CHAPTER-6 MEASUREMENT OF SHAFT VOLTAGE AND BEARING CURRENT IN 2, 3 AND 5-LEVEL INVERTER FED INDUCTION MOTOR DRIVE

Size: px
Start display at page:

Download "CHAPTER-6 MEASUREMENT OF SHAFT VOLTAGE AND BEARING CURRENT IN 2, 3 AND 5-LEVEL INVERTER FED INDUCTION MOTOR DRIVE"

Transcription

1 12 CHAPTER-6 MEASUREMENT OF SHAFT VOLTAGE AND BEARING CURRENT IN 2, 3 AND 5-LEVEL INVERTER FED INDUCTION MOTOR DRIVE 6.1. INTRODUCTION Though the research work is concerned with the measurement of CM voltage, as a spillover the shaft voltage and the bearing current has been measured. Due to the CM voltage at the star point of stator winding of an IM, a voltage is induced in the rotor because of capacitive/inductive coupling. Since the rotor conductors are short circuited the current will circulate in the rotor and also tries to flow to the general ground through the bearing. The fast switching action of the inverter devices can cause high frequency noise voltage transients which induce capacitive coupling from rotor to the ground through the bearing and hence called the capacitive currents. These high frequency currents from the rotor will flow through the bearing to the ground [23, 36 & 61]. These currents through the bearing causes electrical discharge machining (EDM) in the inner surface of the bearing and in turn reduce the life of the bearing. This chapter presents the experimental measurement of the rotor shaft voltage and bearing current for a modified 3- phase squirrel cage IM connected to an inverter. Experiments have been carried out on 2- level, 3-level and 5-level inverter fed IM drives in SVM scheme. PIC µ- controller was used to generate SVM pulses along with other associated electronic interface circuits to operate the 2-level, 3- level and 5-level

2 121 inverter. Necessary converter circuits were fabricated and tested for giving the proper DC voltage to the inverter. Standard current probe, LISN, high frequency 4-channel MSO with differential probes were used to measure the shaft voltage, bearing current and other parameters. The graphs were plotted showing Frequency vs shaft voltage in Volts & dbµv and the bearing current in dbµa using the signal analysis software and compared the results LITERATURE SURVEY It was observed by the researchers that the occurrence of bearing failures among IM driven by inverters is much more frequent than those driven by 5/6 Hz utility supply [26]. A survey conducted by references [1,3, 4, 5 & 24] indicates that the inverter-fed motors have a greater probability of bearing breakdown than the 5/6 Hz line-fed motors. The concept of bearing currents in variable speed drive systems using Converter-Inverter is due to the existence of CM voltage and also by fast switching ON and OFF of the inverter devices has been reported for almost a decade [23, 36 and 43]. Annette Muetze et al. [5] reports that the induced bearing currents, the ground currents can be from the influence of CM voltage and the capacitance between stator and rotor windings with high dv/dt at the input to the IM terminals [1,3 & 67]. D. Busse, et.al [25] has also explained about the characteristics of induced shaft voltage in the IM due to converter-inverter adjustable speed drive system.

3 122 Due to the recent advancement of adjustable-speed drives, with VSI, mechanism of inducing shaft voltages and bearing currents are due to the voltage transients exist at the star point of the stator winding of an IM and the ground. As summarized by Chen et. al. [23], [61], there is three general types of motor bearing currents (stator to rotor bearing current, stator winding to ground current, rotor to shaft current) that can be associated with PWM VSI drive. [3, 5 & 67] 6.3. PROPOSED METHOD OF MEASUREMENT OF SHAFT VOLTAGE & BEARING CURRENT The modified IM is shown in the Fig.6.1. [7, 8] The inner diameter of the end plates of the existing motor is slightly increased by machining. Proper insulation is used to isolate the end plates from the main body of the IM. The fixing bolts of the end plates are also made of nonconducting material. Hence the whole rotor is isolated from the main body of the IM [7]. Fig 6.1. Modified IM (Rotor & stator Isolated)

4 123 With this modification, the rotor is floating and the connections to the ground through the current probe are done as shown in the Fig.6.1 [9]. The shaft voltage with respect to the ground and the bearing current in terms of voltage (using current probe) were recorded using the DSO. Fig.4.2. in Chapter-4 Shows the circuit diagram of a 3-level inverter and the corresponding switching states of each phase of the inverter is listed in Chapter-4, Table 4.1. The switching sequence of the 3-level inverter is similar to that of 2- level inverter as discussed in chapter - 2. The circuit diagram of a 5-level NPC inverter is shown in chapter-5, Fig.5.1, and the corresponding switching states of each phase of the inverter are listed in chapter-5, Table 5.1, 6.4. HARDWARE IMPLEMENTATION The hardware implementation of the 2-level, 3-level and the 5-level has been discussed in the chapters 2 to 5. The output of the inverter bridge is given to the IM (3Phase,.37kW, 415VL, 139 rpm, 5Hz, star connection) stator terminals. The, line voltage,cm voltage, shaft voltage, and the bearing current using current probe (in terms of voltage) has been monitored and recorded using 4 channel DSO (5MHz) along with necessary differential probe (2:1). The actual bearing current can be computed from the current probe output voltage is as follows.

5 EXPERIMENTAL RESULTS Fig.6.2. shows the 2-level inverter CM voltage, Line voltage, Vector sum of phase current and the bearing current (in terms of voltage using the current probe). Fig.6.2. is taken from the published result [7] for the same modified IM to show the bearing current. Fig.6.3, ch.3 shows the shaft voltage of 2-level inverter fed IM when the shaft is not grounded. Fig.6.4 shows the 3-level inverter shaft voltage (ch.3) when there is no flow of bearing current. Fig.6.5. ch.4 shows the 3-level inverter bearing current (in terms of voltage using the current probe). Fig.6.6 shows the shaft voltage (ch.3,1:1)at the instant when shaft is grounded through the bearing and bearing current (ch.4)in terms of voltage using current probe for the 5-level NPC inverter. Fig.6.7. shows the shaft voltage (2:1, ch.2) and the CM voltage (2:1, ch.3) when there is no flow of bearing current. From the above recorded waveforms it is easy to measure the magnitude of voltages and it is found to be 142.5Vpeak, 135Vpeak and 13Vpeak for 2,3 and 5-level inverter. Figs 6.8, 6.9 and 6.1 shows the FFT of IM shaft voltage of 58Vpeak, 43Vpeak and 36Vpeak for 2, 3 and 5-level inverter respectively. It is observed from the FFT plots that IM shaft voltage is reduced in 5-level inverter when compared to 3 & 2- level inverters. Similarly Figs. 6.11, 6.12 and 6.13 shows the shaft voltage FFT plots for 2, 3 and 5 level inverters in dbµv respectively which can be used for comparing the results with FCC and CISPR standards in future. It is also observed that the IM shaft voltage is reduced in 5-level inverter

6 125 when compared to 3 & 2- level inverters. Hence it is concluded that as the inverter level increases the shaft voltage reduces. Fig.6.2 DSO recorded waveform (2-level inverter [7]) Ch 1: CM voltage ( diff. probe 2:1), Ch 2: line voltage (diff. probe 2:1), Ch 3: 1 : 1 vector sum of phase current, Ch 4: 1 : 1 bearing current alone using current probe. Fig.6.3. DSO recorded waveforms.(2-level inverter) Ch 3. 2 : 1. Shaft voltage

7 126 Fig DSO recorded waveforms.(3-level inverter) Ch 1: 2 : 1 Phase voltage.ch 2: 2 : 1 wave form of Line voltage Ch 3: 2 : 1 Shaft Voltage with respect to ground. Fig DSO recorded waveforms.(3-level inverter) Ch 1 2 : 1 Phase voltage. Ch 2 2 : 1CM voltage. Ch 4. 1 : 1 Bearing current using the current probe.

8 127 Fig.6.6. DSO recorded waveforms (5-level inverter) Ch 1. 2: 1 line voltage to IM Ch 2: 2 : 1 wave form of CM voltage at IM. Ch 3:1 : 1 shaft voltage of IM Ch 4: 1 : 1 Bearing current Fig.6.7. DSO recorded waveforms (5-level inverter) Ch 1. 2:Phase voltage to IM. Ch 2. 2:1 shaft Voltage. Ch. 3. 2:1 CM Voltage.

9 128 I.M. shaft & gnd. voltage in volts Fig. 6.8 FFT of IM shaft Voltage (2-level inverter) (Published results in SPWM scheme)[7] I.M.shaft & gnd. voltage in volts Fig.6.9. FFT of IM Shaft voltage (3-level inverter)

10 129 4 Amplitude in volts Fig.6.1 FFT of IM shaft voltage in volts (5-level inverter) 25 2 Amplitude in dbµv Fig FFT of shaft voltage in dbµv (2-level inverter)

11 13 2 Amplitude in db µ volts Fig FFT of Shaft voltage in dbµv (3-level inverter) Amplitude in db µv Fig FFT of Shaft voltage in dbµv (5-level inverter)

12 131 Figs to 6.19 show the FFT of Bearing current in ma for 2, 3 and 5- level inverters which include the expanded views also. Here for the 2- level inverter the magnitude of bearing current is found to be 18mA for the fundamental frequency and for other frequencies it is around 1mA average. For 3-level inverter the magnitude of bearing current is found to be 17mA for the fundamental frequency and for other frequencies it is around.6ma average. Similarly for 5-level inverter the magnitude of bearing current is found to be 9mA for the fundamental frequency and for other frequencies it is around.4ma average. Figs. 6.2 to 6.24 show the FFT of Bearing current in dbµa for 2, 3 and 5-level inverters which include the expanded views also..2 bearing current in Amps Fig FFT of bearing current in ma (2-level inverter) (Published result)[7]

13 bearing current in Amps Fig FFT of bearing current in ma in expanded view (2-level inverter) (Published result)[7] 2 bearing current in ma Fig FFT of bearing current in ma (3-level inverter)

14 bearing current in ma Fig FFT of bearing current in ma in expanded view (3-level inverter) 1 bearing current in ma Fig FFT of bearing current in ma (5-level inverter)

15 bearing current in ma Fig FFT of bearing current in ma in expanded view (5-level inverter) 25 Bearing current in db µ A Fig.6.2. FFT of bearing current in dbµa (2-level inverter)

16 135 Fig.6.21 FFT of bearing current in dbµa (3-level inverter) 15 Bearing current in db µ A Fig FFT of Bearing current in dbµa (5-level NPC inverter)

17 136 6 Bearing current in db µ A Fig FFT of Bearing current in dbµa (5 level NPC inverter Expanded view Y -Axis) 6 Bearing current in db µ A Fig.6.24.FFT of Bearing current in dbµa (5 level NPC inverter Expanded view X -Axis)

18 CONCLUSION In this chapter the experimental measurement of the rotor shaft voltage and bearing current for the modified 3- phase squirrel cage IM connected to an inverter is discussed. Experiments have been carried out on 2-level, 3-level and 5-level inverter fed IM drives in SVM scheme. It is noted that from the recorded waveform of shaft voltage (Figs.6.3, 6.4 and 6.7) for 2, 3 and 5-level inverter is 142.5V peak, 135Vpeak and 13V peak respectively. From this it is noted that 5-level inverter shaft voltage is less by 5Vpeak with respect to 3-level inverter and 12.5Vpeak with respect to 2-level inverter. It is also observed from the FFT plots that the IM shaft voltage is 13 dbµv (Fig.6.13), 175dBµV (Fig.6.12) & 22 dbµv (Fig.6.11) for 5, 3 & 2-level inverters fundamental frequency. Similarly Figs 6.14 to 6.19 shows that the bearing current in ma (in the form of pulses) 18mA, 17mA and 9mA for 2, 3, and 5 level inverter respectively. Figs. 6.2, 6.21 and 6.22 shows the FFT plots of bearing current in dbµa for 2, 3 and 5 level inverters. The values are 22 dbµa, 14 dbµa and 1 dbµa respectively. It is observed that IM bearing current is less in 5- level inverter when compared to 3 & 2 level inverters. Hence it is concluded that as the inverter level increases the shaft voltage and bearing current reduces. Note:-Justification for Figs.6.4 and 6.5 Fig.6.4. gives the actual readings of the inverter output line voltage, CM voltage, shaft voltage and the bearing current measured in terms of

19 138 voltage. Observing the DSO recorded waveform, at the time of grounding the shaft voltage, there will be the flow of bearing current. Due to the flow of bearing current the CM voltage magnitude is diminished (ch.2). The ch.3 of Fig.6.4 is the shaft voltage which is shorted to ground is diminished, however the sharp pulses exists which is in agreeable with CM voltage peaks. Fig 6.4 clearly shows that once there is a flow of bearing current, which is decreasing the CM voltage due to capacitive flow of current and hence the CM voltage is also reduces in magnitude which can be seen in Fig. 6.4 ch. 2. Observing the DSO recorded wave form of Fig.6.5 ch.2 and Fig.6.4 ch.3 the CM voltage is agreeable in phase and magnitude with that of the shaft voltage before grounding the shaft.

B. Muralidhara Member, IACSIT, A. Ramachandran, R. Srinivasan, and M. Channa Reddy

B. Muralidhara Member, IACSIT, A. Ramachandran, R. Srinivasan, and M. Channa Reddy Experimental Measurement and Comparison of Common Mode Voltage, Shaft Voltage and the Bearing Current in Two-level and Multilevel Fed Induction Motor B. Muralidhara Member, IACSIT, A. Ramachandran, R.

More information

CHAPTER -4 STUDY OF COMMON MODE VOLTAGE IN 3-LEVEL INVERTER FED INDUCTION MOTOR DRIVE USING SPACE VECTOR MODULATION

CHAPTER -4 STUDY OF COMMON MODE VOLTAGE IN 3-LEVEL INVERTER FED INDUCTION MOTOR DRIVE USING SPACE VECTOR MODULATION 73 CHAPTER -4 STUDY OF COMMON MODE VOLTAGE IN 3-LEVEL INVERTER FED INDUCTION MOTOR DRIVE USING SPACE VECTOR MODULATION 4.1. INTRODUCTION Multilevel inverters [51] have attracted much interest from the

More information

CHAPTER-3 MEASUREMENT OF COMMON MODE VOLTAGE IN 2- LEVEL INVERTER FED INDUCTION MOTOR DRIVE

CHAPTER-3 MEASUREMENT OF COMMON MODE VOLTAGE IN 2- LEVEL INVERTER FED INDUCTION MOTOR DRIVE 46 CHAPTER-3 MEASUREMENT OF COMMON MODE VOLTAGE IN 2- LEVEL INVERTER FED INDUCTION MOTOR DRIVE 3.1. INTRODUCTION Induction Motor (IM) is considered as a constant speed motor with certain limitations. Earlier

More information

Simulation and Experimental measurement of Shaft Voltage, Bearing current in Induction Motor drive using Micro-controller

Simulation and Experimental measurement of Shaft Voltage, Bearing current in Induction Motor drive using Micro-controller Simulation and Experimental measurement of Shaft Voltage, Bearing current in Induction Motor drive using Micro-controller Chandrashekar S M 1,, A Ramachandran 2,, M Channa Reddy 3 ABSTRACT Generally the

More information

Application Note. Motor Bearing Current Phenomenon. Rev: Doc#: AN.AFD.17 Yaskawa Electric America, Inc August 7, /9

Application Note. Motor Bearing Current Phenomenon. Rev: Doc#: AN.AFD.17 Yaskawa Electric America, Inc August 7, /9 Application Note Application Note Motor Bearing Current Phenomenon Rev: 08-08 Doc#: AN.AFD.17 Yaskawa Electric America, Inc. 2008 www.yaskawa.com August 7, 2008 1/9 INTRODUCTION Since the introduction

More information

Product Application Note

Product Application Note Application Note Product Application Note Motor Bearing urrent Phenomenon and 3-Level Inverter Technology Applicable Product: G7 Rev: 05-06 G7 three-level output waveform onventional two-level output waveform

More information

A Series-Connected Multilevel Inverter Topology for Squirrel-Cage Induction Motor Drive

A Series-Connected Multilevel Inverter Topology for Squirrel-Cage Induction Motor Drive Vol.2, Issue.3, May-June 2012 pp-1028-1033 ISSN: 2249-6645 A Series-Connected Multilevel Inverter Topology for Squirrel-Cage Induction Motor Drive B. SUSHMITHA M. tech Scholar, Power Electronics & Electrical

More information

Bearing Currents and Shaft Voltages of an Induction Motor Under Hard and Soft Switching Inverter Excitation

Bearing Currents and Shaft Voltages of an Induction Motor Under Hard and Soft Switching Inverter Excitation Bearing Currents and Shaft Voltages of an Induction Motor Under Hard and Soft Switching Inverter Excitation Shaotang Chen Thomas A. Lipo Electrical and Electronics Department Department of Electrical and

More information

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 65 CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 4.1 INTRODUCTION Many control strategies are available for the control of IMs. The Direct Torque Control (DTC) is one of the most

More information

CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER

CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER 42 CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER 3.1 INTRODUCTION The concept of multilevel inverter control has opened a new avenue that induction motors can be controlled to achieve dynamic performance

More information

Power Factor Correction of Inductive Loads using PLC

Power Factor Correction of Inductive Loads using PLC Power Factor Correction of Inductive Loads using PLC Sayed Abdullah Sadat Member of Regime, National Load Control Center (NLCC) Afghanistan's National Power Utility (DABS) Sayed_abdullah@ieee.org E. Sreesobha

More information

Application Note AN- 1094

Application Note AN- 1094 Application Note AN- 194 High Frequency Common Mode Analysis of Drive Systems with IRAMS Power Modules Cesare Bocchiola Table of Contents Page Section 1 : Introduction...2 Section 2 : The Conducted EMI

More information

Stability of Voltage using Different Control strategies In Isolated Self Excited Induction Generator for Variable Speed Applications

Stability of Voltage using Different Control strategies In Isolated Self Excited Induction Generator for Variable Speed Applications Stability of Voltage using Different Control strategies In Isolated Self Excited Induction Generator for Variable Speed Applications Shilpa G.K #1, Plasin Francis Dias *2 #1 Student, Department of E&CE,

More information

Determination of EMI of PWM fed Three Phase Induction Motor. Ankur Srivastava

Determination of EMI of PWM fed Three Phase Induction Motor. Ankur Srivastava Abstract International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) Impact Factor: 3.45 (SJIF-2015), e-issn: 2455-2584 Volume 3, Issue 05, May-2017 Determination of EMI of

More information

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE 3.1 GENERAL The PMBLDC motors used in low power applications (up to 5kW) are fed from a single-phase AC source through a diode bridge rectifier

More information

CHAPTER 3 VOLTAGE SOURCE INVERTER (VSI)

CHAPTER 3 VOLTAGE SOURCE INVERTER (VSI) 37 CHAPTER 3 VOLTAGE SOURCE INVERTER (VSI) 3.1 INTRODUCTION This chapter presents speed and torque characteristics of induction motor fed by a new controller. The proposed controller is based on fuzzy

More information

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 58 CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 4.1 INTRODUCTION Conventional voltage source inverter requires high switching frequency PWM technique to obtain a quality output

More information

Simulation Analysis of Three Phase & Line to Ground Fault of Induction Motor Using FFT

Simulation Analysis of Three Phase & Line to Ground Fault of Induction Motor Using FFT www.ijird.com June, 4 Vol 3 Issue 6 ISSN 78 (Online) Simulation Analysis of Three Phase & Line to Ground Fault of Induction Motor Using FFT Anant G. Kulkarni Research scholar, Dr. C. V. Raman University,

More information

Selected Problems of Induction Motor Drives with Voltage Inverter and Inverter Output Filters

Selected Problems of Induction Motor Drives with Voltage Inverter and Inverter Output Filters 9 Selected Problems of Induction Motor Drives with Voltage Inverter and Inverter Output Filters Drives and Filters Overview. Fast switching of power devices in an inverter causes high dv/dt at the rising

More information

Bearing Damage Analysis by Calculation of Capacitive Coupling between Inner and Outer Races of a Ball Bearing

Bearing Damage Analysis by Calculation of Capacitive Coupling between Inner and Outer Races of a Ball Bearing Bearing Damage Analysis by Calculation of Capacitive Coupling between Inner and Outer Races of a Ball Bearing Jafar Adabi *, Firuz Zare *, Gerard Ledwich *, Arindam Ghosh *, Robert D.Lorenz * Queensland

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 GENERAL Induction motor drives with squirrel cage type machines have been the workhorse in industry for variable-speed applications in wide power range that covers from fractional

More information

IT HAS LONG been recognized that bearing damage can be

IT HAS LONG been recognized that bearing damage can be 1042 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 34, NO. 5, SEPTEMBER/OCTOBER 1998 Bearing Currents and Shaft Voltages of an Induction Motor Under Hard- and Soft-Switching Inverter Excitation Shaotang

More information

Closed Loop Control of Three-Phase Induction Motor using Xilinx

Closed Loop Control of Three-Phase Induction Motor using Xilinx Closed Loop Control of Three-Phase Induction Motor using Xilinx Manoj Hirani, M.Tech, Electrical Drives branch of Electrical Engineering, Dr. Sushma Gupta, Department of Electrical Engineering, Dr. D.

More information

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 9 CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 2.1 INTRODUCTION AC drives are mainly classified into direct and indirect converter drives. In direct converters (cycloconverters), the AC power is fed

More information

Generator Advanced Concepts

Generator Advanced Concepts Generator Advanced Concepts Common Topics, The Practical Side Machine Output Voltage Equation Pitch Harmonics Circulating Currents when Paralleling Reactances and Time Constants Three Generator Curves

More information

OUTLINE. Introduction. Introduction. Conducted Electromagnetic Interference in Smart Grids. Introduction. Introduction

OUTLINE. Introduction. Introduction. Conducted Electromagnetic Interference in Smart Grids. Introduction. Introduction Robert Smoleński Institute of Electrical Engineering University of Zielona Gora Conducted Electromagnetic Interference in Smart Grids Introduction Currently there is lack of the strict, established definition

More information

Generation of Sub-nanosecond Pulses

Generation of Sub-nanosecond Pulses Chapter - 6 Generation of Sub-nanosecond Pulses 6.1 Introduction principle of peaking circuit In certain applications like high power microwaves (HPM), pulsed laser drivers, etc., very fast rise times

More information

Bearing Currents and Shaft Voltage Reduction in Dual-Inverter-Fed Open-End Winding Induction Motor With CMV PWM Methods Employing PID

Bearing Currents and Shaft Voltage Reduction in Dual-Inverter-Fed Open-End Winding Induction Motor With CMV PWM Methods Employing PID Bearing Currents and Shaft Voltage Reduction in Dual-Inverter-Fed Open-End Winding Induction Motor With CMV PWM Methods Employing PID I.Rajya Lakshmi 1 P.V Subba Rao 2 1 PG Scholar (EEE), RK College of

More information

Bearing Currents and Shaft Voltage Reduction in Dual-Inverter-Fed Open-End Winding Induction Motor With CMV PWM Methods Employing PID

Bearing Currents and Shaft Voltage Reduction in Dual-Inverter-Fed Open-End Winding Induction Motor With CMV PWM Methods Employing PID Bearing Currents and Shaft Voltage Reduction in Dual-Inverter-Fed Open-End Winding Induction Motor With CMV PWM Methods Employing PID T.Rakesh 1, K.Suresh 2 1 PG Scholar (PS), Nalanda Institute of Engineering

More information

Simulation with Experimental Measurement of Voltage Total Harmonic Distortion and Harmonic Frequency in Three-Phase Induction Motor fed from Inverter

Simulation with Experimental Measurement of Voltage Total Harmonic Distortion and Harmonic Frequency in Three-Phase Induction Motor fed from Inverter Proceedings of the World Congress on Engineering 217 Vol I WCE 217, July 5-7, 217, London, U.K. Simulation with Experimental Measurement of Voltage Total Harmonic Distortion and Harmonic Frequency in Three-Phase

More information

EE POWER ELECTRONICS UNIT IV INVERTERS

EE POWER ELECTRONICS UNIT IV INVERTERS EE6503 - POWER ELECTRONICS UNIT IV INVERTERS PART- A 1. Define harmonic distortion factor? (N/D15) Harmonic distortion factor is the harmonic voltage to the fundamental voltage. 2. What is CSI? (N/D12)

More information

Automotive EMC. IEEE EMC Society Melbourne Chapter October 13, 2010 By Mark Steffka IEEE EMCS Distinguished Lecturer

Automotive EMC. IEEE EMC Society Melbourne Chapter October 13, 2010 By Mark Steffka IEEE EMCS Distinguished Lecturer Automotive EMC IEEE EMC Society Melbourne Chapter October 13, 2010 By Mark Steffka IEEE EMCS Distinguished Lecturer Email: msteffka@ieee.org IEEE 1 Automotive Systems Past and Present Today s vehicles

More information

UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE

UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE 3.1 STATOR VOLTAGE CONTROL The induction motor 'speed can be controlled by varying the stator voltage. This method of speed control is known as stator

More information

Bahram Amin. Induction Motors. Analysis and Torque Control. With 41 Figures and 50 diagrams (simulation plots) Springer

Bahram Amin. Induction Motors. Analysis and Torque Control. With 41 Figures and 50 diagrams (simulation plots) Springer Bahram Amin Induction Motors Analysis and Torque Control With 41 Figures and 50 diagrams (simulation plots) Springer 1 Main Parameters of Induction Motors 1.1 Introduction 1 1.2 Structural Elements of

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05220204 Set No. 1 II B.Tech II Semester Supplimentary Examinations, Aug/Sep 2007 ELECTRICAL MACHINES-II (Electrical & Electronic Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

More information

Renewable Energy Based Interleaved Boost Converter

Renewable Energy Based Interleaved Boost Converter Renewable Energy Based Interleaved Boost Converter Pradeepakumara V 1, Nagabhushan patil 2 PG Scholar 1, Professor 2 Department of EEE Poojya Doddappa Appa College of Engineering, Kalaburagi, Karnataka,

More information

EE 410/510: Electromechanical Systems Chapter 5

EE 410/510: Electromechanical Systems Chapter 5 EE 410/510: Electromechanical Systems Chapter 5 Chapter 5. Induction Machines Fundamental Analysis ayssand dcontrol o of Induction Motors Two phase induction motors Lagrange Eqns. (optional) Torque speed

More information

6. du/dt-effects in inverter-fed machines

6. du/dt-effects in inverter-fed machines 6. du/dt-effects in inverter-fed machines Source: A. Mütze, PhD Thesis, TU Darmstadt 6/1 6. du/dt-effects in inverter-fed machines 6.1 Voltage wave reflections at motor terminals Source: A. Mütze, PhD

More information

ANALYSIS OF EFFECTS OF VECTOR CONTROL ON TOTAL CURRENT HARMONIC DISTORTION OF ADJUSTABLE SPEED AC DRIVE

ANALYSIS OF EFFECTS OF VECTOR CONTROL ON TOTAL CURRENT HARMONIC DISTORTION OF ADJUSTABLE SPEED AC DRIVE ANALYSIS OF EFFECTS OF VECTOR CONTROL ON TOTAL CURRENT HARMONIC DISTORTION OF ADJUSTABLE SPEED AC DRIVE KARTIK TAMVADA Department of E.E.E, V.S.Lakshmi Engineering College for Women, Kakinada, Andhra Pradesh,

More information

Mitigation Techniques of shaft voltage and bearing current in Inverter Driven Three Phase Induction Motor

Mitigation Techniques of shaft voltage and bearing current in Inverter Driven Three Phase Induction Motor Mitigation Techniques of shaft voltage and bearing current in Inverter Driven Three Phase Induction Motor Darshan Thakar 1, Hemish Choksi 2 and Hemant Joshi 3 1 Institute of Technology,Nirma University,Ahmedabad,India

More information

Low Order Harmonic Reduction of Three Phase Multilevel Inverter

Low Order Harmonic Reduction of Three Phase Multilevel Inverter Journal of Scientific & Industrial Research Vol. 73, March 014, pp. 168-17 Low Order Harmonic Reduction of Three Phase Multilevel Inverter A. Maheswari 1 and I. Gnanambal 1 Department of EEE, K.S.R College

More information

Abstract. Introduction. correct current. control. Sensorless Control. into. distortion in. implementation. pulse introduces a large speeds as show in

Abstract. Introduction. correct current. control. Sensorless Control. into. distortion in. implementation. pulse introduces a large speeds as show in Sensorless Control of High Power Induction Motors Using Multilevel Converters K. Saleh, M. Sumner, G. Asher, Q. Gao Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham,

More information

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 105 CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 6.1 GENERAL The line current drawn by the conventional diode rectifier filter capacitor is peaked pulse current. This results in utility line

More information

Scaling Issues for Common Mode Chokes to Mitigate Ground Currents in Inverter-Based Drive Systems

Scaling Issues for Common Mode Chokes to Mitigate Ground Currents in Inverter-Based Drive Systems Scaling Issues for Common Mode Chokes to Mitigate Ground Currents in Inverter-Based Drive Systems Annette Muetze Electrical and Computer Engineering University of Wisconsin-Madison, USA Inverter Motor

More information

External Drive Hardware

External Drive Hardware US1086e_External Drive Hardware, 08/2010 External Drive Hardware Selection and Application Answers Answers to external hardware questions A soup to nuts list of questions with installation / application

More information

Micro-controller Based Three-phase Voltage Source Inverter for Alternative Energy Source. Abstract

Micro-controller Based Three-phase Voltage Source Inverter for Alternative Energy Source. Abstract Micro-controller Based Three-phase Voltage Source Inverter for Alternative Energy Source M.M. A. Rahman, Kurt Hammons, Phillip Beemer, Marcia Isserstedt, and Matt Trommater School of Engineering Padnos

More information

Comparison between Scalar & Vector Control Technique for Induction Motor Drive

Comparison between Scalar & Vector Control Technique for Induction Motor Drive Comparison between Scalar & Vector Control Technique for Induction Motor Drive Mr. Ankit Agrawal 1, Mr. Rakesh Singh Lodhi 2, Dr. Pragya Nema 3 1PG Research Scholar, Oriental University, Indore (M.P),

More information

SPECIFIC HARMONIC ELIMINATION SCHEME FOR NINELEVEL CASCADED H- BRIDGE INVERTER FED THREE PHASE INDUCTION MOTOR DRIVE

SPECIFIC HARMONIC ELIMINATION SCHEME FOR NINELEVEL CASCADED H- BRIDGE INVERTER FED THREE PHASE INDUCTION MOTOR DRIVE SPECIFIC HARMONIC ELIMINATION SCHEME FOR NINELEVEL CASCADED H- BRIDGE INVERTER FED THREE PHASE INDUCTION MOTOR DRIVE A. Maheswari, Dr. I. Gnanambal Department of EEE, K.S.R College of Engineering, Tiruchengode,

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

Space Vector PWM Voltage Source Inverter Fed to Permanent Magnet Synchronous Motor

Space Vector PWM Voltage Source Inverter Fed to Permanent Magnet Synchronous Motor International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 12, Issue 6 (June 2016), PP.50-60 Space Vector PWM Voltage Source Inverter Fed to

More information

SINGLE PHASE CURRENT SOURCE INVERTER (C.S.I)

SINGLE PHASE CURRENT SOURCE INVERTER (C.S.I) Power Electronics Laboratory SINGLE PHASE CURRENT SOURCE INVERTER (C.S.I) OBJECT: To study the gate firing pulses. To observe and measure the voltages across the Thyristors and across the Load for a current

More information

Mr. DILIP J. Final Year Mtech Student Dept of EEE The Oxford College of Engineering, Bangalore

Mr. DILIP J. Final Year Mtech Student Dept of EEE The Oxford College of Engineering, Bangalore International Journal of Research Studies in Electrical and Electronics Engineering (IJRSEEE) Volume 1, Issue 1, June 2015, PP 9-17 www.arcjournals.org The Proposed Research Technology and Data Implementation

More information

MODELLING AND SIMULATION OF DIODE CLAMP MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR FOR CMV ANALYSIS USING FILTER

MODELLING AND SIMULATION OF DIODE CLAMP MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR FOR CMV ANALYSIS USING FILTER MODELLING AND SIMULATION OF DIODE CLAMP MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR FOR CMV ANALYSIS USING FILTER Akash A. Chandekar 1, R.K.Dhatrak 2 Dr.Z.J..Khan 3 M.Tech Student, Department of

More information

Conventional Paper-II-2011 Part-1A

Conventional Paper-II-2011 Part-1A Conventional Paper-II-2011 Part-1A 1(a) (b) (c) (d) (e) (f) (g) (h) The purpose of providing dummy coils in the armature of a DC machine is to: (A) Increase voltage induced (B) Decrease the armature resistance

More information

Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented controllers.

Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented controllers. University of New South Wales School of Electrical Engineering & Telecommunications ELEC4613 - ELECTRIC DRIVE SYSTEMS Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented

More information

Comparison between Conventional and Modified Cascaded H-Bridge Multilevel Inverter-Fed Drive

Comparison between Conventional and Modified Cascaded H-Bridge Multilevel Inverter-Fed Drive Comparison between Conventional and Modified Cascaded H-Bridge Multilevel Inverter-Fed Drive Gleena Varghese 1, Tissa Tom 2, Jithin K Sajeev 3 PG Student, Dept. of Electrical and Electronics Engg., St.Joseph

More information

ESO 210 Introduction to Electrical Engineering

ESO 210 Introduction to Electrical Engineering ESO 210 Introduction to Electrical Engineering Lecture-12 Three Phase AC Circuits Three Phase AC Supply 2 3 In general, three-phase systems are preferred over single-phase systems for the transmission

More information

Measurement of Surge Propagation in Induction Machines

Measurement of Surge Propagation in Induction Machines Measurement of Surge Propagation in Induction Machines T. Humiston, Student Member, IEEE Department of Electrical and Computer Engineering Clarkson University Potsdam, NY 3699 P. Pillay, Senior Member,

More information

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 113 CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 5.1 INTRODUCTION This chapter describes hardware design and implementation of direct torque controlled induction motor drive with

More information

Experiment 2 IM drive with slip power recovery

Experiment 2 IM drive with slip power recovery University of New South Wales School of Electrical Engineering & Telecommunications ELEC4613 - ELECTRIC DRIE SYSTEMS Experiment 2 IM drive with slip power recovery 1. Introduction This experiment introduces

More information

HIGH PERFORMANCE CONTROL OF AC DRIVES WITH MATLAB/SIMULINK MODELS

HIGH PERFORMANCE CONTROL OF AC DRIVES WITH MATLAB/SIMULINK MODELS HIGH PERFORMANCE CONTROL OF AC DRIVES WITH MATLAB/SIMULINK MODELS Haitham Abu-Rub Texas A&M University at Qatar, Qatar Atif Iqbal Qatar University, Qatar and Aligarh Muslim University, India Jaroslaw Guzinski

More information

Technical White Paper

Technical White Paper Technical White Paper Increased Reports of Bearing Damage in AC Motors Operating from Modern PWM VFD's Repair shops and motor manufacturers are seeing an increased number of instances where bearings and

More information

Development of an Experimental Rig for Doubly-Fed Induction Generator based Wind Turbine

Development of an Experimental Rig for Doubly-Fed Induction Generator based Wind Turbine Development of an Experimental Rig for Doubly-Fed Induction Generator based Wind Turbine T. Neumann, C. Feltes, I. Erlich University Duisburg-Essen Institute of Electrical Power Systems Bismarckstr. 81,

More information

Technical Guide No. 5. Bearing Currents in Modern AC Drive Systems

Technical Guide No. 5. Bearing Currents in Modern AC Drive Systems Technical Guide No. 5 Bearing Currents in Modern AC Drive Systems 2 Contents 1 Introduction... General... Avoiding bearing currents... 2 Generating Bearing Currents... High frequency current pulses...

More information

CHAPTER 3 MODIFIED SINE PWM VSI FED INDUCTION MOTOR DRIVE

CHAPTER 3 MODIFIED SINE PWM VSI FED INDUCTION MOTOR DRIVE CHAPTER 3 MOIFIE INE PWM VI FE INUCTION MOTOR RIVE 3. 1 INTROUCTION Three phase induction motors are the most widely used motors for industrial control and automation. Hence they are often called the workhorse

More information

Calculation of Parasitic High Frequency Currents in Inverter-Fed AC Machines

Calculation of Parasitic High Frequency Currents in Inverter-Fed AC Machines Calculation of Parasitic High Frequency Currents in Inverter-Fed AC Machines VDE February 5 th, 2010 Prof. Dr.-Ing. habil. Dr. h.c. Andreas Binder Dipl.-Ing. Oliver Magdun Dipl.-Ing. Yves Gemeinder Email:

More information

Modeling and Simulation of Five Phase Induction Motor Fed with Five Phase Inverter Topologies

Modeling and Simulation of Five Phase Induction Motor Fed with Five Phase Inverter Topologies Indian Journal of Science and Technology, Vol 8(19), DOI: 1.17485/ijst/215/v8i19/7129, August 215 ISSN (Print) : 974-6846 ISSN (Online) : 974-5645 Modeling and Simulation of Five Phase Induction Motor

More information

Three-Phase Induction Motors. By Sintayehu Challa ECEg332:-Electrical Machine I

Three-Phase Induction Motors. By Sintayehu Challa ECEg332:-Electrical Machine I Three-Phase Induction Motors 1 2 3 Classification of AC Machines 1. According to the type of current Single Phase and Three phase 2. According to Speed Constant Speed, Variable Speed and Adjustable Speed

More information

CHAPTER 5 PERFORMANCE EVALUATION OF SYMMETRIC H- BRIDGE MLI FED THREE PHASE INDUCTION MOTOR

CHAPTER 5 PERFORMANCE EVALUATION OF SYMMETRIC H- BRIDGE MLI FED THREE PHASE INDUCTION MOTOR 85 CHAPTER 5 PERFORMANCE EVALUATION OF SYMMETRIC H- BRIDGE MLI FED THREE PHASE INDUCTION MOTOR 5.1 INTRODUCTION The topological structure of multilevel inverter must have lower switching frequency for

More information

Implementation of Different Methods of Space Vector Pulse Width Modulation (PWM) - A Survey

Implementation of Different Methods of Space Vector Pulse Width Modulation (PWM) - A Survey IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 09 February 2017 ISSN (online): 2349-6010 Implementation of Different Methods of Space Vector Pulse Width Modulation

More information

Analysis of Hybrid Renewable Energy System using NPC Inverter

Analysis of Hybrid Renewable Energy System using NPC Inverter Analysis of Hybrid Renewable Energy System using NPC Inverter Reema Manavalan PG Scholar Power Electronics and Drives Anna University reemamanavalan87@gmail.com Abstract: In a variable-speed wind energy

More information

Module 7. Electrical Machine Drives. Version 2 EE IIT, Kharagpur 1

Module 7. Electrical Machine Drives. Version 2 EE IIT, Kharagpur 1 Module 7 Electrical Machine Drives Version 2 EE IIT, Kharagpur 1 Lesson 34 Electrical Actuators: Induction Motor Drives Version 2 EE IIT, Kharagpur 2 Instructional Objectives After learning the lesson

More information

5-Level Parallel Current Source Inverter for High Power Application with DC Current Balance Control

5-Level Parallel Current Source Inverter for High Power Application with DC Current Balance Control 2011 IEEE International Electric Machines & Drives Conference (IEMDC) 5-Level Parallel Current Source Inverter for High Power Application with DC Current Balance Control N. Binesh, B. Wu Department of

More information

REDUCTION OF COMMON-MODE VOLTAGE IN OPEN END WINDING INDUCTION MOTOR DRIVE USING CARRIER PHASE-SHIFT STRATEGY

REDUCTION OF COMMON-MODE VOLTAGE IN OPEN END WINDING INDUCTION MOTOR DRIVE USING CARRIER PHASE-SHIFT STRATEGY REDUCTION OF COMMON-MODE VOLTAGE IN OPEN END WINDING INDUCTION MOTOR DRIVE USING CARRIER PHASE-SHIFT STRATEGY Ms. C. Kalpa Latha, Electrical and Electronics Engineering, G. Pulla Reddy Engineering College,

More information

Prediction of Transient Transfer Functions at Cable-Transformer Interfaces

Prediction of Transient Transfer Functions at Cable-Transformer Interfaces 1 Prediction of Transient Transfer Functions at Cable-Transformer Interfaces Joe Y. Zhou, Member, IEEE and Steven A. Boggs, Fellow, IEEE Joe Zhou participated in this work while completing his Ph.D. at

More information

Speed Control of Single Phase Induction Motor Using Infrared Receiver Module

Speed Control of Single Phase Induction Motor Using Infrared Receiver Module Speed Control of Single Phase Induction Motor Using Infrared Receiver Module Souvik Kumar Dolui 1, Dr.Soumitra Kumar Mandal 2 M.Tech Student, Dept. of Electrical Engineering, NITTTR, Kolkata, Salt Lake

More information

CHAPTER 3 H BRIDGE BASED DVR SYSTEM

CHAPTER 3 H BRIDGE BASED DVR SYSTEM 23 CHAPTER 3 H BRIDGE BASED DVR SYSTEM 3.1 GENERAL The power inverter is an electronic circuit for converting DC power into AC power. It has been playing an important role in our daily life, as well as

More information

CHAPTER 4 MEASUREMENT OF NOISE SOURCE IMPEDANCE

CHAPTER 4 MEASUREMENT OF NOISE SOURCE IMPEDANCE 69 CHAPTER 4 MEASUREMENT OF NOISE SOURCE IMPEDANCE 4.1 INTRODUCTION EMI filter performance depends on the noise source impedance of the circuit and the noise load impedance at the test site. The noise

More information

Active damping of output LC filter resonance for vector controlled VSI- fed AC motor drive

Active damping of output LC filter resonance for vector controlled VSI- fed AC motor drive The International Journal Of Engineering And Science (IJES) Volume 3 Issue 6 Pages 50-56 2014 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Active damping of output LC filter resonance for vector controlled

More information

1. Explain in detail the constructional details and working of DC motor.

1. Explain in detail the constructional details and working of DC motor. DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY, PERAMBALUR DEPT OF ECE EC6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION UNIT 1 PART B 1. Explain in detail the constructional details and

More information

Journal of Engineering Technology

Journal of Engineering Technology A novel mitigation algorithm for switch open-fault in parallel inverter topology fed induction motor drive M. Dilip *a, S. F. Kodad *b B. Sarvesh *c a Department of Electrical and Electronics Engineering,

More information

ABB drives. Technical guide No. 5 Bearing currents in modern AC drive systems

ABB drives. Technical guide No. 5 Bearing currents in modern AC drive systems ABB drives Technical guide No. 5 Bearing currents in modern AC drive systems 2 Bearing currents in modern AC drive systems Technical guide No. 5 Technical guide No. 5 Bearing currents in modern AC drive

More information

SIMULATION of EMC PERFORMANCE of GRID CONNECTED PV INVERTERS

SIMULATION of EMC PERFORMANCE of GRID CONNECTED PV INVERTERS SIMULATION of EMC PERFORMANCE of GRID CONNECTED PV INVERTERS Qin Jiang School of Communications & Informatics Victoria University P.O. Box 14428, Melbourne City MC 8001 Australia Email: jq@sci.vu.edu.au

More information

Automotive Systems Past and Present

Automotive Systems Past and Present Automotive EMC IEEE EMC Society Eastern North Carolina Section February 9, 2010 By Mark Steffka IEEE EMCS Distinguished Lecturer Email: msteffka@ieee.org IEEE 1 Automotive Systems Past and Present Today

More information

REDUCTION OF ZERO SEQUENCE VOLTAGE USING MULTILEVEL INVERTER FED OPEN-END WINDING INDUCTION MOTOR DRIVE

REDUCTION OF ZERO SEQUENCE VOLTAGE USING MULTILEVEL INVERTER FED OPEN-END WINDING INDUCTION MOTOR DRIVE 52 Acta Electrotechnica et Informatica, Vol. 16, No. 4, 2016, 52 60, DOI:10.15546/aeei-2016-0032 REDUCTION OF ZERO SEQUENCE VOLTAGE USING MULTILEVEL INVERTER FED OPEN-END WINDING INDUCTION MOTOR DRIVE

More information

CoolBLUE Inductive Absorbers NaLA Noise Line Absorbers

CoolBLUE Inductive Absorbers NaLA Noise Line Absorbers CoolBLUE Inductive Absorbers NaLA Noise Line Absorbers Motor Bearing Solution from MH&W International Corp. http://www.coolblue-mhw.com Variable Frequency Motor Drive Systems 1. What is the problem 2.

More information

Design of Three Phase SVPWM Inverter Using dspic

Design of Three Phase SVPWM Inverter Using dspic Design of Three Phase SVPWM Inverter Using dspic Pritam Vikas Gaikwad 1, Prof. M. F. A. R. Satarkar 2 1,2 Electrical Department, Dr. Babasaheb Ambedkar Technological University (India) ABSTRACT Induction

More information

II. WORKING PRINCIPLE The block diagram depicting the working principle of the proposed topology is as given below in Fig.2.

II. WORKING PRINCIPLE The block diagram depicting the working principle of the proposed topology is as given below in Fig.2. PIC Based Seven-Level Cascaded H-Bridge Multilevel Inverter R.M.Sekar, Baladhandapani.R Abstract- This paper presents a multilevel inverter topology in which a low switching frequency is made use taking

More information

Prabir Ranjan Kasari 1, Abanishwar Chakraborti 1. Bikram Das 1, Naireeta Deb System Configurations and principle of operation. I.

Prabir Ranjan Kasari 1, Abanishwar Chakraborti 1. Bikram Das 1, Naireeta Deb System Configurations and principle of operation. I. Power Electronics Based Voltage and Frequency Controller Feeding Fixed Loads For Application In Stand-Alone Wind Energy Conversion System Bikram Das 1, Naireeta Deb 2 1. Electrical Engineering Department,

More information

MECH 1100 Quiz 4 Practice

MECH 1100 Quiz 4 Practice Name: Class: Date: MECH 1100 Quiz 4 Practice True/False Indicate whether the statement is true or false. 1. An advantage of a of a three-phase induction motor is that it does not require starter windings.

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING QUESTION BANK IV SEMESTER EI6402 ELECTRICAL MACHINES Regulation 2013 Academic

More information

Motor Bearing Damage and Variable Frequency Drives: - Diagnosing the Causes, - Implementing a Cure, and - Avoiding the Pitfalls

Motor Bearing Damage and Variable Frequency Drives: - Diagnosing the Causes, - Implementing a Cure, and - Avoiding the Pitfalls Motor Bearing Damage and Variable Frequency Drives: - Diagnosing the Causes, - Implementing a Cure, and - Avoiding the Pitfalls Tim Albers, Director of Product Mgt, NIDEC Motor Corporation Tim Jasina,

More information

International Journal of Advance Research in Engineering, Science & Technology

International Journal of Advance Research in Engineering, Science & Technology Impact Factor (JIF): 3.632 International Journal of Advance Research in Engineering, cience & Technology e-in: 2393-9877, p-in: 2394-2444 (pecial Issue for ITECE 2016) A Novel PWM Technique to Reduce Common

More information

EE171. H.H. Sheikh Sultan Tower (0) Floor Corniche Street Abu Dhabi U.A.E

EE171. H.H. Sheikh Sultan Tower (0) Floor Corniche Street Abu Dhabi U.A.E EE171 Electrical Equipment & Control System: Electrical Maintenance Transformers, Motors, Variable Speed Drives, Generators, Circuit Breakers, Switchgears & Protective Systems H.H. Sheikh Sultan Tower

More information

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL 47 CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL 4.1 INTRODUCTION Passive filters are used to minimize the harmonic components present in the stator voltage and current of the BLDC motor. Based on the design,

More information

Compensation for Inverter Nonlinearity Using Trapezoidal Voltage

Compensation for Inverter Nonlinearity Using Trapezoidal Voltage International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Compensation for Inverter Nonlinearity Using Trapezoidal Voltage Maria Joseph M 1, Siby C Arjun 2 1,2 Electrical and Electronics

More information

CHAPTER 2 EQUIVALENT CIRCUIT MODELING OF CONDUCTED EMI BASED ON NOISE SOURCES AND IMPEDANCES

CHAPTER 2 EQUIVALENT CIRCUIT MODELING OF CONDUCTED EMI BASED ON NOISE SOURCES AND IMPEDANCES 29 CHAPTER 2 EQUIVALENT CIRCUIT MODELING OF CONDUCTED EMI BASED ON NOISE SOURCES AND IMPEDANCES A simple equivalent circuit modeling approach to describe Conducted EMI coupling system for the SPC is described

More information

13. DC to AC Converters

13. DC to AC Converters 13. DC to AC Converters Inverters Inverter is a device which converts DC voltages (or current) to AC voltages (or current).inverter converting voltage is called VOLTAGE SOURCE INVERTER (VSI), while inverter

More information

CHAPTER 2 D-Q AXES FLUX MEASUREMENT IN SYNCHRONOUS MACHINES

CHAPTER 2 D-Q AXES FLUX MEASUREMENT IN SYNCHRONOUS MACHINES 22 CHAPTER 2 D-Q AXES FLUX MEASUREMENT IN SYNCHRONOUS MACHINES 2.1 INTRODUCTION For the accurate analysis of synchronous machines using the two axis frame models, the d-axis and q-axis magnetic characteristics

More information

Objective: Study of self-excitation characteristics of an induction machine.

Objective: Study of self-excitation characteristics of an induction machine. Objective: Study of self-excitation characteristics of an induction machine. Theory: The increasing importance of fuel saving has been responsible for the revival of interest in so-called alternative source

More information