mhemt based MMICs, Modules, and Systems for mmwave Applications Axel Hülsmann Axel Tessmann Jutta Kühn Oliver Ambacher

Size: px
Start display at page:

Download "mhemt based MMICs, Modules, and Systems for mmwave Applications Axel Hülsmann Axel Tessmann Jutta Kühn Oliver Ambacher"

Transcription

1 mhemt based MMICs, Modules, and Systems for mmwave Applications Christaweg Freiburg, Germany Axel Hülsmann Axel Tessmann Jutta Kühn Oliver Ambacher Tullastraße Freiburg, Germany

2 About OndoSense GmbH founder: background: OndoSense: Dr.-Ing. Mathias Klenner (CEO) Bernhard Schöne-Remmeau (CFO) Dr.-Ing. Axel Hülsmann (CTO) Dr. Klenner und Dr. Hülsmann have been with Fraunhofer- IAF for many years working on applied research on millimeter wave sensorics on the basis of III/V-semiconductors. Bernhard Schöne-Remmeau is an industrial engineer from University Kaiserlautern. OndoSense has been founded in March 2018 to develop, to produce, and put on the market cost efficient millimeter wave sensors partially based on high performance MMICs from Fraunhofer-IAF. OndoSense is supported by University of Freiburg and Fraunhofer- IAF by Prof. Oliver Ambacher (INATECH) and funded by the grand program EXIST supported by the European Social Fund and the German ministry of economics. 2

3 About Fraunhofer - IAF founded: 1957 staff: 280 funding: 28 million / year labs and offices: m² clean room: 1000 m2 The Fraunhofer Institute for Applied Solid State Physics (IAF) is a science and technology center in the field of micro- and nano-patterned compound semiconductors and diamond 3

4 About Fraunhofer Society Largest organization for applied Research in Europe headquarter in Munich Founded in locations 25,000 employees 2 B research budget Fraunhofer funding model: 1/3 basic, 1/3 project, 1/3 industry

5 Outline: mhemt MMICs Modules Systems metamorphic buffer Application

6 Epitaxy of metamorphic HEMT structures 100 nm gate length: 65 % In content n s = cm -2 µ e = cm 2 /Vs 50 nm gate length: 80 % In content n s = cm -2 µ e = cm 2 /Vs

7 HEMT (High Electron Mobility Transistor) Channel material source gate drain f T v sat, eff 2πL g Gate length L g S barrier d D Channel v sat,eff [10 7 cm /s] f T 0.1 µm channel (2DEG) gate length GaAs Lattice matched on GaAs (AlGaAs/GaAs) HEM substrate In 0.25 Ga 0.75 As In 0.53 Ga 0.47 As Strained on GaAs (AlGaAs/InGaAs) phemt Lattice matched to InP (AlInAs/InGaAs) mhemt Small gate length and high electron velocity enable high f T Relaxed on GaAs (AlInAs/InAs) enhanced mhemt Relaxed on GaAs (AlSbAs/InSb) advanced mhemt 7

8 Equivalent Circuit Model for mhemts Covers wide bias range and frequency range Scalable with gate width, variable finger number Proper noise description Temperature dependence

9 Development of InGaAs/InAlAs mhemt Technology mhemt - metamorphic HEMT with InGaAs channel on GaAs substrate L G = 100 nm f T /f max = 220/300 GHz 50 nm 375/600 GHz 35 nm 515/900 GHz 20 nm f T = 660 GHz (Leuther et al. IPRM 2011)

10 LNA MMICs Technology gain 94 GHz noise 94 GHz gain 210 GHz noise 210 GHz 50 nm nm nm technology achieves record noise 94 and 210 GHz

11 The Art of Device Modelling above 100 GHz Capacitve shell Resistive shell Inductive shell Gate feed Intrinsic core Drain feed

12 The Art of Device Modelling above 100 GHz Having n-elements to fit my model, I can simulate an elephant With n+1 Elements, I can even wave with the trunk Think about physical plausibility

13 The Art of Device Modelling above 100 GHz Discrete distributed equivalent circuit Two gate finger FET Common source configuration

14 The Art of Device Modelling above 100 GHz On-Wafer VNA s-parameters up to 750 GHz Temperature controlled calibration Calibration test set (short, open?, through, 50 Ohm) Device test structures with different gate width and different reference planes Grounded probe pads Identification of the reference plane S-Parameter measurements on several devices distributed on wafer S-Parameter measurements on different wafers and batches Small signal shell model (drain and gate as open stubs!) Verification model <-> measurement 2-port

15 Modelling of a 5-stage LNA with 50nm mhemts

16 Outline: mhemt MMICs Modules Systems Application

17 50nm mhemt MMIC Process on 4 GaAs Wafers MMIC Monolithic Microwave Integrated Circuit METG SiN MET1 OHM GATE MESA MET1 SiN NiCr SUBSTRATE Au Two metalization layers 2,7 µm gold air bridges 225 pf/mm 2 MIM capacitors 50 / NiCr resistors 250 nm CVD SiN passivation Full wafer-size backside process Microstrip technology and grounded coplanar waveguide

18 mhemt based MMIC for THz Frequencies Rx, Tx GHz LNA GHz nm atmospheric attenuation [db/m] E-3 35 nm 50 nm 100 nm MMIC S-MMIC TMIC Multiplier GHz 1E-4 1 bar, 20 C, 43.4% RH Multiplier GHz frequency [GHz] Multiplier GHz

19 Two-Stage W-Band Low-Noise Amplifier MMIC 25 5 gain [db] gain NF NF [db] Frequency [GHz] Reactively matched Cascode mhemts Gate length 50 nm Gate width 4 15 µm Chip-size mm 2 Gain > GHz Noise figure 2 T = 293 K Power consumption 48 mw V d = 1.6 V, I d = 30 ma

20 Ultra-Broad-Band Millimeter-Wave Amplifiers 20 nm S-Parameters [db] [db] S 21 S 11 S Frequency Frequenz [GHz] 35 nm mhemt technology 4-stage cascode low-noise amplifier Chip size mm 2 Gain > 20 db ( GHz) Noise figure 6.9 db (Simulation) Power dissipation 50 mw

21 220 GHz Transmitter and Receiver MMICs for Ultra-High-Speed Data Link Fully integrated mmw ICs Very broadband IF Identical chip layout eases module integration MMIC size mm 2 RF IF mixer IF mixer X2 X2 LO RF LO

22 300 GHz Radar Chip Set for SAR Imaging Systems Chip set for miniaturized Synthetic Aperture Radar (SAR) 40 GHz bandwidth for ultra-high resolution

23 630 GHz Amplifier MMIC 35 nm gate length metamorphic HEMTs 6-stage common source amplifier 12 db small-signal 630 GHz Compact coplanar design Chip size only mm 2 Record value (IAF, NGC/USA)

24 Multifunctional Integration: 94 GHz FMCW Radar MMIC Oscillator IN Oscillator Mixer Phase MW IN Phase LNA Mixer LNA MW IN f IF = f TX f RX f IF = f TX f RX 6 GHz Bandwidth 10 dbm Output power Transmit and receive signal separation on-chip Current supply 2V

25 Outline: mhemt MMICs Modules Systems Application

26 Packaging Technologies for Millimeter-Wave Modules GHz frequency multiplier-by-6 W-band 4-channel heterodyne receiver 94 GHz FMCW radar on-board patch antenna 300 GHz amplifier Batch production of RF modules for partners (e.g. ESG)

27 W-Band Power Amplifier Module DC supply M8 connector WR-10 out 3) Waveguide to MPA transition 5) PA MMIC 6) MPA MMIC 11) Quartz microstrip line 12) Quartz bias sub-mount PA 13) Quartz bias sub-mount MPA

28 W-Band HPA Module Measurements

29 Modules with Integrated Antennas S-Parameters [db] [db] S 22 S 11 S Frequency Frequenz [GHz] Integrated Antennas (laser structured) on GaAs substrate Chip size 0,5 1,2 mm 2 Maximum gain GHz Gain > 14 db ( GHz)

30 Outline: mhemt MMICs Modules Systems Application

31 220 GHz Wireless Communication: >25 Gbit/s Data Link World record wireless data rate 20 m 10 m NRZ-OOK PRBS 30 Gbit/s data transmission demonstrated (DVD in 1.25 sec, 2307 TV channels, 1875 DSL16000)

32 Cryo LNAs for Allen Telescope Array Integrated antenna frontend and cryogenic cooling system Operating temperature ~ 60 K Balanced GHz LNA Processing 100 nm mhemt: IAF Design: Low Noise Factory (Sweden) Packaging: Low Noise Factory Allen Telescope Array Hat Creek, Cal.

33 Cryogenic mhemt 100 nm mhemt devices reduced gate resistance reduced sheet resistance R Contact (m mm), R Sheet ( /sqr) slightly increased contact resistance R Gate 60 R Contact Temperature R Sheet R Gate ( /mm)

34 Cryogenic GHz LNA 12 K Noise 22 GHz Hybrid 3-stage GHz LNA (Yebes) first stage 100 nm 4 x 40 µm mhemt noise temperature comparable with InP Noise Temperature (K) Noise 5 Gain Frequency (GHz) T = 20 K Gain (db)

35 Cryogenic 4 8 GHz LNA Noise Temperature (K) T = 10 K Gain Noise Frequency (GHz) Gain (db) Hybrid 4 8 GHz LNA (Chalmers) first stage 100 nm 4 x 40 µm mhemt 3 K noise 5 GHz

36 Allen Telescope Array Project of SETI Institute and UC Berkeley Location: Hat Creek, California Design: 350 antennas with 6.1m Source: MTT-S 2005 Workshop Very Large Microwave Arrays for Radio Astronomy and Space Communications

37 Outline: mhemt MMICs Modules Systems Application

38 Millimeter-Wave Integrated Circuits Enable Innovative Applications Climate research Life sciences Security and safety Earth observation Communication

GaN MMIC PAs for MMW Applicaitons

GaN MMIC PAs for MMW Applicaitons GaN MMIC PAs for MMW Applicaitons Miroslav Micovic HRL Laboratories LLC, 311 Malibu Canyon Road, Malibu, CA 9265, U. S. A. mmicovic@hrl.com Motivation for High Frequency Power sources 6 GHz 11 GHz Frequency

More information

A 77 GHz mhemt MMIC Chip Set for Automotive Radar Systems

A 77 GHz mhemt MMIC Chip Set for Automotive Radar Systems A 77 GHz mhemt MMIC Chip Set for Automotive Radar Systems Dong Min Kang, Ju Yeon Hong, Jae Yeob Shim, Jin-Hee Lee, Hyung-Sup Yoon, and Kyung Ho Lee A monolithic microwave integrated circuit (MMIC) chip

More information

OMMIC Innovating with III-V s OMMIC OMMIC

OMMIC Innovating with III-V s OMMIC OMMIC Innovating with III-V s Innovating with III-V s Mixed D/A ED02AH process for radar control functions and new GaN/Si for hyper-frequency power applications Innovating with III-V s Europe s Independant IIIV

More information

Updates on THz Amplifiers and Transceiver Architecture

Updates on THz Amplifiers and Transceiver Architecture Updates on THz Amplifiers and Transceiver Architecture Sanggeun Jeon, Young-Chai Ko, Moonil Kim, Jae-Sung Rieh, Jun Heo, Sangheon Pack, and Chulhee Kang School of Electrical Engineering Korea University

More information

Parameter Frequency Typ (GHz) See page 7 for minimum performance specs of AMM7602UC connectorized modules. Description Green Status

Parameter Frequency Typ (GHz) See page 7 for minimum performance specs of AMM7602UC connectorized modules. Description Green Status The is a broadband MMIC LO buffer amplifier that efficiently provides high gain and output power over a 20-55 GHz frequency band. It is designed to provide a strong, flat output power response when driven

More information

Parameter Frequency Typ Min (GHz)

Parameter Frequency Typ Min (GHz) The is a broadband MMIC LO buffer amplifier that efficiently provides high gain and output power over a 20-55 GHz frequency band. It is designed to provide a strong, flat output power response when driven

More information

Design of THz Signal Generation Circuits Using 65nm CMOS Technologies

Design of THz Signal Generation Circuits Using 65nm CMOS Technologies Design of THz Signal Generation Circuits Using 65nm CMOS Technologies Hyeong-Jin Kim, Wonseok Choe, and Jinho Jeong Department of Electronics Engineering, Sogang University E-mail: jjeong@sogang.ac.kr

More information

A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate

A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate Progress In Electromagnetics Research Letters, Vol. 74, 117 123, 2018 A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate Jun Zhou 1, 2, *, Jiapeng Yang 1, Donglei Zhao 1, and Dongsheng

More information

MMA RECEIVERS: HFET AMPLIFIERS

MMA RECEIVERS: HFET AMPLIFIERS MMA Project Book, Chapter 5 Section 4 MMA RECEIVERS: HFET AMPLIFIERS Marian Pospieszalski Ed Wollack John Webber Last revised 1999-04-09 Revision History: 1998-09-28: Added chapter number to section numbers.

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) January 2014 doc.: IEEE 802.15-15-14-0017-00-0thz_240GHz Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: High Data Rate Wireless Communication using a

More information

What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley. WCA Futures SIG

What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley. WCA Futures SIG What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley WCA Futures SIG Outline THz Overview Potential THz Applications THz Transceivers in Silicon? Application

More information

Cloud Radar LNA/Downconverter FINAL SUMMARY REPORT

Cloud Radar LNA/Downconverter FINAL SUMMARY REPORT Cloud Radar LNA/Downconverter FINAL SUMMARY REPORT RF 94GHz LO 41.GHz IF 11GHz CONTRIBUTORS: Prime Contractor: Electronics Ltd., Teollisuustie 9A, FIN-27, FINLAND Subcontractors: QinetiQ Malvern, St Andrews

More information

Microwave Office Application Note

Microwave Office Application Note Microwave Office Application Note INTRODUCTION Wireless system components, including gallium arsenide (GaAs) pseudomorphic high-electron-mobility transistor (phemt) frequency doublers, quadruplers, and

More information

Microwave / Millimeter Wave Products

Microwave / Millimeter Wave Products Microwave / Millimeter Wave Products GaAs MMICs and Discretes for Broadband, Military and Space TriQuint Semiconductor Phone: +1-972-994-8465 Fax: +1-972-994-8504 E-mail: i n f o - s a l e s @ t q s. c

More information

Design and Layout of a X-Band MMIC Power Amplifier in a Phemt Technology

Design and Layout of a X-Band MMIC Power Amplifier in a Phemt Technology Design and Layout of a X-Band MMIC Power Amplifier in a Phemt Technology Renbin Dai, and Rana Arslan Ali Khan Abstract The design of Class A and Class AB 2-stage X band Power Amplifier is described in

More information

Development of Low Cost Millimeter Wave MMIC

Development of Low Cost Millimeter Wave MMIC INFORMATION & COMMUNICATIONS Development of Low Cost Millimeter Wave MMIC Koji TSUKASHIMA*, Miki KUBOTA, Osamu BABA, Hideki TANGO, Atsushi YONAMINE, Tsuneo TOKUMITSU and Yuichi HASEGAWA This paper describes

More information

RF/Microwave Circuits I. Introduction Fall 2003

RF/Microwave Circuits I. Introduction Fall 2003 Introduction Fall 03 Outline Trends for Microwave Designers The Role of Passive Circuits in RF/Microwave Design Examples of Some Passive Circuits Software Laboratory Assignments Grading Trends for Microwave

More information

Integration Techniques for MMICs and Chip Devices in LTCC Multichip Modules for Radio Frequencies

Integration Techniques for MMICs and Chip Devices in LTCC Multichip Modules for Radio Frequencies Integration Techniques for MMICs and Chip Devices in LTCC Multichip Modules for Radio Frequencies R. Kulke *, W. Simon *, M. Rittweger *, I. Wolff *, S. Baker +, R. Powell + and M. Harrison + * Institute

More information

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet 77 GHz VCO for Car Radar Systems Preliminary Data Sheet Operating Frequency: 76-77 GHz Tuning Range > 1 GHz Output matched to 50 Ω Application in Car Radar Systems ESD: Electrostatic discharge sensitive

More information

RF Module for High-Resolution Infrastructure Radars

RF Module for High-Resolution Infrastructure Radars FEATURED TOPIC Module for High-Resolution Infrastructure Radars Osamu ANEGAWA*, Akira OTSUKA, Takeshi KAWASAKI, Koji TSUKASHIMA, Miki KUBOTA, and Takashi NAKABAYASHI ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

More information

Single-stage G-band HBT Amplifier with 6.3 db Gain at 175 GHz

Single-stage G-band HBT Amplifier with 6.3 db Gain at 175 GHz Single-stage G-band HBT Amplifier with 6.3 db Gain at 175 GHz M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M.J.W. Rodwell Department of Electrical and Computer Engineering, University of California,

More information

Fully Integrated Radio Front-End Module for Wireless 100 Gbps Communications

Fully Integrated Radio Front-End Module for Wireless 100 Gbps Communications Fully Integrated Radio Front-End Module for Wireless 100 Gbps Communications Thomas Zwick Karlsruhe Institute of Technology, Germany thomas.zwick@kit.edu European Microwave Week 2017 EuMC EuRAD Motivation

More information

Wide-Band Two-Stage GaAs LNA for Radio Astronomy

Wide-Band Two-Stage GaAs LNA for Radio Astronomy Progress In Electromagnetics Research C, Vol. 56, 119 124, 215 Wide-Band Two-Stage GaAs LNA for Radio Astronomy Jim Kulyk 1,GeWu 2, Leonid Belostotski 2, *, and James W. Haslett 2 Abstract This paper presents

More information

CHU2277a98F RoHS COMPLIANT

CHU2277a98F RoHS COMPLIANT RoHS COMPLIANT W-band Multifunction: Multiplier / MPA GaAs Monolithic Microwave IC Description The CHU2277a is a W-band monolithic multifunction which integrates a frequency multiplier, a four-stage amplifier

More information

Design of a Broadband HEMT Mixer for UWB Applications

Design of a Broadband HEMT Mixer for UWB Applications Indian Journal of Science and Technology, Vol 9(26), DOI: 10.17485/ijst/2016/v9i26/97253, July 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Design of a Broadband HEMT Mixer for UWB Applications

More information

Characteristics of InP HEMT Harmonic Optoelectronic Mixers and Their Application to 60GHz Radio-on-Fiber Systems

Characteristics of InP HEMT Harmonic Optoelectronic Mixers and Their Application to 60GHz Radio-on-Fiber Systems . TU6D-1 Characteristics of Harmonic Optoelectronic Mixers and Their Application to 6GHz Radio-on-Fiber Systems Chang-Soon Choi 1, Hyo-Soon Kang 1, Dae-Hyun Kim 2, Kwang-Seok Seo 2 and Woo-Young Choi 1

More information

A 24-GHZ ACTIVE PATCH ARRAY

A 24-GHZ ACTIVE PATCH ARRAY A 24-GHZ ACTIVE PATCH ARRAY Dai Lu, Milan Kovacevic, Jon Hacker and David Rutledge Department of Electrical Engineering California Institute of Technology Pasadena, CA 91125 Abstract This paper presents

More information

A GHz MICROWAVE UP CONVERSION MIXERS USING THE CONCEPTS OF DISTRIBUTED AND DOUBLE BALANCED MIXING FOR OBTAINING LO AND RF (LSB) REJECTION

A GHz MICROWAVE UP CONVERSION MIXERS USING THE CONCEPTS OF DISTRIBUTED AND DOUBLE BALANCED MIXING FOR OBTAINING LO AND RF (LSB) REJECTION A 2-40 GHz MICROWAVE UP CONVERSION MIXERS USING THE CONCEPTS OF DISTRIBUTED AND DOUBLE BALANCED MIXING FOR OBTAINING LO AND RF (LSB) REJECTION M. Mehdi, C. Rumelhard, J. L. Polleux, B. Lefebvre* ESYCOM

More information

Dual-band LNA Design for Wireless LAN Applications. 2.4 GHz LNA 5 GHz LNA Min Typ Max Min Typ Max

Dual-band LNA Design for Wireless LAN Applications. 2.4 GHz LNA 5 GHz LNA Min Typ Max Min Typ Max Dual-band LNA Design for Wireless LAN Applications White Paper By: Zulfa Hasan-Abrar, Yut H. Chow Introduction Highly integrated, cost-effective RF circuitry is becoming more and more essential to the

More information

20 40 GHz Amplifier. Technical Data HMMC-5040

20 40 GHz Amplifier. Technical Data HMMC-5040 2 4 GHz Amplifier Technical Data HMMC-4 Features Large Bandwidth: 2-44 GHz Typical - 4 GHz Specified High : db Typical Saturated Output Power: dbm Typical Supply Bias: 4. volts @ 3 ma Description The HMMC-4

More information

Small Signal Modelling of InGaAs/InAlAs phemt for low noise applications

Small Signal Modelling of InGaAs/InAlAs phemt for low noise applications Small Signal Modelling of InGaAs/InAlAs phemt for low noise applications N. Ahmad and M. Mohamad Isa School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 26 Arau, Perlis,

More information

Ultra High-Speed InGaAs Nano-HEMTs

Ultra High-Speed InGaAs Nano-HEMTs Ultra High-Speed InGaAs Nano-HEMTs 2003. 10. 14 Kwang-Seok Seo School of Electrical Eng. and Computer Sci. Seoul National Univ., Korea Contents Introduction to InGaAsNano-HEMTs Nano Patterning Process

More information

Wideband Passive Circuits for Sideband Separating Receivers

Wideband Passive Circuits for Sideband Separating Receivers Wideband Passive Circuits for Sideband Separating Receivers Hawal Rashid 1*, Denis Meledin 1, Vincent Desmaris 1, and Victor Belisky 1 1 Group for Advanced Receiver Development (GARD), Chalmers University,

More information

Data Sheet. AMMC GHz Amplifier. Description. Features. Applications

Data Sheet. AMMC GHz Amplifier. Description. Features. Applications AMMC - 518-2 GHz Amplifier Data Sheet Chip Size: 92 x 92 µm (.2 x.2 mils) Chip Size Tolerance: ± 1µm (±.4 mils) Chip Thickness: 1 ± 1µm (4 ±.4 mils) Pad Dimensions: 8 x 8 µm (.1 x.1 mils or larger) Description

More information

Microwave Office Application Note

Microwave Office Application Note Microwave Office Application Note INTRODUCTION Wireless system components, including gallium arsenide (GaAs) pseudomorphic high-electron-mobility transistor (phemt) frequency doublers, quadruplers, and

More information

A 200 GHz Broadband, Fixed-Tuned, Planar Doubler

A 200 GHz Broadband, Fixed-Tuned, Planar Doubler A 200 GHz Broadband, Fixed-Tuned, Planar Doubler David W. Porterfield Virginia Millimeter Wave, Inc. 706 Forest St., Suite D Charlottesville, VA 22903 Abstract - A 100/200 GHz planar balanced frequency

More information

Advanced Information: AI GHz Low Noise Amplifier. GaAs Monolithic Microwave IC

Advanced Information: AI GHz Low Noise Amplifier. GaAs Monolithic Microwave IC : AI1801 GaAs Monolithic Microwave IC UMS has developed a two-stage self-biased wide band monolithic Low Noise Amplifier in leadless surface mount hermetic metal ceramic 6x6mm² package. It operates from

More information

9-10 GHz GaAs MMIC Core Chip

9-10 GHz GaAs MMIC Core Chip 9-10 GHz GaAs MMIC Core Chip Features Functional Diagram Frequency Range: 9GHz 10GHz Tx Small Signal Gain: 28dB Rx Small Signal Gain: 4dB Tx Output P1dB : 22dBm Tx Output Psat : 23dBm Input Return Loss

More information

Product Datasheet Revision: April Applications

Product Datasheet Revision: April Applications Applications Wide Bandwidth Millimeter-wave Imaging RX Chains Sensors Radar Short Haul / High capacity Links X=34 mm Y=16 mm Product Features RF Frequency: 8 to 1 GHz effective bandwidth: Linear Gain (average

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: A first 300 GHz Phased Array Antenna Date Submitted: 11. July 2017 Source: Sebastian Rey, Technische Universität Braunschweig

More information

Capacitive-Division Traveling-Wave Amplifier with 340 GHz Gain-Bandwidth Product

Capacitive-Division Traveling-Wave Amplifier with 340 GHz Gain-Bandwidth Product Hughes Presented at the 1995 IEEE MTT-S Symposium UCSB Capacitive-Division Traveling-Wave Amplifier with 340 GHz Gain-Bandwidth Product J. Pusl 1,2, B. Agarwal1, R. Pullela1, L. D. Nguyen 3, M. V. Le 3,

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Feasibility test of THz channel for high-speed wireless link Date Submitted: 12 Nov 2013 Source: Jae-Young Kim, Ho-Jin

More information

Datasheet SHF 100 BPP

Datasheet SHF 100 BPP SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23D 12277 Berlin Germany Phone ++49 30 / 772 05 10 Fax ++49 30 / 753 10 78 E-Mail: sales@shf.de Web: http://www.shf.de Datasheet SHF 100 BPP Broadband

More information

8-18 GHz Wideband Low Noise Amplifier

8-18 GHz Wideband Low Noise Amplifier 8-18 GHz Wideband Low Noise Amplifier Features Frequency Range : 8.0 18.0GHz 23dB Nominal gain Low Midband Noise Figure < 2 db Input Return Loss > 12 db Output Return Loss > 12 db Single +3V Operation

More information

THz communications: general issues THz devices for coms (Tx and Rx) Some Reported com links Some conclusions

THz communications: general issues THz devices for coms (Tx and Rx) Some Reported com links Some conclusions THz communications for next generation HD rate wireless links TENXSYS Talk, 2015, June 17th G. Ducournau, M. Zaknoune, P. Szriftgiser, Jean-François Lampin (Tx and Rx) (Tx and Rx) 2 3 THz coms: general

More information

Full H-band Waveguide-to-Coupled Microstrip Transition Using Dipole Antenna with Directors

Full H-band Waveguide-to-Coupled Microstrip Transition Using Dipole Antenna with Directors IEICE Electronics Express, Vol.* No.*,*-* Full H-band Waveguide-to-Coupled Microstrip Transition Using Dipole Antenna with Directors Wonseok Choe, Jungsik Kim, and Jinho Jeong a) Department of Electronic

More information

3D Integration Using Wafer-Level Packaging

3D Integration Using Wafer-Level Packaging 3D Integration Using Wafer-Level Packaging July 21, 2008 Patty Chang-Chien MMIC Array Receivers & Spectrographs Workshop Pasadena, CA Agenda Wafer-Level Packaging Technology Overview IRAD development on

More information

This article describes the design of a multiband,

This article describes the design of a multiband, A Low-Noise Amplifier for 2 GHz Applications Using the NE334S01 Transistor By Ulrich Delpy NEC Electronics (Europe) This article describes the design of a multiband, low-noise amplifier (LNA) using the

More information

Oscillator for 122GHz: Frequency multiplier from 61GHz and amplifier

Oscillator for 122GHz: Frequency multiplier from 61GHz and amplifier Sigurd Werner, DL9MFV Oscillator for 122GHz: Frequency multiplier from 61GHz and amplifier The design of a passive frequency doubler and a sub-harmonic mixer for 122GHz requires a strong signal on 61GHz.

More information

Hot Topics and Cool Ideas in Scaled CMOS Analog Design

Hot Topics and Cool Ideas in Scaled CMOS Analog Design Engineering Insights 2006 Hot Topics and Cool Ideas in Scaled CMOS Analog Design C. Patrick Yue ECE, UCSB October 27, 2006 Slide 1 Our Research Focus High-speed analog and RF circuits Device modeling,

More information

HMMC-1002 DC 50 GHz Variable Attenuator. Data Sheet

HMMC-1002 DC 50 GHz Variable Attenuator. Data Sheet HMMC-12 DC 5 GHz Variable Attenuator Data Sheet Description The HMMC-12 is a monolithic, voltage variable, GaAs IC attenuator that operates from DC to 5 GHz. It is fabricated using MWTC s MMICB process

More information

V-band Self-heterodyne Wireless Transceiver using MMIC Modules

V-band Self-heterodyne Wireless Transceiver using MMIC Modules 210 DAN AN. et al : V-BAND SELF-HETERODYNE WIRELESS TRANSCEIVER USING MMIC MODULES V-band Self-heterodyne Wireless Transceiver using MMIC Modules Dan An, Mun-Kyo Lee, Sang-Jin Lee, Du-Hyun Ko, Jin-Man

More information

E-band and mmwave Components & Sub-Assemblies testing Challenges New Technology. VNA Roadshow Budapest 17/05/2016

E-band and mmwave Components & Sub-Assemblies testing Challenges New Technology. VNA Roadshow Budapest 17/05/2016 E-band and mmwave Components & Sub-Assemblies testing Challenges New Technology VNA Roadshow Budapest 17/05/2016 Agenda Applications drive the need Challenges faced by device characterization engineers

More information

CHR3364-QEG RoHS COMPLIANT

CHR3364-QEG RoHS COMPLIANT Noise Figure (db) RoHS COMPLIANT Description 17-GHz Integrated Down Converter GaAs Monolithic Microwave IC in SMD leadless package The is a multifunction monolithic receiver, which integrates a balanced

More information

Wireless Energy for Battery-less Sensors

Wireless Energy for Battery-less Sensors Wireless Energy for Battery-less Sensors Hao Gao Mixed-Signal Microelectronics Outline System of Wireless Power Transfer (WPT) RF Wireless Power Transfer RF Wireless Power Transfer Ultra Low Power sions

More information

HIGHLY INTEGRATED APPLICATION SPECIFIC MMICS FOR ACTIVE PHASED ARRAY RADAR APPLICATIONS

HIGHLY INTEGRATED APPLICATION SPECIFIC MMICS FOR ACTIVE PHASED ARRAY RADAR APPLICATIONS HIGHLY INTEGRATED APPLICATION SPECIFIC MMICS FOR ACTIVE PHASED ARRAY RADAR APPLICATIONS F.L.M. VAN DEN BOGAART TNO Physics and Electronics laboratory P.O. Box 96864 2509 JG The Hague The Netherlands E-mail:

More information

TYPICAL APPLICATIONS

TYPICAL APPLICATIONS Doc. Rev. A1-16 gxsb15 B FEATURES Full E-band coverage, Output power, 7 dbm typ. Harmonic isolation, 1 dbc typ. TYPICAL APPLICATIONS E-band point-to-point radio Active imaging and sensors Automotive radar

More information

6-18 GHz Double Balanced Mixer

6-18 GHz Double Balanced Mixer 6-18 GHz Double Balanced Mixer Features Functional Diagram Passive Double Balanced Topology Low Conversion loss Excellent Isolations between all ports IF Bandwidth of DC to 4GHz 0.15-µm InGaAs phemt Technology

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: TERAPAN: Ultra-high Data Rate Transmission with steerable Antennas at 300 GHz Date Submitted: 10 March, 2015 Source:

More information

71-86GHz Down-converter. GaAs Monolithic Microwave IC GLO DLO DRF GRF

71-86GHz Down-converter. GaAs Monolithic Microwave IC GLO DLO DRF GRF Conversion Gain (db) GaAs Monolithic Microwave IC Description The is a multifunction monolithic receiver, which integrates a balanced sub-harmonic cold FET mixer, a LO buffer, and a RF low noise amplifier.

More information

Aspemyr, Lars; Jacobsson, Harald; Bao, Mingquan; Sjöland, Henrik; Ferndal, Mattias; Carchon, G

Aspemyr, Lars; Jacobsson, Harald; Bao, Mingquan; Sjöland, Henrik; Ferndal, Mattias; Carchon, G A 15 GHz and a 2 GHz low noise amplifier in 9 nm RF CMOS Aspemyr, Lars; Jacobsson, Harald; Bao, Mingquan; Sjöland, Henrik; Ferndal, Mattias; Carchon, G Published in: Topical Meeting on Silicon Monolithic

More information

37-40GHz MMIC Sub-Harmonically Pumped Image Rejection Diode Mixer

37-40GHz MMIC Sub-Harmonically Pumped Image Rejection Diode Mixer 37-40GHz MMIC Sub-Harmonically Pumped Image Rejection Diode Mixer F. Rasà, F. Celestino, M. Remonti, B. Gabbrielli, P. Quentin ALCATEL ITALIA, TSD-HCMW R&D, Str. Provinciale per Monza, 33, 20049 Concorezzo

More information

Millimeter- and Submillimeter-Wave Planar Varactor Sideband Generators

Millimeter- and Submillimeter-Wave Planar Varactor Sideband Generators Millimeter- and Submillimeter-Wave Planar Varactor Sideband Generators Haiyong Xu, Gerhard S. Schoenthal, Robert M. Weikle, Jeffrey L. Hesler, and Thomas W. Crowe Department of Electrical and Computer

More information

APRICOT (and other Relevant Technological Developments in Europe)

APRICOT (and other Relevant Technological Developments in Europe) APRICOT (and other Relevant Technological Developments in Europe) Peter Wilkinson U. Manchester EC Framework7 RadioNet Relevant Joint Research Activities APRICOT : Q-band camera subsystems + MIC/MMICs

More information

Recent Developments in RF Front Ends Based Upon Active Antenna Concepts

Recent Developments in RF Front Ends Based Upon Active Antenna Concepts Recent Developments in RF Front Ends Based Upon Active Antenna Concepts Abstract In this paper several developments in RF front end technology based upon the active antenna concept are presented. RF front

More information

Features. = 25 C, IF = 3 GHz, LO = +16 dbm

Features. = 25 C, IF = 3 GHz, LO = +16 dbm mixers - i/q mixers / irm - CHIP Typical Applications This is ideal for: Point-to-Point Radios Test & Measurement Equipment SATCOM Radar Functional Diagram Features Wide IF Bandwidth: DC - 5 GHz High Image

More information

Werner Bächtold (Prof. em.) and Alexander Megej

Werner Bächtold (Prof. em.) and Alexander Megej Werner Bächtold (Prof. em.) and Alexander Megej Laboratory for Electromagnetic Fields and Microwave Electronics, ETH Zürich Introduction: the HIFI-Receiver System The IF-2 Amplifier System The InP HEMT:

More information

CHR2291 RoHS COMPLIANT

CHR2291 RoHS COMPLIANT (db) RoHS COMPLIANT GaAs Monolithic Microwave IC Description LO The is a multifunction chip which integrates a LO time two multiplier, a balanced cold FET mixer, and a RF LNA. It is designed for a wide

More information

Broadband Fixed-Tuned Subharmonic Receivers to 640 GHz

Broadband Fixed-Tuned Subharmonic Receivers to 640 GHz Broadband Fixed-Tuned Subharmonic Receivers to 640 GHz Jeffrey Hesler University of Virginia Department of Electrical Engineering Charlottesville, VA 22903 phone 804-924-6106 fax 804-924-8818 (hesler@virginia.edu)

More information

Advances in Microwave & Millimeterwave Integrated Circuits

Advances in Microwave & Millimeterwave Integrated Circuits الراديو - جامعة Advances in Microwave & Millimeterwave Integrated Circuits الهندسة آلية عين شمس ١٥ مارس ٢٠٠٧-١٣ Amin K. Ezzeddine AMCOM Communications, Inc. 22300 Comsat Drive Clarksburg, Maryland 20871,

More information

Archive 2017 BiTS Workshop- Image: Easyturn/iStock

Archive 2017 BiTS Workshop- Image: Easyturn/iStock Archive September 6-7, 2017 InterContinental Shanghai Pudong Hotel - Shanghai, China Archive 2017 BiTS Workshop- Image: Easyturn/iStock September 6-7, 2017 Archive COPYRIGHT NOTICE This multimedia file

More information

Millimeter-Wave Amplifiers for E- and V-band Wireless Backhaul Erik Öjefors Sivers IMA AB

Millimeter-Wave Amplifiers for E- and V-band Wireless Backhaul Erik Öjefors Sivers IMA AB Millimeter-Wave Amplifiers for E- and V-band Wireless Backhaul Erik Öjefors Sivers IMA AB THz-Workshop: Millimeter- and Sub-Millimeter-Wave circuit design and characterization 26 September 2014, Venice

More information

SERIES LNA LOW NOISE AMPLIFIERS DESCRIPTION. Millimeter-Wave Technology & Solutions

SERIES LNA LOW NOISE AMPLIFIERS DESCRIPTION. Millimeter-Wave Technology & Solutions LOW NOISE AMPLIFIERS FEATURES: Wideband coverage Modular compact design Military or commercial units available 2.92, 2.4, 1.85 mm or Waveguide interfaces as required Internal voltage regulation and bias

More information

A Broadband T/R Front-End of Millimeter Wave Holographic Imaging

A Broadband T/R Front-End of Millimeter Wave Holographic Imaging Journal of Computer and Communications, 2015, 3, 35-39 Published Online March 2015 in SciRes. http://www.scirp.org/journal/jcc http://dx.doi.org/10.4236/jcc.2015.33006 A Broadband T/R Front-End of Millimeter

More information

SAGE Millimeter, Inc.

SAGE Millimeter, Inc. Description: Model SAM-5735930395-15-L1-4W is a linear polarized, 58 GHz microstrip patch 1 x 4 array antenna. The antenna array implements four individual antenna ports so that beamforming can be achieved

More information

30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected Power-combining

30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected Power-combining 2013 IEEE Compound Semiconductor IC Symposium, October 13-15, Monterey, C 30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected Power-combining 1 H.C. Park, 1 S.

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [RF Devices for Millimeter-Wave Applications ] Date Submitted: [10 November 2003] Source: [Kenichi

More information

20 GHz to 44 GHz, GaAs, phemt, MMIC, Low Noise Amplifier HMC1040CHIPS

20 GHz to 44 GHz, GaAs, phemt, MMIC, Low Noise Amplifier HMC1040CHIPS Data Sheet FEATURES Low noise figure: 2 db typical High gain: 25. db typical P1dB output power: 13.5 dbm, 2 GHz to GHz High output IP3: 25.5 dbm typical Die size: 1.39 mm 1..2 mm APPLICATIONS Software

More information

SHF Communication Technologies AG

SHF Communication Technologies AG SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23 Aufgang D 12277 Berlin Marienfelde Germany Phone ++49 / 772 05 10 Fax ++49 / 753 10 78 E-Mail: sales@shf.biz Web: http://www.shf.biz Datasheet

More information

RECENT advances in the transistor technologies such as Si

RECENT advances in the transistor technologies such as Si 440 IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. 7, NO. 4, JULY 2017 Submillimeter-Wave Waveguide-to-Microstrip Transitions for Wide Circuits/Wafers Jungsik Kim, Wonseok Choe, and Jinho

More information

5-20GHz MMIC Amplifier with Integrated Bias

5-20GHz MMIC Amplifier with Integrated Bias 5-20GHz MMIC Amplifier with Integrated Bias Features Excellent performance 5-18GHz: High, flat gain (15 ± 0.5dB) Good return loss (15dB) 17.5dBm P1dB, 20dBm Psat Mixed-signal 3.3V operation: Similar small-signal

More information

80-105GHz Balanced Low Noise Amplifier. GaAs Monolithic Microwave IC. Gain & NF (db)

80-105GHz Balanced Low Noise Amplifier. GaAs Monolithic Microwave IC. Gain & NF (db) Gain & NF (db) GaAs Monolithic Microwave IC Description The is a broadband, balanced, four-stage monolithic low noise amplifier. It is designed for Millimeter-Wave Imaging applications and can be use in

More information

Introduction to On-Wafer Characterization at Microwave Frequencies

Introduction to On-Wafer Characterization at Microwave Frequencies Introduction to On-Wafer Characterization at Microwave Frequencies Chinh Doan Graduate Student University of California, Berkeley Introduction to On-Wafer Characterization at Microwave Frequencies Dr.

More information

CHR F RoHS COMPLIANT

CHR F RoHS COMPLIANT RoHS COMPLIANT 21-26.5GHz Integrated Down GaAs Monolithic Microwave IC Description LO The CHR3693-99F is a multifunction chip, which integrates a balanced cold FET mixer, a time two multiplier, and a RF

More information

14 GHz to 32 GHz, GaAs, MMIC, Double Balanced Mixer HMC292A

14 GHz to 32 GHz, GaAs, MMIC, Double Balanced Mixer HMC292A 14 GHz to 32 GHz, GaAs, MMIC, Double Balanced Mixer FEATURES Passive: no dc bias required Conversion loss (downconverter): 9 db typical at 14 GHz to 3 GHz Single-sideband noise figure: 11 db typical at

More information

SKA LNA Technologies and Topologies

SKA LNA Technologies and Topologies SKA LNA Technologies and Topologies Saswata Bhaumik PhD Student Dr Danielle George The University of Manchester Overview LNA design work carried out around the World Purpose of presentation is to bring

More information

Analysis of the Amplification System of ALMA Band

Analysis of the Amplification System of ALMA Band Analysis of the Amplification System of ALMA Band N. Reyes a, C. Jarufe a, F. P. Mena a *, J. Pizarro b, L. Bronfman b, J. May b a Electrical Engineering Department, Universidad de Chile, Av. Tupper 7,

More information

CMD GHz Low Noise Amplifier. Functional Block Diagram. Features. Description

CMD GHz Low Noise Amplifier. Functional Block Diagram. Features. Description 33- GHz Low Noise Amplifier Features Functional Block Diagram Ultra low noise performance All positive bias Low current consumption Small die size 2 3 Vgg GB RFIN Vdd RFOUT Description The CMD9 is a highly

More information

ISSCC 2006 / SESSION 10 / mm-wave AND BEYOND / 10.1

ISSCC 2006 / SESSION 10 / mm-wave AND BEYOND / 10.1 10.1 A 77GHz 4-Element Phased Array Receiver with On-Chip Dipole Antennas in Silicon A. Babakhani, X. Guan, A. Komijani, A. Natarajan, A. Hajimiri California Institute of Technology, Pasadena, CA Achieving

More information

GHz Low Noise Amplifier

GHz Low Noise Amplifier 8.0-12.0 GHz Low Noise Amplifier Features Frequency Range : 8.0-12.0 GHz Low Noise Figure < 1.7 db 26 db nominal gain 12 dbm P 1dB High IP3 Input Return Loss > 10 db Output Return Loss > 10 db DC decoupled

More information

ACMOS RF up/down converter would allow a considerable

ACMOS RF up/down converter would allow a considerable IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 7, JULY 1997 1151 Low Voltage Performance of a Microwave CMOS Gilbert Cell Mixer P. J. Sullivan, B. A. Xavier, and W. H. Ku Abstract This paper demonstrates

More information

The Design of E-band MMIC Amplifiers

The Design of E-band MMIC Amplifiers The Design of E-band MMIC Amplifiers Liam Devlin, Stuart Glynn, Graham Pearson, Andy Dearn * Plextek Ltd, London Road, Great Chesterford, Essex, CB10 1NY, UK; (lmd@plextek.co.uk) Abstract The worldwide

More information

A Low Noise GHz Amplifier

A Low Noise GHz Amplifier A Low Noise 3.4-4.6 GHz Amplifier C. Risacher*, M. Dahlgren*, V. Belitsky* * GARD, Radio & Space Science Department with Onsala Space Observatory, Microtechnology Centre at Chalmers (MC2), Chalmers University

More information

HEMT Millimeter-wave Monolithic IC Technology for 76-GHz Automotive Radar

HEMT Millimeter-wave Monolithic IC Technology for 76-GHz Automotive Radar UDC 621.385: 621.396.967 HEMT Millimeter-wave Monolithic IC Technology for 76-GHz Automotive Radar VYuu Watanabe VNaofumi Okubo (Manuscript received June 8, 1998) This paper describes monolithic IC technologies

More information

Recent ETHZ-YEBES Developments in Low-Noise phemts for Cryogenic Amplifiers

Recent ETHZ-YEBES Developments in Low-Noise phemts for Cryogenic Amplifiers Receivers & Array Workshop 2010 September 20th, 2010 Recent ETHZ-YEBES Developments in Low-Noise phemts for Cryogenic Amplifiers Andreas R. Alt, Colombo R. Bolognesi Millimeter-Wave Electronics Group (MWE)

More information

Foundries, MMICs, systems. Rüdiger Follmann

Foundries, MMICs, systems. Rüdiger Follmann Foundries, MMICs, systems Rüdiger Follmann Content MMIC foundries Designs and trends Examples 2 Foundries and MMICs Feb-09 IMST GmbH - All rights reserved MMIC foundries Foundries IMST is a UMS certified

More information

Surface Mount SOT-363 (SC-70) Package. Pin Connections and Package Marking GND. V dd. Note: Package marking provides orientation and identification.

Surface Mount SOT-363 (SC-70) Package. Pin Connections and Package Marking GND. V dd. Note: Package marking provides orientation and identification. GHz V Low Current GaAs MMIC LNA Technical Data MGA-876 Features Ultra-Miniature Package.6 db Min. Noise Figure at. GHz. db Gain at. GHz Single + V or V Supply,. ma Current Applications LNA or Gain Stage

More information

Features. = +25 C, Vdd= +8V *

Features. = +25 C, Vdd= +8V * Typical Applications Features This is ideal for: Fiber Optic Modulator Driver Fiber Optic Photoreceiver Post Amplifi er Gain Block for Test & Measurement Equipment Point-to-Point/Point-to-Multi-Point Radio

More information

Features. Applications. Symbol Parameters/Conditions Units Min. Max.

Features. Applications. Symbol Parameters/Conditions Units Min. Max. AMMC - 622 6-2 GHz Low Noise Amplifier Data Sheet Chip Size: 17 x 8 µm (67 x 31. mils) Chip Size Tolerance: ± 1 µm (±.4 mils) Chip Thickness: 1 ± 1 µm (4 ±.4 mils) Pad Dimensions: 1 x 1 µm (4 ±.4 mils)

More information

9-10 GHz GaAs MMIC Core Chip

9-10 GHz GaAs MMIC Core Chip 9-10 GHz GaAs MMIC Core Chip Features Functional Diagram Frequency Range: 9GHz 10GHz Tx Small Signal Gain: 28dB Rx Small Signal Gain: 4dB Tx Output P 1dB : 22dBm Tx Output P sat : 23dBm Input Return Loss

More information