Class-E inverter. V GS C L Sat C P C L P Class-EF LS S inverter results in lower voltage stresses whereas the Class-E/F inverter results in lower current stresses through the MOSFET. Table I shows a comparison of the normalised output power of the Half-Bridge Class-D ZVS, the Class-D ZCS, the Class-E, Fig.. Class-E inverter with a saturable reactor [] the Class-EF and the Class E/F inverters. 6 Inverter Class Normalised Output ( ) PoR L Power Vi Half-Bridge Class-D ZVS.6 Class-D ZCS.98 Al of nh/turn. control windings with the MOSFET can reduce its voltage or current stresses and therefore improve the efficiency of the inverter. added LC network is tuned to either the second or third harmonic of the µh for each toroid. DC control switching frequency. Adding resonant networks in inverters is a common technique used in Class-F and Class-F - inverters to shape the MOSFET drain voltage and current waveform. This hybrid configuation of Class-E switching with a resonant V. RECTIFIER VALUES AND RANGES OF SEVERAL PARAMETERS OF THE CLASS E INVERTER AND THE INDUCTIVE LINK MEASURED AT 8 KHZ As with hard-switching inverters, rectifiers can suffer from significant diode reverse recovery losses in the MHz region if they are hard-switched. use of soft-switching rectifiers avoids the requirement of a hard recovery and almost eliminating the associated losses with re-establishing reverse blocking function. Class-E rectifiers are soft-switching topologies; one Component/Parameter Value ESR Value L P 5.76 µh r LP.7 Ω L S 6.69 µh r LS.8 Ω C S (Polypropylene) 5.9 nf r CS.5 Ω R - kω - -

4 v DS VIN v DS VIN v DS VIN π π π π π π i S IIN i S IIN i S IIN π π π π π π (a) Class-E (b) Class-EF (c) Class-E/F Fig. 6. Comparison of normalised voltage and current waveforms of different inverters [] v in i in v Lr + L r v Cr + i Cr C r D r i Dr C st i Cst R dc Fig. 7. A voltage-driven low dv/dt class-e rectifier [] I dc + V dc such circuit topology with low dv/dt that is voltage-driven is shown in Fig. 7 []. This specific Class-E topology contains an inductor L r in series with a parallel connection of a capacitor C r and a diode D r. inductor L r is in resonance with the capacitor C r at the operating frequency of the system. refore, the L r -C r - D r connection provides half-wave rectification. Output filtering is performed by the first-order low-pass filter consisting of stabilising capacitor C st and the output load R dc. Any leakage inductance from the secondary coil can be absorbed into L r. In addition, the diode-capacitor parallel combinations means that the diode s junction capacitance can be absorbed into C r. When designing a Class-E rectifier, the primary objective is to ensure that the rectifier s impedance, R in is equal to the optimal load R opt. Since the rectifier depicted in Fig. 7 is a voltage-driven Class-E rectifier for a parallel-tuned secondary, the optimal load is given by R opt,par in (). impedance R in relates to the output load R dc of the Class- E rectifier by (), where M is the AC-to-DC gain [5]. R dc = M R in () Fig. 8 shows the waveforms of the Class-E rectifier. top plot is the rectifier s diode voltages, whilst the bottom plot shows the current through the diode D r (dotted) and the capacitor C r (solid). Another type of Class-E rectifier is shown in Fig. 9 []. This half-wave low dv/dt Class-E rectifier is current-driven, so it is suitable for a series tuned receiver. This rectifier consists of a capacitor-diode network connected to a second-order output filter. This filter is made up of an inductor L f, a capacitor C f and the output load R dc, and provides load independent filtering. For this rectifier, C d acts as a snubber capacitor and therefore ensures zero voltage at turn-on and turn-off and zero rate of voltage change at turn off. relationship between the impedance R in of this current-driven rectifier and its output load R dc is given by (5), where K I is the AC-to-DC current gain. R dc = R in K I Although conventional hard-switching rectifiers can be inefficient in the multi-mhz region, Class-D rectifiers with SiC Schottky diodes have shown to be usable in the MHz region. An example of such a topology is shown in Fig., which is a half-wave Class-D rectifier consisting of two diodes []. It is also current driven, making it appropriate for series resonant receivers. impedance of this current-driven rectifier (5)

5 Diode Voltage [V] Diode (solid) and Capacitor (dotted) Current [A] 5,, Time [s] 6 s-d and Class-E Half-Wave Rectifiers ower IPT Applications VI. RECEIVER LOAD EMULATION As shown in (), (5) and (6), the Class-D and Class-E rectifiers have an resistance which depends on the load attached to its output. refore, in order to have maximum link efficiency, a load emulation circuit should be attached to the output of the rectifier, so that the rectifier (and the receiver resonant tank) is always presented with the optimal load, given by () for a parallel tuned secondary and () for a series tuned secondary. Otherwise, different levels of current draw in the load would detune the magnetic link, resulting in a drop in efficiency and received power. Such a circuit may take the form of a DC-to-DC converter, such as the Buck converter, which can be controlled to achieve.5 optimal loading. This is done by measuring the voltage at the output of the rectifier and dividing by the desired load in order. Yates, Paul D. Mitcheson to obtain the current demand. This current demand is then l and Electronic Engineering compared with the actual measured current in order to give an ollege London error signal with which the duty cycle of the Buck converter s@imperial.ac.uk can be adjusted to emulate the desired load. Time [s] 6 In addition, from () and (), it can be seen that optimal load varies with the coupling factor, which in turn changes with distance between the transmitter and receiver coils. Hence, the s, the Fig. current 8. Simulated flowing voltage-driven through Class-E D allowing rectifier waveforms: an ac current [Top] Voltage to flow load emulation circuit should be controlled in such a way that s. in the across receiving D r; [Bottom] coil. Current through D r (solid) and C r (dotted) [] the optimal load is always being emulated even as distance r C o f and I dc cause a square wave voltage across the blockingchanges to ensure maximal link efficiency. L f therefore functions as the current source applying pow r diodes. square wave voltage could i Lf be a potential source In case of longer range systems (up to m between the rectifier under test [7]. c of switching losses in cases where the reverse recovery i Cd i D + + i I timetx and RX coils) such as those for wireless sensor network dc s of the semiconductor is not insignificant Cf compared to theapplications, the coupling coefficient is extremely low, which i in C d D v D C f R dc V means that the optimal load varies little with distance and period of the current. Despite the potential switching dc r, is dominated by the complex conjugate of the receiver s losses, the topology has a high output power capability as the resonant tank impedance. In these scenarios, C Rx L receiver power is diodes are stressed to the current during conduction and Rx typically very small (in the tens of mw i in range), so an open- type ofvload in emulation circuit + is preferred; this type stressed to the Fig. output. Class-E voltage Low when dv/dt Half reverse Wavebiased, Rectifiergiving goodloop Fig. 9. Current Driven Class-E Low dv/dt Half Wave Rectifier [] semiconductor utilisation. of circuit eliminates the power consumption of any active e control circuitry required for a closed-loop v in Rectif system. ierexamples under test of n As the capacitor-diode network D is shunting the current suitable ultra-low power open-loop load emulators include the a source and the second order outputi D filter, the current flowing buck-boost and the flyback converter operating in discontinuous t through the diodei and+ capacitor is the + D v D i ac current I dc + conduction mode [6]. Cf superimposedi in Fig.. Rectifier Test Rig s on the output D dcv D current. refore C the soft switching VII. ELECTROMAGNETIC FIELD LIMITS AND f R dc V dc e property of the topology increases conduction losses as the REGULATIONS real power delivered from the inverter to the rest of t f diode current exceeds the resonant tank current, when the Incircuit addition (average to the challenge power) of operating can be efficiently calculatedinbythemultiplyi d tank current is negative (Fig. ). Furthermore, the peak diodemhz region, the design of IPT systems must also consider the rms of the square voltage, the ac current throu Fig.. e Fig. Current. Class-D Driven Class-D Half Wave Half Wave Rectifier Rectifier [] limits on electromagnetic (EM) field levels that are in place voltage during reverse bias is larger than the output voltage the resonant tank ( current) and the phase difference, in order to protect humans from the adverse health effects of and consequently, device utilisation is poorer than in the Class- measured by the Power Analysis utility of the oscilloscop s D circuit. Nevertheless, impedance soft of the switching topology allows is functionally the utilisation resis-exposurtive, to EM fields. One of these thermal effects, which is affected only by its output load, and the relationship is given of are caused Using by thetissue power heating delivered throughtoenergy the dc absorption load (output from powe s large by i.e. diodes, (6). the fundamental slower than the frequency frequency component of operation, of the as reverse square EM fields the efficiency in the tissue. of theother receiving is non-thermal end of effects, the IPTcaused system can d voltage recovery across effects the are current largely source eliminated. is in phase with the by the calculated. stimulation This of efficiency muscles, nerves also includes and sensory losses organs. in the Rx c r current component and hence, stress the rectifier and the has a resistive impedance of impedance. R dc = π R the circuit (6) Working and at thus, 6.78part MHzof means thethat inductive both thermal link and efficiency. non-thermal Furthermo Furthermore, depend on the it is duty frequency cycle, which independent is affected if the by parasitic R dc, C capacitances d andeffects R need in can to be be determined taken account from of when the designing values of such IPT power a the frequency of advantages the of diodesof operation. have the negligible Class-D rectifier, Class-E impedance which rectifier presented compared include a has tosystems. current. When the inverter voltage and curre the simpler ) an impedance design impedance of process, the of resonant lower a series connection tank cost capacitor. implementation, between a dc higher capacitor load is A European Union (EU) Directive [7] was adopted on 6 are in phase the impedance at the Rx end is resistive a the tolerance (C only in ) and component to DC load a resistor (R that in ) affects variation [], [5]. theand When better the ac rectifier resistance semiconductor is added (R in ) June by the European Parliament and the Council of utilisation, are more noticeable in higher voltage operation, Europe, represented which sets byout thelimits onresistance the exposure of the of workers rectifier. to which to an IPT must system equal to R R ac,ser in must when be evaluated the rectifier for maximal is integrated where semiconductor parasitic effects are minimised. linkem fields. This Directive is to be transposed into UK law by e to B. Experimental Results efficiency an IPT and system. C in must following be taken expression into consideration relates the when two n resistances tuning the receiving []. coil. Designers have a degree of freedom experiments investigated the efficiency of the select e in selecting a duty cycle R value. other components are topologies under several resistance designs. Cree S s dc = π R in () hence evaluated in [] as: schottky diodes (CD6) were used for high power op B. Class-E Topology R dc = R ation at 6.78 MHz. in KI () evaluation of R ac,ser was made using the informati S /5/$. current driven Class-E 5 low dv/dt IEEE rectifier (Fig. ) is composed of a capacitor-diode network connected to a second provided in [] and []. Using () to () the components of t order filter. second order filter C d = Q rectincludes a filter inductor rectifiers were set to: R dc = 7 Ω for the Class-D, and R dc () o (L f ), a filter capacitor (C f ) andω the R dc load (R dc ). L f ensures Ω and C d = 7 pf for the Class-E rectifier. Those valu

6 July 6. Prior to the passing of this Directive, there have been no statutory limits on EM fields for both workers and the general public in the UK. safety limits described in the directive are based on the 998 and ICNIRP limits [8], [9]. Directive defines both exposure limit values (ELVs) and action levels (ALs). ELVs (which ICNIRP calls basic restrictions) are quantities that are directly related to established health effects (i.e. tissue heating and nerve stimulation). se quantities, which are generally difficult to measure, must not be exceeded. particular ELV which relates to thermal effects is the Specific Absorption Rate (SAR), whilst the ELV for non-thermal effects is the internal electric field induced in the body. At 6.78 MHz, the SAR limit is. W kg (whole body, averaged over 6-minute period and g of tissue) and the induced internal electric field limit is 576 V m (peak). Because ELVs are difficult to measure directly, the Directive also defines ALs (referred to as reference levels by ICNIRP). se external quantities, which can be measured, are external electric field and external magnetic field. At 6.78 MHz, the magnetic field ALs are µt for non-thermal effects (induced internal electric field) and. µt for thermal effects (SAR). Compliance with these ALs ensures compliance with the respective ELVs. However, if the ALs are exceeded, it does not necessarily follow that the ELVs will be exceeded as well. In these cases, further tests are needed to prove compliance with the ELVs such as performing D EM simulations. In reality, depending on the power requirements of the application, it may not be possible to deliver enough power to a load whilst at the same time keeping magnetic field levels within the EU Directive AL limits. Hence, it would be necessary to define an exclusion zone, outside of which it would be safe for humans to be physically present. Nevertheless, these EM field limits and regulations imply that it is important to design IPT systems with high link efficiencies, so the required level of power can be delivered to the receiver load with minimal magnetic field. VIII. EXPERIMENTAL RESULTS A 6.78 MHz mid-range IPT system capable of transferring W of power across a distance of cm with a DC-to-load efficiency of ~7 % has been implemented and demonstrated. This system was designed with the principles introduced in this paper. experimental setup is shown in Fig.. transmitter coil is a cm -turn air-core coil made from copper piping. A Class-E inverter in semi-resonant operation was selected to drive the transmitter coil, with the IXYS RF IXZDFN combined gate driver and MOSFET module used as the switching device. receiver coil is a cm 5-turn air-core coil, also made from copper piping. chosen rectifier topology is the voltage-driven Class-E low dv/dt rectifier, utilising the Cree CD7 SiC Schottky diode. se methods have resulted in a reduction in losses and an improvement in efficiency of the power electronics. Consequently, this mid-range IPT system is able to operate Fig.. Experimental setup of 6.78 MHz mid-range IPT system feasibly in the MHz region, leading to an increase in coil Q- factors, link efficiency and overall DC-to-load efficiency. IX. CONCLUSION design of a lightweight and portable IPT system calls for the use of air-core coils in favour of coils with ferrite cores. weak coupling of air-core coils suggests that the operating frequency should be increased to the multi-mhz region to maximise link efficiency. However, the efficiency of the power electronics will tend to decrease with frequency, unless suitable high frequency power converters are utilised. Inverters that are appropriate for multi-mhz frequencies include the Class- E semi-resonant inverter, the Class-E inverter with a saturable reactor, and the Class-EF or Class-E/F inverter. Class-D or Class-E rectifiers may be used to rectify the high frequency coil voltage. Different types of semiconductor devices need to be considered, including GaN, SiC and specialist high-speed RF Si devices. Receiver load emulation may be needed to maintain maximum link efficiency by emulating the optimal load seen by the rectifier. regulations on human exposure to EM fields may also influence IPT system design and usage scenario, and ultimately encourage the design of a highly efficient system. By following the link efficiency-led design principles in this paper, a mid-range IPT system can be designed with maximum link efficiency and overall DC-to-load efficiency. ACKNOWLEDGMENT authors would like to acknowledge the Department of Electrical and Electronic Engineering, Imperial College London for financial support. REFERENCES [] M. Chigira, Y. Nagatsuka, Y. Kaneko, S. Abe, T. Yasuda, and A. Suzuki, Small-size light-weight transformer with new core structure for contactless electric vehicle power transfer system, in Energy Conversion Congress and Exposition (ECCE), IEEE, Sept, pp [] K. van Schuylenbergh and R. Puers, Inductive Powering, Basic ory and Application to Biomedical Systems. Springer, 9.

7 [] G. Kkelis, D. C. Yates, and P. D. Mitcheson, Comparison of current driven class-d and class-e half-wave rectifiers for 6.78 MHz high power IPT applications, in Wireless Power Transfer Conf. (WPTC), 5 IEEE, May 5. [] D. C. Yates, A. S. Holmes, and A. J. Burdett, Optimal transmission frequency for ultralow-power short-range radio links, IEEE Trans. Circuits Syst. I, vol. 5, no. 7, pp. 5, July. [5] J. Lawson, M. Pinuela, D. C. Yates, S. Lucyszyn, and P. D. Mitcheson, Long range inductive power transfer system, Journal of Physics: Conference Series, vol. 76, no., p. 5,. [6] (5, January) IXYS RF IXZDFN RF Power MOSFET & DRIVER. [Online]. Available: ixzdfn.pdf [7] (5, January) International Rectifier IRFB8PbF HEXFET Power MOSFET. [Online]. Available: datasheets/data/irfb8pbf.pdf [8] (5, January) Cree CD7H - Silicon Carbide Schottky Diode. [Online]. Available: Data%Sheets/CD7H.pdf [9] M. Pinuela, D. C. Yates, S. Lucyszyn, and P. D. Mitcheson, Maximizing DC-to-load efficiency for inductive power transfer, IEEE Trans. Power Electron., vol. 8, no. 5, pp. 7 7, May. [] S. Aldhaher, P. C.-K. Luk, and J. F. Whidborne, Tuning class E inverters applied in inductive links using saturable reactors, IEEE Trans. Power Electron., vol. 9, no. 6, pp , June. [] Z. Kaczmarczyk, High-efficiency class E, EF, and E/F inverters, IEEE Trans. Ind. Electron., vol. 5, no. 5, pp , Oct 6. [] S. D. Kee, I. Aoki, A. Hajimiri, and D. Rutledge, class-e/f family of ZVS switching amplifiers, IEEE Trans. Microw. ory Tech., vol. 5, no. 6, pp , June. [] S. Aldhaher, G. Kkelis, D. C. Yates, and P. D. Mitcheson, Class EF inverters for wireless power transfer applications, in Wireless Power Transfer Conf. (WPTC), 5 IEEE, May 5. [] G. Kkelis, J. Lawson, D. C. Yates, M. Pinuela, and P. D. Mitcheson, Integration of a class-e low dv/dt rectifer in a wireless power transfer system, in Wireless Power Transfer Conf. (WPTC), IEEE, May, pp [5] A. Ivascu, M. K. Kazimierczuk, and S. Birca-Galateanu, Class E resonant low dv/dt rectifier, IEEE Trans. Circuits Syst. I, vol. 9, no. 8, pp. 6 6, Aug 99. [6] C. H. Kwan, J. Lawson, D. C. Yates, and P. D. Mitcheson, Positioninsensitive long range inductive power transfer, Journal of Physics: Conference Series, vol. 557, no., p. 5,. [7] European Union, Directive /5/EU of the European Parliament and of the Council of 6 June on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields) (th individual directive within the meaning of Article 6() of Directive 89/9/EEC) and repealing Directive //EC. in Official Journal of the European Union, vol. 56, no. L79, June, pp.. [8] International Commission on Non-Ionizing Radiation Protection, Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to GHz), in Health Physics, vol. 7, no., 998, pp [9] International Commission on Non-Ionizing Radiation Protection, Guidelines for limiting exposure to time-varying electric and magnetic fields ( Hz - khz), in Health Physics, vol. 99, no. 6,, pp

Link Efficiency-Led Design of Mid-Range Inductive Power Transfer Systems

Link Efficiency-Led Design of Mid-Range Inductive Power Transfer Systems Link Efficiency-Led Design of Mid-Range Inductive Power Transfer Systems Christopher H. Kwan, George Kkelis, Samer Aldhaher, James Lawson, David C. Yates, Patrick C.-K. Luk, and Paul D. Mitcheson Department

More information

Inverter and Rectifier Design for Inductive Power Transfer COST WIPE Summer School, Bologna, April 2016

Inverter and Rectifier Design for Inductive Power Transfer COST WIPE Summer School, Bologna, April 2016 Inverter and Rectifier Design for Inductive Power Transfer COST WIPE Summer School, Bologna, April 2016 Paul D. Mitcheson Department of Electrical and Electronic Engineering, Imperial College London, U.K.

More information

Inductive Power Transfer in the MHz ISM bands: Drones without batteries

Inductive Power Transfer in the MHz ISM bands: Drones without batteries Inductive Power Transfer in the MHz ISM bands: Drones without batteries Paul D. Mitcheson, S. Aldhaher, Juan M. Arteaga, G. Kkelis and D. C. Yates EH017, Manchester 1 The Concept 3 Challenges for Drone

More information

Power Electronics for Inductive Power Transfer Systems

Power Electronics for Inductive Power Transfer Systems Power Electronics for Inductive Power Transfer Systems George Kkelis g.kkelis13@imperial.ac.uk Power Electronics Centre Imperial Open Day, July 2015 System Overview Transmitting End Inductive Link Receiving

More information

Multi-Frequency Class-D Inverter for Rectifier Characterisation in High Frequency Inductive Power Transfer Systems

Multi-Frequency Class-D Inverter for Rectifier Characterisation in High Frequency Inductive Power Transfer Systems Multi-Frequency Class-D Inverter for Rectifier Characterisation in High Frequency Inductive Power Transfer Systems George Kkelis, David C. Yates, Paul D. Mitcheson Electrical & Electronic Engineering Department,

More information

Power Electronics for Inductive Power Transfer Systems. George Kkelis, PhD Student (Yr2) 02 Sept 2015

Power Electronics for Inductive Power Transfer Systems. George Kkelis, PhD Student (Yr2) 02 Sept 2015 Power Electronics for Inductive Power Transfer Systems George Kkelis, PhD Student (Yr) g.kkelis13@imperial.ac.uk Sept 15 Introduction IPT System Set-Up: TX DC Load Inverter Power Meter ectifier Wireless

More information

8322 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 32, NO. 11, NOVEMBER Class-E Half-Wave Zero dv/dt Rectifiers for Inductive Power Transfer

8322 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 32, NO. 11, NOVEMBER Class-E Half-Wave Zero dv/dt Rectifiers for Inductive Power Transfer 8322 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 32, NO. 11, NOVEMBER 2017 Class-E Half-Wave Zero dv/dt Rectifiers for Inductive Power Transfer George Kkelis, Student Member, IEEE, David C. Yates, Member,

More information

WEAKLY coupled inductive links, Fig. 1, tend to operate. Class-E Half-Wave Zero dv/dt Rectifiers for Inductive Power Transfer

WEAKLY coupled inductive links, Fig. 1, tend to operate. Class-E Half-Wave Zero dv/dt Rectifiers for Inductive Power Transfer 1 Class-E Half-Wave Zero dv/dt Rectifiers for Inductive Power Transfer George Kkelis, Student Member, IEEE, David C. Yates, Member, IEEE, and Paul D. Mitcheson, Senior Member, IEEE. Abstract This paper

More information

Methods for Reducing Leakage Electric Field of a Wireless Power Transfer System for Electric Vehicles

Methods for Reducing Leakage Electric Field of a Wireless Power Transfer System for Electric Vehicles Methods for Reducing Leakage Electric Field of a Wireless Power Transfer System for Electric Vehicles Masaki Jo, Yukiya Sato, Yasuyoshi Kaneko, Shigeru Abe Graduate School of Science and Engineering Saitama

More information

Efficiency Improvement of High Frequency Inverter for Wireless Power Transfer System Using a Series Reactive Power Compensator

Efficiency Improvement of High Frequency Inverter for Wireless Power Transfer System Using a Series Reactive Power Compensator IEEE PEDS 27, Honolulu, USA 2-5 December 27 Efficiency Improvement of High Frequency Inverter for Wireless Power Transfer System Using a Series Reactive Power Compensator Jun Osawa Graduate School of Pure

More information

Long range inductive power transfer system

Long range inductive power transfer system Long range inductive power transfer system James Lawson, Manuel Pinuela, David C Yates, Stepan Lucyszyn, and Paul D Mitcheson James Lawson, Electronic and Electrical Engineering Department, Imperial College

More information

10 kw Contactless Power Transfer System. for Rapid Charger of Electric Vehicle

10 kw Contactless Power Transfer System. for Rapid Charger of Electric Vehicle EVS6 Los Angeles, California, May 6-9, 0 0 kw Contactless Power Transfer System for Rapid Charger of Electric Vehicle Tomohiro Yamanaka, Yasuyoshi Kaneko, Shigeru Abe, Tomio Yasuda, Saitama University,

More information

Saturable Inductors For Superior Reflexive Field Containment in Inductive Power Transfer Systems

Saturable Inductors For Superior Reflexive Field Containment in Inductive Power Transfer Systems Saturable Inductors For Superior Reflexive Field Containment in Inductive Power Transfer Systems Alireza Dayerizadeh, Srdjan Lukic Department of Electrical and Computer Engineering North Carolina State

More information

Optimum Mode Operation and Implementation of Class E Resonant Inverter for Wireless Power Transfer Application

Optimum Mode Operation and Implementation of Class E Resonant Inverter for Wireless Power Transfer Application Optimum Mode Operation and Implementation of Class E Resonant Inverter for Wireless Power Transfer Application Monalisa Pattnaik Department of Electrical Engineering National Institute of Technology, Rourkela,

More information

LOW PEAK CURRENT CLASS E RESONANT FULL-WAVE LOW dv/dt RECTIFIER DRIVEN BY A VOLTAGE GENERATOR

LOW PEAK CURRENT CLASS E RESONANT FULL-WAVE LOW dv/dt RECTIFIER DRIVEN BY A VOLTAGE GENERATOR Électronique et transmission de l information LOW PEAK CURRENT CLASS E RESONANT FULL-WAVE LOW dv/dt RECTIFIER DRIVEN BY A VOLTAGE GENERATOR ŞERBAN BÎRCĂ-GĂLĂŢEANU 1 Key words : Power Electronics, Rectifiers,

More information

A Compact Class E Rectifier for Megahertz Wireless Power Transfer

A Compact Class E Rectifier for Megahertz Wireless Power Transfer 1 A ompact lass E ectifier for Megahertz Wireless Power Transfer Ming Liu, Minfan Fu, hengbin Ma University of Michigan-Shanghai Jiao Tong University Joint Institute Shanghai, hina Abstract It is promising

More information

FREQUENCY TRACKING BY SHORT CURRENT DETECTION FOR INDUCTIVE POWER TRANSFER SYSTEM

FREQUENCY TRACKING BY SHORT CURRENT DETECTION FOR INDUCTIVE POWER TRANSFER SYSTEM FREQUENCY TRACKING BY SHORT CURRENT DETECTION FOR INDUCTIVE POWER TRANSFER SYSTEM PREETI V. HAZARE Prof. R. Babu Vivekananda Institute of Technology and Vivekananda Institute of Technology Science, Karimnagar

More information

Highly Efficient Resonant Wireless Power Transfer with Active MEMS Impedance Matching

Highly Efficient Resonant Wireless Power Transfer with Active MEMS Impedance Matching Highly Efficient Resonant Wireless Power Transfer with Active MEMS Impedance Matching Bernard Ryan Solace Power Mount Pearl, NL, Canada bernard.ryan@solace.ca Marten Seth Menlo Microsystems Irvine, CA,

More information

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor 770 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 48, NO. 4, AUGUST 2001 A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor Chang-Shiarn Lin, Member, IEEE, and Chern-Lin

More information

SiC MOSFETs Based Split Output Half Bridge Inverter: Current Commutation Mechanism and Efficiency Analysis

SiC MOSFETs Based Split Output Half Bridge Inverter: Current Commutation Mechanism and Efficiency Analysis SiC MOSFETs Based Split Output Half Bridge Inverter: Current Commutation Mechanism and Efficiency Analysis Helong Li, Stig Munk-Nielsen, Szymon Bęczkowski, Xiongfei Wang Department of Energy Technology

More information

Automotive Compatible Single Amplifier Multi-mode Wireless Power for Mobile Devices

Automotive Compatible Single Amplifier Multi-mode Wireless Power for Mobile Devices Automotive Compatible Single Amplifier Multi-mode Wireless Power for Mobile Devices Dr. Michael A. de Rooij Efficient Power Conversion El Segundo, U.S.A. Abstract The proliferation of wireless power products

More information

DC/DC Converters for High Conversion Ratio Applications

DC/DC Converters for High Conversion Ratio Applications DC/DC Converters for High Conversion Ratio Applications A comparative study of alternative non-isolated DC/DC converter topologies for high conversion ratio applications Master s thesis in Electrical Power

More information

AT2596 3A Step Down Voltage Switching Regulators

AT2596 3A Step Down Voltage Switching Regulators FEATURES Standard PSOP-8/TO-220-5L /TO-263-5L Package Adjustable Output Versions Adjustable Version Output Voltage Range 1.23V to 37V V OUT Accuracy is to ± 3% Under Specified Input Voltage the Output

More information

Improvements of LLC Resonant Converter

Improvements of LLC Resonant Converter Chapter 5 Improvements of LLC Resonant Converter From previous chapter, the characteristic and design of LLC resonant converter were discussed. In this chapter, two improvements for LLC resonant converter

More information

A Large Air Gap 3 kw Wireless Power Transfer System for Electric Vehicles

A Large Air Gap 3 kw Wireless Power Transfer System for Electric Vehicles A Large Air Gap 3 W Wireless Power Transfer System for Electric Vehicles Hiroya Taanashi*, Yuiya Sato*, Yasuyoshi Kaneo*, Shigeru Abe*, Tomio Yasuda** *Saitama University, Saitama, Japan ** Technova Inc.,

More information

EMERGING technologies such as wireless power transfer

EMERGING technologies such as wireless power transfer IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 3, NO. 5, MAY 06 345 Modeling and Analysis of Class EF and Class E/F Inverters With Series-Tuned Resonant Networks Samer Aldhaher, David C. Yates, Member, IEEE,

More information

SIMULATION STUDIES OF HALF-BRIDGE ISOLATED DC/DC BOOST CONVERTER

SIMULATION STUDIES OF HALF-BRIDGE ISOLATED DC/DC BOOST CONVERTER POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Adam KRUPA* SIMULATION STUDIES OF HALF-BRIDGE ISOLATED DC/DC BOOST CONVERTER In order to utilize energy from low voltage

More information

Conventional Single-Switch Forward Converter Design

Conventional Single-Switch Forward Converter Design Maxim > Design Support > Technical Documents > Application Notes > Amplifier and Comparator Circuits > APP 3983 Maxim > Design Support > Technical Documents > Application Notes > Power-Supply Circuits

More information

AT7450 2A-60V LED Step-Down Converter

AT7450 2A-60V LED Step-Down Converter FEATURES DESCRIPTION IN Max = 60 FB = 200m Frequency 52kHz I LED Max 2A On/Off input may be used for the Analog Dimming Thermal protection Cycle-by-cycle current limit I LOAD max =2A OUT from 0.2 to 55

More information

SINGLE-STAGE HIGH-POWER-FACTOR SELF-OSCILLATING ELECTRONIC BALLAST FOR FLUORESCENT LAMPS WITH SOFT START

SINGLE-STAGE HIGH-POWER-FACTOR SELF-OSCILLATING ELECTRONIC BALLAST FOR FLUORESCENT LAMPS WITH SOFT START SINGLE-STAGE HIGH-POWER-FACTOR SELF-OSCILLATING ELECTRONIC BALLAST FOR FLUORESCENT S WITH SOFT START Abstract: In this paper a new solution to implement and control a single-stage electronic ballast based

More information

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER 1 Aravind Murali, 2 Mr.Benny.K.K, 3 Mrs.Priya.S.P 1 PG Scholar, 2 Associate Professor, 3 Assistant Professor Abstract - This paper proposes a highly efficient

More information

Two-output Class E Isolated dc-dc Converter at 5 MHz Switching Frequency 1 Z. Pavlović, J.A. Oliver, P. Alou, O. Garcia, R.Prieto, J.A.

Two-output Class E Isolated dc-dc Converter at 5 MHz Switching Frequency 1 Z. Pavlović, J.A. Oliver, P. Alou, O. Garcia, R.Prieto, J.A. Two-output Class E Isolated dc-dc Converter at 5 MHz Switching Frequency 1 Z. Pavlović, J.A. Oliver, P. Alou, O. Garcia, R.Prieto, J.A. Cobos Universidad Politécnica de Madrid Centro de Electrónica Industrial

More information

CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE

CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE 40 CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE 2.1 INTRODUCTION Interleaving technique in the boost converter effectively reduces the ripple current

More information

SiC Power Schottky Diodes in Power Factor Correction Circuits

SiC Power Schottky Diodes in Power Factor Correction Circuits SiC Power Schottky Diodes in Power Factor Correction Circuits By Ranbir Singh and James Richmond Introduction Electronic systems operating in the -12 V range currently utilize silicon (Si) PiN diodes,

More information

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications WHITE PAPER High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications Written by: C. R. Swartz Principal Engineer, Picor Semiconductor

More information

Transcutaneous Energy Transmission Based Wireless Energy Transfer to Implantable Biomedical Devices

Transcutaneous Energy Transmission Based Wireless Energy Transfer to Implantable Biomedical Devices Transcutaneous Energy Transmission Based Wireless Energy Transfer to Implantable Biomedical Devices Anand Garg, Lakshmi Sridevi B.Tech, Dept. of Electronics and Instrumentation Engineering, SRM University

More information

Chapter 6 Soft-Switching dc-dc Converters Outlines

Chapter 6 Soft-Switching dc-dc Converters Outlines Chapter 6 Soft-Switching dc-dc Converters Outlines Classification of soft-switching resonant converters Advantages and disadvantages of ZCS and ZVS Zero-current switching topologies The resonant switch

More information

Designers Series XII. Switching Power Magazine. Copyright 2005

Designers Series XII. Switching Power Magazine. Copyright 2005 Designers Series XII n this issue, and previous issues of SPM, we cover the latest technologies in exotic high-density power. Most power supplies in the commercial world, however, are built with the bread-and-butter

More information

GaN in Practical Applications

GaN in Practical Applications in Practical Applications 1 CCM Totem Pole PFC 2 PFC: applications and topology Typical AC/DC PSU 85-265 V AC 400V DC for industrial, medical, PFC LLC 12, 24, 48V DC telecomm and server applications. PFC

More information

GaN is Crushing Silicon. EPC - The Leader in GaN Technology IEEE PELS

GaN is Crushing Silicon. EPC - The Leader in GaN Technology IEEE PELS GaN is Crushing Silicon EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 1 Agenda How egan FETs work Hard Switched DC-DC converters High Efficiency point-of-load converter Envelope Tracking

More information

Incorporating Active-Clamp Technology to Maximize Efficiency in Flyback and Forward Designs

Incorporating Active-Clamp Technology to Maximize Efficiency in Flyback and Forward Designs Topic 2 Incorporating Active-Clamp Technology to Maximize Efficiency in Flyback and Forward Designs Bing Lu Agenda 1. Basic Operation of Flyback and Forward Converters 2. Active Clamp Operation and Benefits

More information

Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies

Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies 1 Definitions EMI = Electro Magnetic Interference EMC = Electro Magnetic Compatibility (No EMI) Three Components

More information

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES 47 CHAPTER 3 DC-DC CONVERTER TOPOLOGIES 3.1 INTRODUCTION In recent decades, much research efforts are directed towards finding an isolated DC-DC converter with high volumetric power density, low electro

More information

Voltage Fed DC-DC Converters with Voltage Doubler

Voltage Fed DC-DC Converters with Voltage Doubler Chapter 3 Voltage Fed DC-DC Converters with Voltage Doubler 3.1 INTRODUCTION The primary objective of the research pursuit is to propose and implement a suitable topology for fuel cell application. The

More information

Mitigation of Common mode Noise for PFC Boost Converter by Balancing Technique

Mitigation of Common mode Noise for PFC Boost Converter by Balancing Technique Mitigation of Common mode Noise for PFC Boost Converter by Balancing Technique Nasir *, Jon Cobb *Faculty of Science and Technology, Bournemouth University, Poole, UK, nasir@bournemouth.ac.uk, Faculty

More information

Two-Transmitter Wireless Power Transfer with LCL Circuit for Continuous Power in Dynamic Charging

Two-Transmitter Wireless Power Transfer with LCL Circuit for Continuous Power in Dynamic Charging Two-Transmitter Wireless Power Transfer with LCL Circuit for Continuous Power in Dynamic Charging Abstract Wireless power transfer is a safe and convenient method for charging electric vehicles (EV). Dynamic

More information

Comparison Between two Single-Switch Isolated Flyback and Forward High-Quality Rectifiers for Low Power Applications

Comparison Between two Single-Switch Isolated Flyback and Forward High-Quality Rectifiers for Low Power Applications Comparison Between two ingle-witch Isolated Flyback and Forward High-Quality Rectifiers for Low Power Applications G. piazzi,. Buso Department of Electronics and Informatics - University of Padova Via

More information

Vishay Siliconix AN724 Designing A High-Frequency, Self-Resonant Reset Forward DC/DC For Telecom Using Si9118/9 PWM/PSM Controller.

Vishay Siliconix AN724 Designing A High-Frequency, Self-Resonant Reset Forward DC/DC For Telecom Using Si9118/9 PWM/PSM Controller. AN724 Designing A High-Frequency, Self-Resonant Reset Forward DC/DC For Telecom Using Si9118/9 PWM/PSM Controller by Thong Huynh FEATURES Fixed Telecom Input Voltage Range: 30 V to 80 V 5-V Output Voltage,

More information

HIGH FREQUENCY CLASS DE CONVERTER USING A MULTILAYER CORELESS PCB TRANSFORMER

HIGH FREQUENCY CLASS DE CONVERTER USING A MULTILAYER CORELESS PCB TRANSFORMER HIGH FREQUENCY CLASS DE CONVERTER USING A MULTILAYER CORELESS PCB TRANSFORMER By Somayeh Abnavi A thesis submitted to the Department of Electrical and Computer Engineering In conformity with the requirements

More information

1200 V SiC Super Junction Transistors operating at 250 C with extremely low energy losses for power conversion applications

1200 V SiC Super Junction Transistors operating at 250 C with extremely low energy losses for power conversion applications 1200 V SiC Super Junction Transistors operating at 250 C with extremely low energy losses for power conversion applications Ranbir Singh, Siddarth Sundaresan, Eric Lieser and Michael Digangi GeneSiC Semiconductor,

More information

Efficient Power Conversion Corporation

Efficient Power Conversion Corporation The egan FET Journey Continues Wireless Energy Transfer Technology Drivers Michael de Rooij Efficient Power Conversion Corporation EPC - The Leader in egan FETs ECTC 2014 www.epc-co.com 1 Agenda Overview

More information

AN726. Vishay Siliconix AN726 Design High Frequency, Higher Power Converters With Si9166

AN726. Vishay Siliconix AN726 Design High Frequency, Higher Power Converters With Si9166 AN726 Design High Frequency, Higher Power Converters With Si9166 by Kin Shum INTRODUCTION The Si9166 is a controller IC designed for dc-to-dc conversion applications with 2.7- to 6- input voltage. Like

More information

3A Step-Down Voltage Regulator

3A Step-Down Voltage Regulator 3A Step-Down Voltage Regulator DESCRIPITION The is monolithic integrated circuit that provides all the active functions for a step-down(buck) switching regulator, capable of driving 3A load with excellent

More information

Study of Power Loss Reduction in SEPR Converters for Induction Heating through Implementation of SiC Based Semiconductor Switches

Study of Power Loss Reduction in SEPR Converters for Induction Heating through Implementation of SiC Based Semiconductor Switches Study of Power Loss Reduction in SEPR Converters for Induction Heating through Implementation of SiC Based Semiconductor Switches Angel Marinov 1 1 Technical University of Varna, Studentska street 1, Varna,

More information

PCB layout guidelines. From the IGBT team at IR September 2012

PCB layout guidelines. From the IGBT team at IR September 2012 PCB layout guidelines From the IGBT team at IR September 2012 1 PCB layout and parasitics Parasitics (unwanted L, R, C) have much influence on switching waveforms and losses. The IGBT itself has its own

More information

Integration of Supercapacitors into Wirelessly Charged Biomedical Sensors

Integration of Supercapacitors into Wirelessly Charged Biomedical Sensors Integration of s into Wirelessly Charged Biomedical Sensors Amit Pandey, Fadi Allos, Aiguo Patrick Hu, David Budgett The Department of Electrical and Computer Engineering The University of Auckland Auckland,

More information

Impact of inductor current ringing in DCM on output voltage of DC-DC buck power converters

Impact of inductor current ringing in DCM on output voltage of DC-DC buck power converters ARCHIVES OF ELECTRICAL ENGINEERING VOL. 66(2), pp. 313-323 (2017) DOI 10.1515/aee-2017-0023 Impact of inductor current ringing in DCM on output voltage of DC-DC buck power converters MARCIN WALCZAK Department

More information

Performance Comparison for A4WP Class-3 Wireless Power Compliance between egan FET and MOSFET in a ZVS Class D Amplifier

Performance Comparison for A4WP Class-3 Wireless Power Compliance between egan FET and MOSFET in a ZVS Class D Amplifier The egan FET Journey Continues Performance Comparison for A4WP Class-3 Wireless Power Compliance between egan FET and MOSFET in a ZVS Class D Amplifier EPC - The leader in GaN Technology www.epc-co.com

More information

2A 150KHZ PWM Buck DC/DC Converter. Features

2A 150KHZ PWM Buck DC/DC Converter. Features General Description The is a of easy to use adjustable step-down (buck) switch-mode voltage regulator. The device is available in an adjustable output version. It is capable of driving a 2A load with excellent

More information

Experimental study of snubber circuit design for SiC power MOSFET devices

Experimental study of snubber circuit design for SiC power MOSFET devices Computer Applications in Electrical Engineering Vol. 13 2015 Experimental study of snubber circuit design for SiC power MOSFET devices Łukasz J. Niewiara, Michał Skiwski, Tomasz Tarczewski Nicolaus Copernicus

More information

Differential-Mode Emissions

Differential-Mode Emissions Differential-Mode Emissions In Fig. 13-5, the primary purpose of the capacitor C F, however, is to filter the full-wave rectified ac line voltage. The filter capacitor is therefore a large-value, high-voltage

More information

High-Efficiency Forward Transformer Reset Scheme Utilizes Integrated DC-DC Switcher IC Function

High-Efficiency Forward Transformer Reset Scheme Utilizes Integrated DC-DC Switcher IC Function High-Efficiency Forward Transformer Reset Scheme Utilizes Integrated DC-DC Switcher IC Function Author: Tiziano Pastore Power Integrations GmbH Germany Abstract: This paper discusses a simple high-efficiency

More information

Motivation. Approach. Requirements. Optimal Transmission Frequency for Ultra-Low Power Short-Range Medical Telemetry

Motivation. Approach. Requirements. Optimal Transmission Frequency for Ultra-Low Power Short-Range Medical Telemetry Motivation Optimal Transmission Frequency for Ultra-Low Power Short-Range Medical Telemetry Develop wireless medical telemetry to allow unobtrusive health monitoring Patients can be conveniently monitored

More information

Switch Mode Power Supplies and their Magnetics

Switch Mode Power Supplies and their Magnetics Switch Mode Power Supplies and their Magnetics Many factors must be considered by designers when choosing the magnetic components required in today s electronic power supplies In today s day and age the

More information

AN Analog Power USA Applications Department

AN Analog Power USA Applications Department Using MOSFETs for Synchronous Rectification The use of MOSFETs to replace diodes to reduce the voltage drop and hence increase efficiency in DC DC conversion circuits is a concept that is widely used due

More information

Reduction in Radiation Noise Level for Inductive Power Transfer System with Spread Spectrum

Reduction in Radiation Noise Level for Inductive Power Transfer System with Spread Spectrum 216963 Reduction in Radiation Noise Level for Inductive Power Transfer System with Spread Spectrum 16mm Keisuke Kusaka 1) Kent Inoue 2) Jun-ichi Itoh 3) 1) Nagaoka University of Technology, Energy and

More information

Digital Control for Power Electronics 2.0

Digital Control for Power Electronics 2.0 Digital Control for Power Electronics 2.0 Michael Harrison 9 th November 2017 Driving Factors for Improved SMPS Control 2 End market requirements for improved SMPS performance: Power conversion efficiency

More information

Temperature-Dependent Characterization of SiC Power Electronic Devices

Temperature-Dependent Characterization of SiC Power Electronic Devices Temperature-Dependent Characterization of SiC Power Electronic Devices Madhu Sudhan Chinthavali 1 chinthavalim@ornl.gov Burak Ozpineci 2 burak@ieee.org Leon M. Tolbert 2, 3 tolbert@utk.edu 1 Oak Ridge

More information

CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES

CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES Chapter-3 CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES This chapter is based on the published articles, 1. Nitai Pal, Pradip Kumar Sadhu, Dola Sinha and Atanu Bandyopadhyay, Selection

More information

Design considerations for a Half- Bridge LLC resonant converter

Design considerations for a Half- Bridge LLC resonant converter Design considerations for a Half- Bridge LLC resonant converter Why an HB LLC converter Agenda Configurations of the HB LLC converter and a resonant tank Operating states of the HB LLC HB LLC converter

More information

Designing reliable and high density power solutions with GaN. Created by: Masoud Beheshti Presented by: Paul L Brohlin

Designing reliable and high density power solutions with GaN. Created by: Masoud Beheshti Presented by: Paul L Brohlin Designing reliable and high density power solutions with GaN Created by: Masoud Beheshti Presented by: Paul L Brohlin What will I get out of this presentation? Why GaN? Integration for System Performance

More information

SiC Transistor Basics: FAQs

SiC Transistor Basics: FAQs SiC Transistor Basics: FAQs Silicon Carbide (SiC) MOSFETs exhibit higher blocking voltage, lower on state resistance and higher thermal conductivity than their silicon counterparts. Oct. 9, 2013 Sam Davis

More information

Three-phase soft-switching inverter with coupled inductors, experimental results

Three-phase soft-switching inverter with coupled inductors, experimental results BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 59, No. 4, 2011 DOI: 10.2478/v10175-011-0065-3 POWER ELECTRONICS Three-phase soft-switching inverter with coupled inductors, experimental

More information

The 2014 International Power Electronics Conference Contactless Power Transfer System Suitable for Low Voltage and Large Current Charging for EDLCs Ta

The 2014 International Power Electronics Conference Contactless Power Transfer System Suitable for Low Voltage and Large Current Charging for EDLCs Ta Contactless Power Transfer System Suitable for ow Voltage and arge Current Charging for EDCs Takahiro Kudo, Takahiro Toi, Yasuyoshi Kaneko, Shigeru Abe Department of Electrical and Electronic Systems Saitama

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

Long Range Passive RF-ID Tag With UWB Transmitter

Long Range Passive RF-ID Tag With UWB Transmitter Long Range Passive RF-ID Tag With UWB Transmitter Seunghyun Lee Seunghyun Oh Yonghyun Shim seansl@umich.edu austeban@umich.edu yhshim@umich.edu About RF-ID Tag What is a RF-ID Tag? An object for the identification

More information

Hybrid Impedance Matching Strategy for Wireless Charging System

Hybrid Impedance Matching Strategy for Wireless Charging System Hybrid Impedance Matching Strategy for Wireless Charging System Ting-En Lee Automotive Research and Testing Center Research and Development Division Changhua County, Taiwan(R.O.C) leetn@artc.org.tw Tzyy-Haw

More information

Impulse Transformer Based Secondary-Side Self- Powered Gate-Driver for Wide-Range PWM Operation of SiC Power MOSFETs

Impulse Transformer Based Secondary-Side Self- Powered Gate-Driver for Wide-Range PWM Operation of SiC Power MOSFETs Impulse Transformer Based Secondary-Side Self- Powered Gate-Driver for Wide-Range PWM Operation of SiC Power MOSFETs Jorge Garcia Dept of Electrical Engineering, University of Oviedo LEMUR Research Group

More information

Compact Contactless Power Transfer System for Electric Vehicles

Compact Contactless Power Transfer System for Electric Vehicles The International Power Electronics Conference Compact Contactless Power Transfer System for Electric Vehicles Y. Nagatsua*, N. Ehara*, Y. Kaneo*, S. Abe* and T. Yasuda** * Saitama University, 55 Shimo-Oubo,

More information

A High Step-Up DC-DC Converter

A High Step-Up DC-DC Converter A High Step-Up DC-DC Converter Krishna V Department of Electrical and Electronics Government Engineering College Thrissur. Kerala Prof. Lalgy Gopy Department of Electrical and Electronics Government Engineering

More information

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams.

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams. POWER ELECTRONICS QUESTION BANK Unit 1: Introduction 1. Explain the control characteristics of SCR and GTO with circuit diagrams, and waveforms of control signal and output voltage. 2. Explain the different

More information

Small-Size Light-Weight Transformer with New Core Structure for Contactless Electric Vehicle Power Transfer System

Small-Size Light-Weight Transformer with New Core Structure for Contactless Electric Vehicle Power Transfer System Small-Size ight-weight Transformer with New Core Structure for Contactless Electric Vehicle Power Transfer System Masato Chigira*, Yuichi Nagatsuka*, Yasuyoshi Kaneko*, Shigeru Abe*, Tomio Yasuda**, and

More information

A High-efficiency Matching Technique for Low Power Levels in RF Harvesting

A High-efficiency Matching Technique for Low Power Levels in RF Harvesting 1806 PIERS Proceedings, Stockholm, Sweden, Aug. 12 15, 2013 A High-efficiency Matching Technique for Low Power Levels in RF Harvesting I. Anchustegui-Echearte 1, D. Jiménez-López 1, M. Gasulla 1, F. Giuppi

More information

S.Tiwari, O.-M. Midtgård and T. M. Undeland Norwegian University of Science and Technology 7491 Trondheim, Norway

S.Tiwari, O.-M. Midtgård and T. M. Undeland Norwegian University of Science and Technology 7491 Trondheim, Norway Experimental Performance Comparison of Six-Pack SiC MOSFET and Si IGBT Modules Paralleled in a Half-Bridge Configuration for High Temperature Applications S.Tiwari, O.-M. Midtgård and T. M. Undeland Norwegian

More information

PART MAX2605EUT-T MAX2606EUT-T MAX2607EUT-T MAX2608EUT-T MAX2609EUT-T TOP VIEW IND GND. Maxim Integrated Products 1

PART MAX2605EUT-T MAX2606EUT-T MAX2607EUT-T MAX2608EUT-T MAX2609EUT-T TOP VIEW IND GND. Maxim Integrated Products 1 19-1673; Rev 0a; 4/02 EVALUATION KIT MANUAL AVAILABLE 45MHz to 650MHz, Integrated IF General Description The are compact, high-performance intermediate-frequency (IF) voltage-controlled oscillators (VCOs)

More information

Evaluation and Applications of 600V/650V Enhancement-Mode GaN Devices

Evaluation and Applications of 600V/650V Enhancement-Mode GaN Devices Evaluation and Applications of 600V/650V Enhancement-Mode GaN Devices Xiucheng Huang, Tao Liu, Bin Li, Fred C. Lee, and Qiang Li Center for Power Electronics Systems, Virginia Tech Blacksburg, VA, USA

More information

EVALUATION KIT AVAILABLE 28V, PWM, Step-Up DC-DC Converter PART V IN 3V TO 28V

EVALUATION KIT AVAILABLE 28V, PWM, Step-Up DC-DC Converter PART V IN 3V TO 28V 19-1462; Rev ; 6/99 EVALUATION KIT AVAILABLE 28V, PWM, Step-Up DC-DC Converter General Description The CMOS, PWM, step-up DC-DC converter generates output voltages up to 28V and accepts inputs from +3V

More information

In addition to the power circuit a commercial power supply will require:

In addition to the power circuit a commercial power supply will require: Power Supply Auxiliary Circuits In addition to the power circuit a commercial power supply will require: -Voltage feedback circuits to feed a signal back to the error amplifier which is proportional to

More information

Analysis and Design of Soft Switched DC-DC Converters for Battery Charging Application

Analysis and Design of Soft Switched DC-DC Converters for Battery Charging Application ISSN (Online) : 239-8753 ISSN (Print) : 2347-67 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 24 24 International Conference on Innovations

More information

Investigation of Electromagnetic Field Coupling from DC-DC Buck Converters to Automobile AM/FM Antennas

Investigation of Electromagnetic Field Coupling from DC-DC Buck Converters to Automobile AM/FM Antennas CST North American Automotive Workshop Investigation of Electromagnetic Field Coupling from DC-DC Buck Converters to Automobile AM/FM Antennas Patrick DeRoy, CST of America, Framingham, Massachusetts,

More information

Impact of Fringing Effects on the Design of DC-DC Converters

Impact of Fringing Effects on the Design of DC-DC Converters Impact of Fringing Effects on the Design of DC-DC Converters Michael Seeman, Ph.D. Founder / CEO. 2018 APEC PSMA/PELS 2018. Outline Fringe-field loss: What does a power supply designer need to know? Which

More information

New lossless clamp for single ended converters

New lossless clamp for single ended converters New lossless clamp for single ended converters Nigel Machin & Jurie Dekter Rectifier Technologies Pacific 24 Harker St Burwood, Victoria, 3125 Australia information@rtp.com.au Abstract A clamp for single

More information

Design Methodology of The Power Receiver with High Efficiency and Constant Output Voltage for Megahertz Wireless Power Transfer

Design Methodology of The Power Receiver with High Efficiency and Constant Output Voltage for Megahertz Wireless Power Transfer Design Methodology of The Power Receiver with High Efficiency and Constant Output Voltage for Megahertz Wireless Power Transfer 1 st Jibin Song Univ. of Michigan-Shanghai Jiao Tong Univ. Joint Institute

More information

ZCS-PWM Converter for Reducing Switching Losses

ZCS-PWM Converter for Reducing Switching Losses IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 1 Ver. III (Jan. 2014), PP 29-35 ZCS-PWM Converter for Reducing Switching Losses

More information

Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design procedure and concern

Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design procedure and concern Active Clamp Forward Converters Design Using UCC2897 Hong Huang August 2007 1 Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design

More information

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application Thomas Mathew.T PG Student, St. Joseph s College of Engineering, C.Naresh, M.E.(P.hd) Associate Professor, St.

More information

International Journal of Engineering Science Invention Research & Development; Vol. II Issue VIII February e-issn:

International Journal of Engineering Science Invention Research & Development; Vol. II Issue VIII February e-issn: ANALYSIS AND DESIGN OF SOFT SWITCHING BASED INTERLEAVED FLYBACK CONVERTER FOR PHOTOVOLTAIC APPLICATIONS K.Kavisindhu 1, P.Shanmuga Priya 2 1 PG Scholar, 2 Assistant Professor, Department of Electrical

More information

SIMULATION OF HIGH-EFFICIENCY INTERLEAVED STEP-UP DC-DC BOOST-FLYBACK CONVERTER TO USE IN PHOTOVOLTAIC SYSTEM

SIMULATION OF HIGH-EFFICIENCY INTERLEAVED STEP-UP DC-DC BOOST-FLYBACK CONVERTER TO USE IN PHOTOVOLTAIC SYSTEM POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 79 Electrical Engineering 2014 Adam TOMASZUK* SIMULATION OF HIGH-EFFICIENCY INTERLEAVED STEP-UP DC-DC BOOST-FLYBACK CONVERTER TO USE IN PHOTOVOLTAIC

More information

LM78S40 Switching Voltage Regulator Applications

LM78S40 Switching Voltage Regulator Applications LM78S40 Switching Voltage Regulator Applications Contents Introduction Principle of Operation Architecture Analysis Design Inductor Design Transistor and Diode Selection Capacitor Selection EMI Design

More information

Novel Soft-Switching DC DC Converter with Full ZVS-Range and Reduced Filter Requirement Part I: Regulated-Output Applications

Novel Soft-Switching DC DC Converter with Full ZVS-Range and Reduced Filter Requirement Part I: Regulated-Output Applications 184 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 2, MARCH 2001 Novel Soft-Switching DC DC Converter with Full ZVS-Range and Reduced Filter Requirement Part I: Regulated-Output Applications Rajapandian

More information