SELF STABILIZING PLATFORM

Size: px
Start display at page:

Download "SELF STABILIZING PLATFORM"

Transcription

1 SELF STABILIZING PLATFORM Shalaka Turalkar 1, Omkar Padvekar 2, Nikhil Chavan 3, Pritam Sawant 4 and Project Guide: Mr Prathamesh Indulkar 5. 1,2,3,4,5 Department of Electronics and Telecommunication, Vidyalankar Institue of Technology, Wadala, Mumbai, Maharashtra. Abstract This paper presents a development of selfbalancing platform mechanism using ATMEGA microcontroller. The platform has been designed using stabilizing mechanism including Inertial measurement unit (IMU) and two servos, and controlled by an open source microcontroller. In this project the ATMEGA- 328 microcontroller, servos, and a two-degree of freedom (axis) accelerometer have been used to create the controlled platform. The controller has been designed to maintain the platform at an initially selected angle when the support structure orientation changes. The software has been written with logic to convert the digital data from the accelerometer to an acceleration magnitude vector. The magnitude is then compared to a predetermined mathematical function to infer the angle of tilt of the platform. The angle of tilt is then converted to angle of rotation for the servos to act on. Index Terms Accelerometer, IMU unit, Microcontroller, Pan Tilt, Self balancing platform, Servo motor. I. INTRODUCTION In our day to day life many more micro-electronics components exist with the very good equipment quality and performances. In this area, one is Micro electro-mechanical systems (MEMS) sensors and devices [2]. The components and devices required complete this is of cheap in cost, low energy and light in weight. In this paper sensors and other devices used are ADXL-345[1, 2, 8], servo motors [3, 4] and ATMEGA-328P [5] controller. This is widely required in products from small handheld cameras up to the defence helicopters, aircrafts and medical devices while performing precise surgeries. This paper describes easy implementation of self-balanced platform with standard part available. This is the basic concept use in auto pilot mode in aero plane. In this airplane balances itself in air without help of pilot and try to remain parallel with respect to ground level. In self-balancing platform the main components are position sensors, microcontroller and dc motor. In the implementation, we met also some problems that have been solved. One of the major applications of stabilizing platform is in self-levelling equipment like anti-motion sickness chairs [7] which causes vomiting to the travellers. II. PURPOSE The motive of the paper is to enhance the understanding of digital control devices and how it can be used to balance a platform. Also this paper is useful to analyse how close loop systems can be used along with accelerometers and gyroscope sensors to stabilize the platform. In this paper stabilization will be accomplished by using ATMEGA-328P microcontroller and an IMU unit (an accelerometer sensor) which gives feedback to two servo-motors. The purpose is also to study how the system reacts to both a symmetrically and an asymmetrically placed objects on platform. To simplify the theoretical model is considered with object is placed on the middle of the platform and tested. III. BLOCK DIAGRAM A self-stabilizing platform usually takes in account at least two angles; roll and pitch [6]. The purpose of IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 220

2 such a platform is to maintain close-to zero degrees of angle towards the direction of gravity, in other words, to stay horizontal. In order to achieve this each angle has to be measured. This can be done in a number of ways. A rotary encoder can be used to measure the rotation of the motor shaft and have the motor adjust accordingly. Another option is to use a device capable of measuring the platforms current angle, such as a gyroscope and accelerometer combination. This also enables the system to cope with the mounting (base) platform being tilted, unlike the encoder solution which can only adjust when the motor is rotated. An IMU of the scale used for this project often consists of a combination of three accelerometers and three gyroscopes placed orthogonally to each other, representing a coordinate system. An accelerometer measures G-forces, or inertial acceleration. The accelerometer is a sensor that measures acceleration in a predefined axis. The sensor can provide a reference point to determine which way is up versus down orientation. A gyroscope measures its rotational position in relation to an arbitrarily chosen coordinate system. A gyroscope will have an accumulating error and can as such often not be used alone while an accelerometer has a problem with the gravity component. These two are fortunately easily combined and will compensate each other weaknesses very well. The servo circuitry is built right inside the motor unit and has a positional shaft, which usually is fitted with a gear. The motor is controlled with an electric signal which determines the amount of movement of the shaft. Servos are controlled by sending an electrical pulse of variable width, or pulse width modulation (PWM), through the control wire. The PWM signal is a pulse of ones and zeros allowing the voltage to be set to a percentage of the maximum output voltage of the used channel. A PWM signal is usually between 0 and 255, where 0 is 0% of the available output voltage and 255 is 100%. Over a pulse, a signal of 127 will result in the signal sent being one for half of the period, and zero for the rest. This will be interpreted by the motor as a voltage of half the maximum voltage. There is a minimum pulse, a maximum pulse, and a repetition rate. A servo motor can usually only turn 90 in either direction for a total of 180 movement. The motor's neutral position is defined as the position where the servo has the same amount of potential rotation in the both the clockwise or counter-clockwise direction. The PWM sent to the motor determines position of the shaft, and based on the duration of the pulse sent via the control wire; the rotor will turn to the desired position. The servo motor expects to see a pulse every 20 milliseconds and the length of the pulse will determine how far the motor turns. The movement of servo is decided from PWM signal as follows. For example, a 1.5ms pulse will make the motor turn to the 90 position. Shorter than 1.5ms moves it in the counter clockwise direction toward the 0 position, and any longer than 1.5ms will turn the servo in a clockwise direction toward the 180 position. Depending upon the amount of change in position of Platform and direction controller energies respective motor to bring platform back to is originally/ stable position. Two dc motor are attached to platform one from top end and other from bottom with help of string such that it is parallel with respect to ground level. IV. FLOW CHART In this the digital signal processing takes in the output from the accelerometer and outputs a PWM signal to the RC servomotors. The first portion of the code initializes the processors and variables for use. Then, the code enters an infinite while loop to continually execute the code. Then the analog value tilt angle X and Y are converted into digital values and further this digital values are converted into X and Y degrees, respectively. Then, the PWM pulse width is calculated using the X and Y degrees. In this closed loop version, the PWM widths of X and Y are increased or decreased depending on the tilt degrees until the tilt degrees for X and Y are reporting a zero degree inclination. The RC servomotor controlling the X and Y axis has a PWM width determined by a simple linear relationship with respect to the inclination. Once the PWM width is determined (in ms), we scale it to our PWM period and then set those PWM values. Once the PWM signal is set, the code returns to the top of the IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 221

3 loop and repeats the block of code again. A programming flowchart is shown in figure 1. START V. RESULT In this project, we got the output as stabilized platform as shown in figure (a). Means for any movement of the movable platform the main INITIALIZE ALL VARIABLES ASSIGN ALL HARDWARE PINS CONVERT ANALOG DATA INTO DIGITAL DATA READ ACCELEROMETER VALUE CHANGE DIGITAL DATA INTO ACCELERATION Figure (a) Normal position Platform remains parallel to the earth surface as shown in figure (a). As shown in figure (a) accelerometer is mounted on the wooden base which will act as a base platform, middle square is use for horizontal levelling and inner square will use for vertical movement. In this, if we move the base platform towards the north side then the inner platform (vertically adjustable platform) will move in opposite direction that means it will move towards the south. From this we can say that movement of the movable platform is inversely proportional to the base platform. CONVERT ACCELERATION INTO TILT CHANGE TILT INTO SERVO ANGLE Figure (b) vertically stabilized. CONVERT SERVO ANGLE INTO PWM PULSE In the figure (b) the platform is stabilized horizontally. Means after moving the outer platform towards west the middle platform moves towards east and get stabilized. SEND PWM PULSES TO SERVOS Figure (1). Figure (1). Figure (1) IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 222

4 SCOPE OF PROJECT a) Precise medical surgeries. This is very useful in ships for medical operations precisely by keeping to patients stable. Same can be used in ambulances. Figure (c) horizontally stabilized In the figure (c) we move base platform towards west then according to the signal to the motor it will move towards the east. Figure (d) horizontally and vertically stabilized. In this we move this in direction other than the primary directions (East, West, North, and South). Due to this both the inner platforms will move in the opposite direction in which base platform is move. And we get the stable platform. From all above figures, we can say that, the movement of the inner platform and base platform is totally opposite. Both the inner platform is adjusted to the appropriate direction with respect to the movement of base platform to keep the inner platforms parallel to the earth surface. VI. CONCLUSION Our project is capable to stabilize the movable platform at a constant position. That means this platform will remain parallel to the earth surface. This can be used in many applications like Ships, Vehicles, Ambulance, Camera for entertainment and safety purpose. b) Aircrafts stabilizer. An aircraft stabilizer is an aerodynamic surface, it includes one or more movable control surfaces, that provides longitudinal (pitch) and directional (yaw) stability and control. A stabilizer can feature a fixed or adjustable structure on which any movable control surfaces are hinged, or it can itself be a fully movable surface such as a stabiliser. c) Antenna stabilizer. This is use where the antennas are placed at high heights, which get affect because of wind. Due to this communication can be break, so antenna stabilizer helps to keep antenna at a unique position and communication will take place without any problem. d) Camera stabilizing. Self-stabilization can be used to stable the cameras in films and in photography. e) Stabilizing platform in vehicles to prevent motion sickness. In this the sheets can be place on a single platform and this platform can be stabilized using this concept, due to which motion sickness problem can be solve. REFERENCE [1] IMUSENSORhttps:// blication/ _study_of_inertial_meas urement_unit_sensor [2] MEMSregistermaphttp://invensense.com/mem s/gyro/documents/rmmpu6000a.pdf( ) [3] Servomotorhttp:// 2/TEXT/NTRAK2002/ pdf [4] Servomotorhttp://robokits.co.in/motors/microservo-9g [5] ATMEGA328phttp:// Atmel427358bitAVRMicrocontrollerATmega P_Datasheet.pdf [6] Anglescontrolledbyservohttp://howthingsfly.si.edu/flight-dynamics/roll-pitch-and-yaw [7] Antimotionsicknesshttp:// atents/us IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 223

5 [8] elerometers/adxl345.html#productdocumentat ion IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 224

DC motor control using arduino

DC motor control using arduino DC motor control using arduino 1) Introduction: First we need to differentiate between DC motor and DC generator and where we can use it in this experiment. What is the main different between the DC-motor,

More information

The Mathematics of the Stewart Platform

The Mathematics of the Stewart Platform The Mathematics of the Stewart Platform The Stewart Platform consists of 2 rigid frames connected by 6 variable length legs. The Base is considered to be the reference frame work, with orthogonal axes

More information

Control System Design for Tricopter using Filters and PID controller

Control System Design for Tricopter using Filters and PID controller Control System Design for Tricopter using Filters and PID controller Abstract The purpose of this paper is to present the control system design of Tricopter. We have presented the implementation of control

More information

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station The platform provides a high performance basis for electromechanical system control. Originally designed for autonomous aerial vehicle

More information

GPS System Design and Control Modeling. Chua Shyan Jin, Ronald. Assoc. Prof Gerard Leng. Aeronautical Engineering Group, NUS

GPS System Design and Control Modeling. Chua Shyan Jin, Ronald. Assoc. Prof Gerard Leng. Aeronautical Engineering Group, NUS GPS System Design and Control Modeling Chua Shyan Jin, Ronald Assoc. Prof Gerard Leng Aeronautical Engineering Group, NUS Abstract A GPS system for the autonomous navigation and surveillance of an airship

More information

Feedback Devices. By John Mazurkiewicz. Baldor Electric

Feedback Devices. By John Mazurkiewicz. Baldor Electric Feedback Devices By John Mazurkiewicz Baldor Electric Closed loop systems use feedback signals for stabilization, speed and position information. There are a variety of devices to provide this data, such

More information

Design and Implementation of FPGA Based Quadcopter

Design and Implementation of FPGA Based Quadcopter Design and Implementation of FPGA Based Quadcopter G Premkumar 1 SCSVMV, Kanchipuram, Tamil Nadu, INDIA R Jayalakshmi 2 Assistant Professor, SCSVMV, Kanchipuram, Tamil Nadu, INDIA Md Akramuddin 3 Project

More information

Design and Development of Novel Two Axis Servo Control Mechanism

Design and Development of Novel Two Axis Servo Control Mechanism Design and Development of Novel Two Axis Servo Control Mechanism Shailaja Kurode, Chinmay Dharmadhikari, Mrinmay Atre, Aniruddha Katti, Shubham Shambharkar Abstract This paper presents design and development

More information

HAND GESTURE CONTROLLED ROBOT USING ARDUINO

HAND GESTURE CONTROLLED ROBOT USING ARDUINO HAND GESTURE CONTROLLED ROBOT USING ARDUINO Vrushab Sakpal 1, Omkar Patil 2, Sagar Bhagat 3, Badar Shaikh 4, Prof.Poonam Patil 5 1,2,3,4,5 Department of Instrumentation Bharati Vidyapeeth C.O.E,Kharghar,Navi

More information

Classical Control Based Autopilot Design Using PC/104

Classical Control Based Autopilot Design Using PC/104 Classical Control Based Autopilot Design Using PC/104 Mohammed A. Elsadig, Alneelain University, Dr. Mohammed A. Hussien, Alneelain University. Abstract Many recent papers have been written in unmanned

More information

KINECT CONTROLLED HUMANOID AND HELICOPTER

KINECT CONTROLLED HUMANOID AND HELICOPTER KINECT CONTROLLED HUMANOID AND HELICOPTER Muffakham Jah College of Engineering & Technology Presented by : MOHAMMED KHAJA ILIAS PASHA ZESHAN ABDUL MAJEED AZMI SYED ABRAR MOHAMMED ISHRAQ SARID MOHAMMED

More information

IMU: Get started with Arduino and the MPU 6050 Sensor!

IMU: Get started with Arduino and the MPU 6050 Sensor! 1 of 5 16-3-2017 15:17 IMU Interfacing Tutorial: Get started with Arduino and the MPU 6050 Sensor! By Arvind Sanjeev, Founder of DIY Hacking Arduino MPU 6050 Setup In this post, I will be reviewing a few

More information

Gesture Identification Using Sensors Future of Interaction with Smart Phones Mr. Pratik Parmar 1 1 Department of Computer engineering, CTIDS

Gesture Identification Using Sensors Future of Interaction with Smart Phones Mr. Pratik Parmar 1 1 Department of Computer engineering, CTIDS Gesture Identification Using Sensors Future of Interaction with Smart Phones Mr. Pratik Parmar 1 1 Department of Computer engineering, CTIDS Abstract Over the years from entertainment to gaming market,

More information

DESIGN OF A TWO DIMENSIONAL MICROPROCESSOR BASED PARABOLIC ANTENNA CONTROLLER

DESIGN OF A TWO DIMENSIONAL MICROPROCESSOR BASED PARABOLIC ANTENNA CONTROLLER DESIGN OF A TWO DIMENSIONAL MICROPROCESSOR BASED PARABOLIC ANTENNA CONTROLLER Veysel Silindir, Haluk Gözde, Gazi University, Electrical And Electronics Engineering Department, Ankara, Turkey 4 th Main

More information

AUTOPILOT CONTROL SYSTEM - IV

AUTOPILOT CONTROL SYSTEM - IV AUTOPILOT CONTROL SYSTEM - IV CONTROLLER The data from the inertial measurement unit is taken into the controller for processing. The input being analog requires to be passed through an ADC before being

More information

Automobile Prototype Servo Control

Automobile Prototype Servo Control IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 10 March 2016 ISSN (online): 2349-6010 Automobile Prototype Servo Control Mr. Linford William Fernandes Don Bosco

More information

MICRO AERIAL VEHICLE PRELIMINARY FLIGHT CONTROL SYSTEM

MICRO AERIAL VEHICLE PRELIMINARY FLIGHT CONTROL SYSTEM Multi-Disciplinary Senior Design Conference Kate Gleason College of Engineering Rochester Institute of Technology Rochester, New York 14623 Project Number: 09122 MICRO AERIAL VEHICLE PRELIMINARY FLIGHT

More information

Robotic Swing Drive as Exploit of Stiffness Control Implementation

Robotic Swing Drive as Exploit of Stiffness Control Implementation Robotic Swing Drive as Exploit of Stiffness Control Implementation Nathan J. Nipper, Johnny Godowski, A. Arroyo, E. Schwartz njnipper@ufl.edu, jgodows@admin.ufl.edu http://www.mil.ufl.edu/~swing Machine

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.14 International Journal of Advance Engineering and Research Development Volume 3, Issue 2, February -2016 e-issn (O): 2348-4470 p-issn (P): 2348-6406 SIMULATION

More information

Job Sheet 2 Servo Control

Job Sheet 2 Servo Control Job Sheet 2 Servo Control Electrical actuators are replacing hydraulic actuators in many industrial applications. Electric servomotors and linear actuators can perform many of the same physical displacement

More information

THE IMPORTANCE OF PLANNING AND DRAWING IN DESIGN

THE IMPORTANCE OF PLANNING AND DRAWING IN DESIGN PROGRAM OF STUDY ENGR.ROB Standard 1 Essential UNDERSTAND THE IMPORTANCE OF PLANNING AND DRAWING IN DESIGN The student will understand and implement the use of hand sketches and computer-aided drawing

More information

Page ENSC387 - Introduction to Electro-Mechanical Sensors and Actuators: Simon Fraser University Engineering Science

Page ENSC387 - Introduction to Electro-Mechanical Sensors and Actuators: Simon Fraser University Engineering Science Motor Driver and Feedback Control: The feedback control system of a dc motor typically consists of a microcontroller, which provides drive commands (rotation and direction) to the driver. The driver is

More information

MEM380 Applied Autonomous Robots I Winter Feedback Control USARSim

MEM380 Applied Autonomous Robots I Winter Feedback Control USARSim MEM380 Applied Autonomous Robots I Winter 2011 Feedback Control USARSim Transforming Accelerations into Position Estimates In a perfect world It s not a perfect world. We have noise and bias in our acceleration

More information

Introducing the Quadrotor Flying Robot

Introducing the Quadrotor Flying Robot Introducing the Quadrotor Flying Robot Roy Brewer Organizer Philadelphia Robotics Meetup Group August 13, 2009 What is a Quadrotor? A vehicle having 4 rotors (propellers) at each end of a square cross

More information

Feed-back loop. open-loop. closed-loop

Feed-back loop. open-loop. closed-loop Servos AJLONTECH Overview Servo motors are used for angular positioning, such as in radio control airplanes. They typically have a movement range of 180 deg but can go up to 210 deg. The output shaft of

More information

Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators

Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators Ahmed Okasha, Assistant Lecturer okasha1st@gmail.com Objective Have a

More information

CENG 5931 HW 5 Mobile Robotics Due March 5. Sensors for Mobile Robots

CENG 5931 HW 5 Mobile Robotics Due March 5. Sensors for Mobile Robots CENG 5931 HW 5 Mobile Robotics Due March 5 Sensors for Mobile Robots Dr. T. L. Harman: 281 283-3774 Office D104 For reports: Read HomeworkEssayRequirements on the web site and follow instructions which

More information

IMU Platform for Workshops

IMU Platform for Workshops IMU Platform for Workshops Lukáš Palkovič *, Jozef Rodina *, Peter Hubinský *3 * Institute of Control and Industrial Informatics Faculty of Electrical Engineering, Slovak University of Technology Ilkovičova

More information

istand I can Stand SPECIAL SENSOR REPORT

istand I can Stand SPECIAL SENSOR REPORT istand I can Stand SPECIAL SENSOR REPORT SUBRAT NAYAK UFID: 5095-9761 For EEL 5666 - Intelligent Machines Design Laboratory (Spring 2008) Department of Electrical and Computer Engineering University of

More information

Autonomous Machine To Manufacture PCB and 3-D Design

Autonomous Machine To Manufacture PCB and 3-D Design Volume 119 No. 15 2018, 961-966 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ http://www.acadpubl.eu/hub/ 1 Autonomous Machine To Manufacture PCB and 3-D Design Mrs. Archana Prasanthi.

More information

Interfacing dspace to the Quanser Rotary Series of Experiments (SRV02ET)

Interfacing dspace to the Quanser Rotary Series of Experiments (SRV02ET) Interfacing dspace to the Quanser Rotary Series of Experiments (SRV02ET) Nicanor Quijano and Kevin M. Passino The Ohio State University, Department of Electrical Engineering, 2015 Neil Avenue, Columbus

More information

MASTER SHIFU. STUDENT NAME: Vikramadityan. M ROBOT NAME: Master Shifu COURSE NAME: Intelligent Machine Design Lab

MASTER SHIFU. STUDENT NAME: Vikramadityan. M ROBOT NAME: Master Shifu COURSE NAME: Intelligent Machine Design Lab MASTER SHIFU STUDENT NAME: Vikramadityan. M ROBOT NAME: Master Shifu COURSE NAME: Intelligent Machine Design Lab COURSE NUMBER: EEL 5666C TA: Andy Gray, Nick Cox INSTRUCTORS: Dr. A. Antonio Arroyo, Dr.

More information

3DM-GX4-45 LORD DATASHEET. GPS-Aided Inertial Navigation System (GPS/INS) Product Highlights. Features and Benefits. Applications

3DM-GX4-45 LORD DATASHEET. GPS-Aided Inertial Navigation System (GPS/INS) Product Highlights. Features and Benefits. Applications LORD DATASHEET 3DM-GX4-45 GPS-Aided Inertial Navigation System (GPS/INS) Product Highlights High performance integd GPS receiver and MEMS sensor technology provide direct and computed PVA outputs in a

More information

A3 Pro INSTRUCTION MANUAL. Oct 25, 2017 Revision IMPORTANT NOTES

A3 Pro INSTRUCTION MANUAL. Oct 25, 2017 Revision IMPORTANT NOTES A3 Pro INSTRUCTION MANUAL Oct 25, 2017 Revision IMPORTANT NOTES 1. Radio controlled (R/C) models are not toys! The propellers rotate at high speed and pose potential risk. They may cause severe injury

More information

TEAM AERO-I TEAM AERO-I JOURNAL PAPER DELHI TECHNOLOGICAL UNIVERSITY Journal paper for IARC 2014

TEAM AERO-I TEAM AERO-I JOURNAL PAPER DELHI TECHNOLOGICAL UNIVERSITY Journal paper for IARC 2014 TEAM AERO-I TEAM AERO-I JOURNAL PAPER DELHI TECHNOLOGICAL UNIVERSITY DELHI TECHNOLOGICAL UNIVERSITY Journal paper for IARC 2014 2014 IARC ABSTRACT The paper gives prominence to the technical details of

More information

Study of M.A.R.S. (Multifunctional Aero-drone for Remote Surveillance)

Study of M.A.R.S. (Multifunctional Aero-drone for Remote Surveillance) Study of M.A.R.S. (Multifunctional Aero-drone for Remote Surveillance) Supriya Bhuran 1, Rohit V. Agrawal 2, Kiran D. Bombe 2, Somiran T. Karmakar 2, Ninad V. Bapat 2 1 Assistant Professor, Dept. Instrumentation,

More information

Robotic Navigation Distance Control Platform

Robotic Navigation Distance Control Platform Robotic Navigation Distance Control Platform System Block Diagram Student: Scott Sendra Project Advisors: Dr. Schertz Dr. Malinowski Date: November 18, 2003 Objective The objective of the Robotic Navigation

More information

SimpleBGC 32bit controllers Using with encoders. Last edit date: 23 October 2014 Version: 0.5

SimpleBGC 32bit controllers Using with encoders. Last edit date: 23 October 2014 Version: 0.5 SimpleBGC 32bit controllers Using with encoders Last edit date: 23 October 2014 Version: 0.5 Basecamelectronics 2013-2014 CONTENTS 1. Encoders in the SimpleBGC project...3 2. Installing encoders...4 3.

More information

Understanding RC Servos and DC Motors

Understanding RC Servos and DC Motors Understanding RC Servos and DC Motors What You ll Learn How an RC servo and DC motor operate Understand the electrical and mechanical details How to interpret datasheet specifications and properly apply

More information

Exercise 2-2. Antenna Driving System EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION

Exercise 2-2. Antenna Driving System EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION Exercise 2-2 Antenna Driving System EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the mechanical aspects and control of a rotating or scanning radar antenna. DISCUSSION

More information

ARKBIRD-Tiny Product Features:

ARKBIRD-Tiny Product Features: ARKBIRD-Tiny Product Features: ARKBIRD System is a high-accuracy autopilot designed for fixed-wing, which has capability of auto-balancing to ease the manipulation while flying. 1. Function all in one

More information

Application of an Inertial Navigation System to the Quad-rotor UAV using MEMS Sensors

Application of an Inertial Navigation System to the Quad-rotor UAV using MEMS Sensors World Academy of Science, Engineering and echnology 4 008 Application of an Inertial Navigation System to the Quad-rotor AV using MEMS Sensors in het Nwe, han Htike, Khine Myint Mon, Dr.Zaw Min Naing and

More information

OughtToPilot. Project Report of Submission PC128 to 2008 Propeller Design Contest. Jason Edelberg

OughtToPilot. Project Report of Submission PC128 to 2008 Propeller Design Contest. Jason Edelberg OughtToPilot Project Report of Submission PC128 to 2008 Propeller Design Contest Jason Edelberg Table of Contents Project Number.. 3 Project Description.. 4 Schematic 5 Source Code. Attached Separately

More information

FABO ACADEMY X ELECTRONIC DESIGN

FABO ACADEMY X ELECTRONIC DESIGN ELECTRONIC DESIGN MAKE A DEVICE WITH INPUT & OUTPUT The Shanghaino can be programmed to use many input and output devices (a motor, a light sensor, etc) uploading an instruction code (a program) to it

More information

MOBILE ROBOT LOCALIZATION with POSITION CONTROL

MOBILE ROBOT LOCALIZATION with POSITION CONTROL T.C. DOKUZ EYLÜL UNIVERSITY ENGINEERING FACULTY ELECTRICAL & ELECTRONICS ENGINEERING DEPARTMENT MOBILE ROBOT LOCALIZATION with POSITION CONTROL Project Report by Ayhan ŞAVKLIYILDIZ - 2011502093 Burcu YELİS

More information

Introduction: Components used:

Introduction: Components used: Introduction: As, this robotic arm is automatic in a way that it can decides where to move and when to move, therefore it works in a closed loop system where sensor detects if there is any object in a

More information

TigreSAT 2010 &2011 June Monthly Report

TigreSAT 2010 &2011 June Monthly Report 2010-2011 TigreSAT Monthly Progress Report EQUIS ADS 2010 PAYLOAD No changes have been done to the payload since it had passed all the tests, requirements and integration that are necessary for LSU HASP

More information

3-Degrees of Freedom Robotic ARM Controller for Various Applications

3-Degrees of Freedom Robotic ARM Controller for Various Applications 3-Degrees of Freedom Robotic ARM Controller for Various Applications Mohd.Maqsood Ali M.Tech Student Department of Electronics and Instrumentation Engineering, VNR Vignana Jyothi Institute of Engineering

More information

Servo Tuning. Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa. Thanks to Dr.

Servo Tuning. Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa. Thanks to Dr. Servo Tuning Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa Thanks to Dr. Jacob Tal Overview Closed Loop Motion Control System Brain Brain Muscle

More information

Project 27 Joystick Servo Control

Project 27 Joystick Servo Control Project 27 Joystick Servo Control For another simple project, let s use a joystick to control the two servos. You ll arrange the servos in such a way that you get a pan-tilt head, such as is used for CCTV

More information

Module 2: Lecture 4 Flight Control System

Module 2: Lecture 4 Flight Control System 26 Guidance of Missiles/NPTEL/2012/D.Ghose Module 2: Lecture 4 Flight Control System eywords. Roll, Pitch, Yaw, Lateral Autopilot, Roll Autopilot, Gain Scheduling 3.2 Flight Control System The flight control

More information

of harmonic cancellation algorithms The internal model principle enable precision motion control Dynamic control

of harmonic cancellation algorithms The internal model principle enable precision motion control Dynamic control Dynamic control Harmonic cancellation algorithms enable precision motion control The internal model principle is a 30-years-young idea that serves as the basis for a myriad of modern motion control approaches.

More information

Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control.

Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control. Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control. Dr. Tom Flint, Analog Devices, Inc. Abstract In this paper we consider the sensorless control of two types of high efficiency electric

More information

Glossary. Glossary Engineering Reference. 35

Glossary. Glossary Engineering Reference. 35 Glossary Engineering Reference Glossary Abbe error The positioning error resulting from angular motion and an offset between the measuring device and the point of interest. Abbe offset The value of the

More information

Step vs. Servo Selecting the Best

Step vs. Servo Selecting the Best Step vs. Servo Selecting the Best Dan Jones Over the many years, there have been many technical papers and articles about which motor is the best. The short and sweet answer is let s talk about the application.

More information

ServoStep technology

ServoStep technology What means "ServoStep" "ServoStep" in Ever Elettronica's strategy resumes seven keypoints for quality and performances in motion control applications: Stepping motors Fast Forward Feed Full Digital Drive

More information

SRV02-Series Rotary Experiment # 3. Ball & Beam. Student Handout

SRV02-Series Rotary Experiment # 3. Ball & Beam. Student Handout SRV02-Series Rotary Experiment # 3 Ball & Beam Student Handout SRV02-Series Rotary Experiment # 3 Ball & Beam Student Handout 1. Objectives The objective in this experiment is to design a controller for

More information

Accelerometer Products

Accelerometer Products Accelerometer Products What Is an Accelerometer and When Do You Use One? An accelerometer is a sensor which converts an acceleration from motion or gravity to an electrical signal. MOTION INPUT 5% 5% Tilt

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering ECGR 4161/5196 Introduction to Robotics Experiment No. 4 Tilt Detection Using Accelerometer Overview: The purpose

More information

Sensor system of a small biped entertainment robot

Sensor system of a small biped entertainment robot Advanced Robotics, Vol. 18, No. 10, pp. 1039 1052 (2004) VSP and Robotics Society of Japan 2004. Also available online - www.vsppub.com Sensor system of a small biped entertainment robot Short paper TATSUZO

More information

SMART SENSORS AND MEMS

SMART SENSORS AND MEMS 2 SMART SENSORS AND MEMS Dr. H. K. Verma Distinguished Professor (EEE) Sharda University, Greater Noida (Formerly: Deputy Director and Professor of Instrumentation Indian Institute of Technology Roorkee)

More information

PRODUCTS AND LAB SOLUTIONS

PRODUCTS AND LAB SOLUTIONS PRODUCTS AND LAB SOLUTIONS Answering the most challenging academic questions with innovative technology and methods Quanser is the global leader in the design and manufacture of lab solutions and products

More information

Design and Control of a Self-Balancing Autonomous Underwater Vehicle with Vision and Detection Capabilities

Design and Control of a Self-Balancing Autonomous Underwater Vehicle with Vision and Detection Capabilities Journal of Marine Science: Research & Development Journal of Marine Science: Research & Development Jebelli et al., J Marine Sci Res Dev 2018, 8:1 DOI: 10.4172/2155-9910.1000245 Research Review Article

More information

ME375 Lab Project. Bradley Boane & Jeremy Bourque April 25, 2018

ME375 Lab Project. Bradley Boane & Jeremy Bourque April 25, 2018 ME375 Lab Project Bradley Boane & Jeremy Bourque April 25, 2018 Introduction: The goal of this project was to build and program a two-wheel robot that travels forward in a straight line for a distance

More information

EL6483: Sensors and Actuators

EL6483: Sensors and Actuators EL6483: Sensors and Actuators EL6483 Spring 2016 EL6483 EL6483: Sensors and Actuators Spring 2016 1 / 15 Sensors Sensors measure signals from the external environment. Various types of sensors Variety

More information

MXD7210GL/HL/ML/NL. Low Cost, Low Noise ±10 g Dual Axis Accelerometer with Digital Outputs

MXD7210GL/HL/ML/NL. Low Cost, Low Noise ±10 g Dual Axis Accelerometer with Digital Outputs FEATURES Low cost Resolution better than 1milli-g at 1Hz Dual axis accelerometer fabricated on a monolithic CMOS IC On chip mixed signal processing No moving parts; No loose particle issues >50,000 g shock

More information

MAGNETIC LEVITATION SUSPENSION CONTROL SYSTEM FOR REACTION WHEEL

MAGNETIC LEVITATION SUSPENSION CONTROL SYSTEM FOR REACTION WHEEL IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN 2321-8843 Vol. 1, Issue 4, Sep 2013, 1-6 Impact Journals MAGNETIC LEVITATION SUSPENSION CONTROL SYSTEM FOR REACTION

More information

Embedded Robust Control of Self-balancing Two-wheeled Robot

Embedded Robust Control of Self-balancing Two-wheeled Robot Embedded Robust Control of Self-balancing Two-wheeled Robot L. Mollov, P. Petkov Key Words: Robust control; embedded systems; two-wheeled robots; -synthesis; MATLAB. Abstract. This paper presents the design

More information

Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge

Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge L298 Full H-Bridge HEF4071B OR Gate Brushed DC Motor with Optical Encoder & Load Inertia Flyback Diodes Arduino Microcontroller

More information

User Manual Version 1.0

User Manual Version 1.0 1 Thank you for purchasing our products. The A3 Pro SE controller is the updated version of A3 Pro. After a fully improvement and optimization of hardware and software, we make it lighter, smaller and

More information

Dynamically Adaptive Inverted Pendulum Platfom

Dynamically Adaptive Inverted Pendulum Platfom Dynamically Adaptive Inverted Pendulum Platfom 2009 Colorado Space Grant Symposium Jonathon Cox Colorado State University Undergraduate in Electrical Engineering Email: csutke@gmail.com Web: www.campusaudio.com

More information

ANN BASED ANGLE COMPUTATION UNIT FOR REDUCING THE POWER CONSUMPTION OF THE PARABOLIC ANTENNA CONTROLLER

ANN BASED ANGLE COMPUTATION UNIT FOR REDUCING THE POWER CONSUMPTION OF THE PARABOLIC ANTENNA CONTROLLER International Journal on Technical and Physical Problems of Engineering (IJTPE) Published by International Organization on TPE (IOTPE) ISSN 2077-3528 IJTPE Journal www.iotpe.com ijtpe@iotpe.com September

More information

Control System for a Segway

Control System for a Segway Control System for a Segway Jorge Morantes, Diana Espitia, Olguer Morales, Robinson Jiménez, Oscar Aviles Davinci Research Group, Militar Nueva Granada University, Bogotá, Colombia. Abstract In order to

More information

P07122 Autonomous Quadcopter Mechanical Assembly Instructions

P07122 Autonomous Quadcopter Mechanical Assembly Instructions Mechanical Assembly of Quadcopter Synopsis: Herein are described procedures and parts for assembly of the quadcopter. Contents: Subassembly #1: Servo & Throttle Linkage... 2 Subassembly #2: Engine, Drivetrain,

More information

302 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. MARCH VOLUME 15, ISSUE 1. ISSN

302 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. MARCH VOLUME 15, ISSUE 1. ISSN 949. A distributed and low-order GPS/SINS algorithm of flight parameters estimation for unmanned vehicle Jiandong Guo, Pinqi Xia, Yanguo Song Jiandong Guo 1, Pinqi Xia 2, Yanguo Song 3 College of Aerospace

More information

X3M. Multi-Axis Absolute MEMS Inclinometer Page 1 of 13. Description. Software. Mechanical Drawing. Features

X3M. Multi-Axis Absolute MEMS Inclinometer Page 1 of 13. Description. Software. Mechanical Drawing. Features Page 1 of 13 Description The X3M is no longer available for purchase. The X3M is an absolute inclinometer utilizing MEMS (micro electro-mechanical systems) technology to sense tilt angles over a full 360

More information

BW-IMU200 Serials. Low-cost Inertial Measurement Unit. Technical Manual

BW-IMU200 Serials. Low-cost Inertial Measurement Unit. Technical Manual Serials Low-cost Inertial Measurement Unit Technical Manual Introduction As a low-cost inertial measurement sensor, the BW-IMU200 measures the attitude parameters of the motion carrier (roll angle, pitch

More information

A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR

A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR Shiyoung Lee, Ph.D. Pennsylvania State University Berks Campus Room 120 Luerssen Building, Tulpehocken

More information

Engineering Reference

Engineering Reference Engineering Reference Linear & Rotary Positioning Stages Table of Contents 1. Linear Positioning Stages...269 1.1 Precision Linear Angular Dynamic 1.2 Loading Accuracy Repeatability Resolution Straightness

More information

Recent Progress in the Development of On-Board Electronics for Micro Air Vehicles

Recent Progress in the Development of On-Board Electronics for Micro Air Vehicles Recent Progress in the Development of On-Board Electronics for Micro Air Vehicles Jason Plew Jason Grzywna M. C. Nechyba Jason@mil.ufl.edu number9@mil.ufl.edu Nechyba@mil.ufl.edu Machine Intelligence Lab

More information

Entry #287 SONORAN ULTRASONIC CAVE MAPPING PLATFORM PSOC DESIGN CONTEST entry #287. Page 1

Entry #287 SONORAN ULTRASONIC CAVE MAPPING PLATFORM PSOC DESIGN CONTEST entry #287. Page 1 SONORAN ULTRASONIC CAVE MAPPING PLATFORM PSOC DESIGN CONTEST 2002 entry #287 Page 1 ABSTRACT Even though we associate someone who is "as blind as a bat" as a person with poor imaging capabilities, the

More information

ME 434 MEMS Tuning Fork Gyroscope Amanda Bristow Stephen Nary Travis Barton 12/9/10

ME 434 MEMS Tuning Fork Gyroscope Amanda Bristow Stephen Nary Travis Barton 12/9/10 ME 434 MEMS Tuning Fork Gyroscope Amanda Bristow Stephen Nary Travis Barton 12/9/10 1 Abstract MEMS based gyroscopes have gained in popularity for use as rotation rate sensors in commercial products like

More information

Control Design for Servomechanisms July 2005, Glasgow Detailed Training Course Agenda

Control Design for Servomechanisms July 2005, Glasgow Detailed Training Course Agenda Control Design for Servomechanisms 12 14 July 2005, Glasgow Detailed Training Course Agenda DAY 1 INTRODUCTION TO SYSTEMS AND MODELLING 9.00 Introduction The Need For Control - What Is Control? - Feedback

More information

MEMS Accelerometer sensor controlled robot with wireless video camera mounted on it

MEMS Accelerometer sensor controlled robot with wireless video camera mounted on it MEMS Accelerometer sensor controlled robot with wireless video camera mounted on it The main aim of this project is video coverage at required places with the help of digital camera and high power LED.

More information

Pulse-Width Modulation (PWM)

Pulse-Width Modulation (PWM) Pulse-Width Modulation (PWM) Modules: Integrate & Dump, Digital Utilities, Wideband True RMS Meter, Tuneable LPF, Audio Oscillator, Multiplier, Utilities, Noise Generator, Speech, Headphones. 0 Pre-Laboratory

More information

Electronic Speed Controls and RC Motors

Electronic Speed Controls and RC Motors Electronic Speed Controls and RC Motors ESC Power Control Modern electronic speed controls regulate the electric power applied to an electric motor by rapidly switching the power on and off using power

More information

A 3D Gesture Based Control Mechanism for Quad-copter

A 3D Gesture Based Control Mechanism for Quad-copter I J C T A, 9(13) 2016, pp. 6081-6090 International Science Press A 3D Gesture Based Control Mechanism for Quad-copter Adarsh V. 1 and J. Subhashini 2 ABSTRACT Objectives: The quad-copter is one of the

More information

Testing Autonomous Hover Algorithms Using a Quad rotor Helicopter Test Bed

Testing Autonomous Hover Algorithms Using a Quad rotor Helicopter Test Bed Testing Autonomous Hover Algorithms Using a Quad rotor Helicopter Test Bed In conjunction with University of Washington Distributed Space Systems Lab Justin Palm Andy Bradford Andrew Nelson Milestone One

More information

NAMASKAR ROBOT-WHICH PROVIDES SERVICE

NAMASKAR ROBOT-WHICH PROVIDES SERVICE Int. J. Elec&Electr.Eng&Telecoms. 2014 V Sai Krishna and R Sunitha, 2014 Research Paper ISSN 2319 2518 www.ijeetc.com Vol. 3, No. 1, January 2014 2014 IJEETC. All Rights Reserved NAMASKAR ROBOT-WHICH PROVIDES

More information

Active Vibration Isolation of an Unbalanced Machine Tool Spindle

Active Vibration Isolation of an Unbalanced Machine Tool Spindle Active Vibration Isolation of an Unbalanced Machine Tool Spindle David. J. Hopkins, Paul Geraghty Lawrence Livermore National Laboratory 7000 East Ave, MS/L-792, Livermore, CA. 94550 Abstract Proper configurations

More information

Allen-Bradley. Using the 1756-MO2AE with the TR Encoder (Cat. No ) Application Note

Allen-Bradley. Using the 1756-MO2AE with the TR Encoder (Cat. No ) Application Note Allen-Bradley Using the 1756-MO2AE with the TR Encoder (Cat. No. 1756-2.9) Application Note Important User Information Because of the variety of uses for the products described in this publication, those

More information

CMPS09 - Tilt Compensated Compass Module

CMPS09 - Tilt Compensated Compass Module Introduction The CMPS09 module is a tilt compensated compass. Employing a 3-axis magnetometer and a 3-axis accelerometer and a powerful 16-bit processor, the CMPS09 has been designed to remove the errors

More information

Master Thesis Presentation Future Electric Vehicle on Lego By Karan Savant. Guide: Dr. Kai Huang

Master Thesis Presentation Future Electric Vehicle on Lego By Karan Savant. Guide: Dr. Kai Huang Master Thesis Presentation Future Electric Vehicle on Lego By Karan Savant Guide: Dr. Kai Huang Overview Objective Lego Car Wifi Interface to Lego Car Lego Car FPGA System Android Application Conclusion

More information

5. Transducers Definition and General Concept of Transducer Classification of Transducers

5. Transducers Definition and General Concept of Transducer Classification of Transducers 5.1. Definition and General Concept of Definition The transducer is a device which converts one form of energy into another form. Examples: Mechanical transducer and Electrical transducer Electrical A

More information

Design and Implementation of FPGA-Based Robotic Arm Manipulator

Design and Implementation of FPGA-Based Robotic Arm Manipulator Design and Implementation of FPGABased Robotic Arm Manipulator Mohammed Ibrahim Mohammed Ali Military Technical College, Cairo, Egypt Supervisors: Ahmed S. Bahgat 1, Engineering physics department Mahmoud

More information

The Allen-Bradley Servo Interface Module (Cat. No SF1) when used with the Micro Controller (Cat. No UC1) can control single axis

The Allen-Bradley Servo Interface Module (Cat. No SF1) when used with the Micro Controller (Cat. No UC1) can control single axis Table of Contents The Allen-Bradley Servo Interface Module (Cat. No. 1771-SF1) when used with the Micro Controller (Cat. No. 1771-UC1) can control single axis positioning systems such as found in machine

More information

High Performance Advanced MEMS Industrial & Tactical Grade Inertial Measurement Units

High Performance Advanced MEMS Industrial & Tactical Grade Inertial Measurement Units High Performance Advanced MEMS Industrial & Tactical Grade Inertial Measurement Units ITAR-free Small size, low weight, low cost 1 deg/hr Gyro Bias in-run stability Datasheet Rev.2.0 5 μg Accelerometers

More information

ROBOTICS & EMBEDDED SYSTEMS

ROBOTICS & EMBEDDED SYSTEMS ROBOTICS & EMBEDDED SYSTEMS By, DON DOMINIC 29 S3 ECE CET EMBEDDED SYSTEMS small scale computers perform a specific task single component(hardware + software)- embedded after design, incapable of changing

More information

PRODUCTS AND LAB SOLUTIONS

PRODUCTS AND LAB SOLUTIONS PRODUCTS AND LAB SOLUTIONS ENGINEERING FUNDAMENTALS NI ELVIS APPLICATION BOARDS Controls Board Energy Systems Board Mechatronic Systems Board with NI ELVIS III Mechatronic Sensors Board Mechatronic Actuators

More information

PWM LED Color Control

PWM LED Color Control 1 PWM LED Color Control Through the use temperature sensors, accelerometers, and switches to finely control colors. Daniyah Alaswad, Joshua Creech, Gurashish Grewal, & Yang Lu Electrical and Computer Engineering

More information